Evaluating the Impact of Long-Term Demographic Changes on Local Participation in Italian Rural Policies (2014–2020): A Spatial Autoregressive Econometric Model
Abstract
:1. Introduction
Demographic Change in a European Setting
2. Materials and Methods
2.1. A Typology of Long-Term Demographic Change
- -
- Vital (steady and highest global increase over the entire period);
- -
- Resilient (steady and global increase but lower than Italian median);
- -
- Semi-resilient (global increase but decrease for one decade);
- -
- Semi-fragile (global decrease but positive for one decade);
- -
- Fragile (steady and global decrease but lower than Italian median);
- -
- Very fragile (steady and lowest global decrease over the entire period);
- -
- Mixed (non-classifiable according to the previous categories).
2.2. Spatial Econometric Modelling
Authors | Policy under Analysis | Dependent Variable | Territorial Explanatory Variables | Spatial Data Unit | Regression Model | |
---|---|---|---|---|---|---|
Demography | Other Territorial Variables | |||||
[30] | RDP−measure 121 | Participation rate: % of farms receiving payments/total number of farms per municipality | % of farmers ≥65 years old; % of young farmers (≤40 years); % of farms with potential successor | Less-favourable area (dummy). Regional and province priority | Municipalities (LAU) | OLS regression model |
[31] | RDP−Agri-environmental schemes to reduce N fertilizer application rate | Change 2010–2001 in the N mineral fertilazer application rate(Kg/ha of UAA) per municipality | Population density. farmers of age 40–54 and ≥55 | Natural Value Zones; Less-Favoured Areas; Altitude (mt) | Municipalities (LAU) | OLS regression model |
[32] | RDP−Agri-environmental schemes | (a) Participation rate (% of participating holdings per parish) | None | Large urban. other urban. accessible small towns. remore small towns. accessible rural. remote rural | Parish level (LAU) | OLS regression model forward-backward stepwise |
(b) Payments per UAA ha per parish | ||||||
[33] | RDP−Axis 3 (measures 311. 313. 322) | Participation rate: -% projects funded/total farms (M311 and 313); -projects funded/1.000 inh. (M322) Expenditure: -€ per UAA (ha) (M311 and 313) -€ per capita (M322) | Population density; share of population per age group; commuters; net migration rate | Share of less-favoured areas; Share of Flora-Fauna-Habitat areas | Municipalities (LAU) | Binary logit regression model |
[34] | RDP−Axis 1 (competitiveness schemes) and Axis 2 (agri-environmental schemes) | Participation in Axis 1 or Axis 2: dummy variable (1.0) | Farmer’s age; Presence of successor | % of UAA in less-favoured areas; % of nature areas in the region | Farm level (Italian FADN 2006) and regional level | Mixed effects logistic regression |
[35] | RDP−Agri-environmental schemes | Participation in agri-environmental schemes: dummy variable (1.0) | Farmer’s gender | None | Farm level sample | Multinomial logit regression models |
2.3. Data and Variables
3. Results
3.1. Typologies of Demographic Changes in Italy: Differential Characteristics
3.2. What Is the Role of Rural Policies?
3.3. The Result of the Econometric Model
4. Discussion
5. Conclusions: Implications for Research and Policy Design
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | The average annual population change rate is the result of a composed rate according to the following formula: r = 100 × − 1, where t is the duration period, Pt the population at time t and Po the population at time 0. |
2 | Estimates of net impact identify the total impacts of independent variables on the reduced-form mean of the dependent variable. Each coefficient says what is the numerical effect of 1% of change in the independent variable on the dependent one. |
References
- Iammarino, S.; Rodriguez-Pose, A.; Storper, M. Regional inequality in Europe: Evidence, theory and policy implications. J. Econ. Geogr. 2019, 19, 273–298. [Google Scholar] [CrossRef]
- OECD. OECD Regions and Cities at a Glance 2020; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- European Parliament. Demographic Outlook for the European Union; European Parliamentary Research Service (EPRS): Brussels, Belgium, 2000; ISBN 978-92-846-9500-3. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Impact of Demographic Change COM/2020/241 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593587638149&uri=CELEX%3A52020DC0241 (accessed on 22 July 2024).
- European Commission. The Impact of Demographic Change in a Changing Environment COMMISSION STAFF WORKING DOCUMENT. SWD(2023) 21 Final, Brussels, 17.1.2023. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/new-push-european-democracy/impact-demographic-change-europe_en (accessed on 7 July 2024).
- Copus, A.; Kahila, P.; Fritsch, M.; Dax, T.; Kovács, K.; Tagai, G.; Weber, R.; Grunfelder, J.; Löfving, L.; Moodie, J.; et al. ESCAPE European Shrinking Rural Areas: Challenges, Actions and Perspectives for Territorial Governance. Final Report, Version 21/12/2020, ESPON. 2020, ISBN 978-2-919795-70-3. Available online: https://www.espon.eu/sites/default/files/attachments/ESPON%20ESCAPE%20Main%20Final%20Report.pdf (accessed on 29 July 2024).
- Perpiña Castillo, C.; Vandecasteele, I.; Aurambout, J.P.; Van Heerden, S.; Barranco, R.; Bosco, C.; Jacobs-Crisioni, C.; Martínez-Ruiz, I.; Esparcia, J.; Pertoldi, M.; et al. Urban-Rural Interactions and Their Territorial Disparities. Policy Brief. European Commission–Joint Research Centre, JRC129206. 2022. Available online: https://www.rsaeurope.org/wp-content/uploads/sites/2/2023/02/Carolina-Perpina-Castillo.pdf (accessed on 22 July 2024).
- Bontje, M.; Musterd, S. Understanding Shrinkage in European Regions. Built Environ. 2012, 38, 153–161. [Google Scholar] [CrossRef]
- Johnson, K.M.; Lichter, D.T. Rural Depopulation: Growth and Decline Processes over the Past Century. Rural. Sociol. 2019, 84, 3–27. [Google Scholar] [CrossRef]
- ESPON. Policy Brief: Shrinking Rural Regions in Europe. Towards Smart and Innovative Approaches to Regional Development Challenges in Depopulating Rural Regions. October. 2017. Available online: https://www.espon.eu/sites/default/files/attachments/ESPON%20Policy%20Brief%20on%20Shrinking%20Rural%20Regions.pdf (accessed on 5 July 2024).
- EUROSTAT. EUROPOP2019-Population Projections at the Regional Level (2019–2100). 2019. Available online: https://ec.europa.eu/eurostat/web/population-demography/population-projections/database (accessed on 22 July 2024).
- European Commission. A long-Term Vision for the EU’s Rural Areas-towards Stronger, Connected, Resilient and Prosperous Rural Areas by 2040; European Commission: Brussels, Belgium, 2021; Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3162 (accessed on 18 July 2024).
- ECORIS; AGROSYNERGY; METIS. Taking Stock of How CAP Strategic Plans Contribute to the Objectives of the Long-Term Vision for the EU’s Rural Areas, Final Report, Directorate-General for Agriculture and Rural Development, Directorate A–Strategy and Policy Analysis, Unit A.3—Policy Performance, B-1049 Brussels. 2023. Available online: https://op.europa.eu/en/publication-detail/-/publication/016af9ad-582b-11ee-9220-01aa75ed71a1/language-en (accessed on 11 July 2024).
- ESPON. Territorial Evidence and Policy Advice for the Prosperous Future of Rural Areas Contribution to the Long-Term Vision for Rural Areas Policy Paper. 2021. Available online: https://archive.espon.eu/sites/default/files/attachments/ESPON%20Policy%20paper%2C%20Rural%20areas_long%20version.pdf (accessed on 22 July 2024).
- Goujon, A.; Jacobs-Crisioni, C.; Natale, F.; Lavalle, C. (Eds.) The Demographic Landscape of EU Territories: Challenges and Opportunities in Diversely Ageing Regions, EUR 30498 EN; JRC123046; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-27239-7. [Google Scholar] [CrossRef]
- Proietti, P.; Sulis, P.; Perpiña Castillo, C.; Lavalle, C.; Aurambout, J.P.; Batista ESilva, F.; Bosco, C.; Fioretti, C.; Guzzo, F.; Jacobs, C.; et al. (Eds.) New Perspectives on Territorial Disparities: From Lonely Places to Places of Opportunities, EUR 31025 EN; JRC126033; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-49484-3. [Google Scholar] [CrossRef]
- Martinez-Fernandez, C.; Kubo, N.; Noya, A.; Weyman, T. Demographic Change and Local Development: Shrinkage, Regeneration and Social Dynamics; OECD: Paris, France, 2012. Available online: https://www.oecd-ilibrary.org/development/demographic-change-and-local-development_9789264180468-en (accessed on 5 July 2024).
- ESCAPE (European Shrinking Rural Areas). Final Report—Annex 1 Policy Background © ESPON, 2020. Available online: https://www.espon.eu/sites/default/files/attachments/ESPON%20ESCAPE%20Final%20Report%20Annex%2001%20-%20Policy%20Context.pdf (accessed on 7 July 2024).
- Sikorski, D.; Latocha, A.; Szmytkie, R.; Kajdanek, K.; Miodonska, P.; Tomczak, P. Functional changes in peripheral mountainous areas in east central Europe between 2004 and 2016 as an aspect of rural revival? Kłodzko County case study. Appl. Geogr. 2021, 122, 102223. [Google Scholar] [CrossRef]
- Sánchez-Zamora, P.; Gallardo-Cobos, R.; Ceña-Delgado, F. Rural areas face the economic crisis: Analysing the determinants of successful territorial dynamics. J. Rural. Stud. 2014, 35, 11–25. [Google Scholar] [CrossRef]
- Coleman, D.; Rowthorn, R. Who’s Afraid of Population Decline? A Critical Examination of Its Consequences. Popul. Dev. Rev. 2011, 37, 217–248. [Google Scholar] [CrossRef] [PubMed]
- Prskawetz, A.; Lindh, T. (Eds.) The Relationship between Demographic Change and Economic Growth in the EU, Research Report 32, July 2007; Institut Für Demographie Österreichische Akademie Der Wissenschaften: Vienna, Austria, 2007; Available online: https://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Publications/Forschungsberichte/FB32.pdf (accessed on 25 July 2024).
- Feyrer, J. Demographics and productivity. Rev. Econ. Stat. 2007, 89, 100–109. [Google Scholar] [CrossRef]
- Crespo Cuaresma, J.; Loichinger, E.; Vincelette, G.A. Aging and income convergence in Europe: A survey of the literature and insights from a demographic projection exercise. Econ. Syst. 2016, 40, 4–17. [Google Scholar] [CrossRef]
- Noguera, J.; Ortega-Reig, M.; del Alcázar, H.; Copus, A.; Berlina, A.; Moodie, J.; Mantino, F.; Forcina, B.; Weck, S.; Beißwenger, S.; et al. Inner Peripheries: National Territories Facing Challenges of Access to Basic Services of General Interest, Final Report, ESPON Project PROFECY (Processes, Features and Cycles of Inner Peripheries in Europe). 2017. Available online: https://www.espon.eu/inner-peripheries (accessed on 14 July 2024).
- CEMR. The Impact of Demographic Change on Local and Regional Government, Research Project, Brussels, Rue d’Arlon, 22 B-1050 Bruxelles. 2006. Available online: https://difu.de/presse/pressemitteilungen/2006-06-13/the-impact-of-demographic-change-on-local-and-regional-government (accessed on 22 July 2024).
- Colantoni, A.; Halbac-Cotoara-Zamfir, R.; Halbac-Cotoara-Zamfir, C.; Cudlin, P.; Salvati, L.; Gimenez Morera, A. Demographic Resilience in Local Systems: An Empirical Approach with Census Data. Systems 2020, 8, 34. [Google Scholar] [CrossRef]
- OECD. Fostering Resilient Economies. In Demographic Transition in Local Labour Markets; OECD: Paris, France, 2014. [Google Scholar] [CrossRef]
- Anselin, L. Under the hood Issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Bartolini, F.; Raggi, M.; Viaggi, D. A spatial analysis of participation in RDP measures: A case study in Emilia Romagna Region. In Proceedings of the 1st AIEAA Conference ‘Towards a Sustainable Bio-Economy: Economic Issues and Policy Challenges’, Trento, Italy, 4–5 June 2012; Italian Association of Agricultural and Applied Economics (AIEAA): Trento, Italy, 2012. Available online: https://ideas.repec.org/p/ags/aieacp/124103.html (accessed on 7 July 2024).
- Marconi, V.; Raggi, M.; Viaggi, D. Assessing the impact of RDP agri-environment measures on the use of nitrogen-based mineral fertilizers through spatial econometrics: The case study of Emilia-Romagna (Italy). Ecol. Indic. 2015, 59, 27–40. [Google Scholar] [CrossRef]
- Yang, A.L.; Rounsevell, M.D.A.; Wilson, R.M.; Haggett, C. Spatial analysis of agri-environmental policy uptake and expenditure in Scotland. J. Environ. Manag. 2014, 133, 104–115. [Google Scholar] [CrossRef]
- Zasada, I.; Piorr, A. The role of local framework conditions for the adoption of rural development policy: An example of diversification, tourism development and village renewal in Brandenburg, Germany. Ecol. Indic. 2015, 59, 82–93. [Google Scholar] [CrossRef]
- Pascucci, S.; de-Magistris, T.; Dries, L.; Adinolfi, F.; Capitanio, F. Participation of Italian farmers in rural development policy. Eur. Rev. Agric. Econ. 2013, 40, 605–631. [Google Scholar] [CrossRef]
- Defrancesco, E.; Gatto, P.; Runge, F.; Trestini, S. Factors Affecting Farmers’ Participation in Agri-environmental Measures: A Northern Italian Perspective. J. Agric. Econ. 2008, 59, 114–131. [Google Scholar] [CrossRef]
- Dwyer, J.; Kubinakova, K.; Powell, J.; Micha, E.; Dunwoodie-Stirton, F.; Mantino, F.; Forcina, B.; Beck, M.; Gruev, K.; Ghysen, A.; et al. Evaluation Support Study on the Impact of Leader on Balanced Territorial Development; European Commission: Brussels, Belgium, 2021; Available online: https://op.europa.eu/en/publication-detail/-/publication/bd6e4f7c-a5a6-11ec-83e1-01aa75ed71a1/language-en (accessed on 5 July 2024).
- OECD. Rural 3.0, A Framework for Rural Development; OCDE: Paris, France, 2018; 27p. [Google Scholar]
- Schuh, B.; Brkanovic, S.; Gaugitsch, R.; Gorny, H.; Münch, A.; Kirchmayr-Novak, S.C.; Badouix, M.; Dwyer, J.; Kubinakova, K.; Khafagy, A.; et al. Impact of the CAP on Territorial Development of Rural Areas: Socioeconomic Aspects Evaluation Support Study Final Report European Commission B-1049; Publications Office of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- ECORIS; AGROSYNERGY; METIS. Evaluation Support Study of the Costs and Benefits of the Implementation of LEADER, Final Report; Directorate-General for Agriculture and Rural Development, Directorate A–Strategy & Policy Analysis, Unit A.3–Policy Performance, B-1049; European Commission: Brussels, Belgium, 2023; Available online: https://op.europa.eu/en/publication-detail/-/publication/cc1e7d6f-7eb3-11ee-99ba-01aa75ed71a1/language-en (accessed on 29 July 2024).
- Mantino, F.; De Fano, G.; Asaro, G. Analysing how the policy delivery system can affect territorial disparities in Italy: The case of investment support in rural areas. Land 2022, 11, 1883. [Google Scholar] [CrossRef]
- Breustedt, G.; Habermann, H. The Incidence of EU Per-Hectare Payments on Farmland Rental Rates: A Spatial Econometric Analysis for German Farm-Level Data, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der Familie-Session: Panel Data Models, No. C15-V3, Verein für Socialpolitik, Frankfurt a. M. 2010. Available online: https://www.econstor.eu/bitstream/10419/37469/3/VfS_2010_pid_179.pdf (accessed on 5 July 2024).
- LeSage, J.P. Regression analysis of spatial data. J. Reg. Anal. Policy 1997, 27, 83–94. [Google Scholar]
- Desjeux, Y.; Dupraz, P.; Kuhlman, T.; Paracchini, M.L.; Michels, L.; Maigné, E.; Rehinard, S. Evaluating the impact of rural development measures on nature value indicators at different spatial levels. Ecol. Indic. 2015, 59, 41–61. [Google Scholar] [CrossRef]
- StataCorp. Stata 18 Spatial Autoregressive Models Reference Manual; Stata Press: College Station, TX, USA, 2023; Available online: https://www.stata.com/manuals/sp.pdf (accessed on 19 July 2024).
- García-Ruiza, J.M.; Lasanta, T.; Nadal-Romero, E.; Lana-Renault, N.; Álvarez-Farizo, B. Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. Land Use Policy 2020, 99, 104850. [Google Scholar] [CrossRef]
- National Rural Network Website, Spesa Sostenuta Attraverso i Piani di Sviluppo Rurale al 31 Dicembre 2020. Available online: https://www.reterurale.it/spesa (accessed on 5 July 2024).
- European Commission. Draghi Report on The Future of European Competitiveness, Part B, In-depth Analysis and Recommendations, September 2020. 2024. Available online: https://commission.europa.eu/topics/strengthening-european-competitiveness/eu-competitiveness-looking-ahead_en (accessed on 22 July 2024).
- Rodrıguez-Pose, A.; Di Cataldo, M. Quality of government and innovative performance in the regions of Europe. J. Econ. Geogr. 2015, 15, 673–706. [Google Scholar] [CrossRef]
- Rodrıguez-Pose, A.; Garcilazo, E. Quality of government and the returns of investment: Examining the impact of cohesion expenditure in European regions. Reg. Stud. 2015, 49, 1274–1290. [Google Scholar] [CrossRef]
- Münch, A.; Gorny, H.; Badouix, M.; Gaugitsch, R.; Dwyer, J.; Kubinakova, K.; Beck, M.; Van Bunnen, P.; Mantino, F.; Brkanovic, S. Study on Funding for EU Rural Areas–Final Report, European Commission, Directorate-General for Agriculture and Rural Development; Publications Office of the European Union: Luxembourg, 2024; Available online: https://data.europa.eu/doi/10.2762/901111 (accessed on 7 July 2024).
- Mantino, F. Rural areas between locality and global networks Local development mechanisms the role of policies empowering rural actors. Bio-Based Appl. Econ. 2021, 10, 265–281. [Google Scholar] [CrossRef]
- Becker, S.; Grajewski, R.; Rehburg, P. Where Does the CAP Money Go? Design and Priorities of the Draft CAP Strategic Plans 2023–2027, Thünen Working Paper 191a; Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries: Braunschweig, Germany, 2022; Available online: https://www.econstor.eu/bitstream/10419/263233/1/1807079252.pdf (accessed on 22 July 2024).
Number of Decades between 1991 and 2021 and Related Trend | Annual Rate of Population Change between 1991 and 2021 | |||
---|---|---|---|---|
≤−0.6 | −0.59/0 | 0/+0.49 | ≥+0.50 | |
Three positive decades | Resilient | Vital | ||
Two positive decades | Mixed | Semi-resilient | ||
One positive decade | Semi-fragile | Mixed | ||
Three negative decades | Very fragile | Fragile |
Investment Sub-Measures | Measure Definition | Planned Expenditures (MLN Euro) | Calls for Applications Examined (no.) |
---|---|---|---|
4.1 | Investments in agricultural holdings | 2700 | 164 |
4.2 | Investments in processing/marketing and/or development of agricultural products | 1072 | 68 |
4.3 | Investments in infrastructure related to development, modernisation or adaptation of agriculture and forestry | 476 | 66 |
4.4 | Non-productive investments linked to the achievement of agri-environment-climate objectives | 269 | 66 |
6.1 | Business start-up aid for young farmers | 789 | 74 |
6.2 | Business start-up aid for non-agricultural activities in rural areas | 63 | 12 |
6.4 | Investments in creation and development of non-agricultural activities | 450 | 87 |
7.1 | Plans for the development of municipalities and villages in rural areas and their basic services and of protection and management plans relating to Natura 2000 sites and other areas of high nature value | 20 | 16 |
7.2 | Small-scale infrastructure, including investments in renewable energy and energy saving | 86 | 22 |
7.4 | Local basic services for the rural population, including leisure and culture, and the related infrastructure | 97 | 22 |
7.5 | Recreational infrastructure, tourist information and small-scale tourism infrastructure | 60 | 20 |
7.6 | Cultural and natural heritage of villages, rural landscapes and high-nature-value sites including related socioeconomic aspects, as well as environmental awareness actions | 88 | 33 |
7.7 | Relocation of activities and conversion of buildings or other facilities located inside or close to rural settlements | 1 | 1 |
8.1 | Afforestation/creation of woodland | 171 | 36 |
8.6 | Forestry technologies and in processing, mobilising and marketing of forest products | 163 | 51 |
19.2 | LEADER schemes | 294 | 610 |
Multi-measure calls | 126 | 4 | |
Total | 6924 | 1352 |
Variable Name | Variable Description | Support Schemes Included | ||||
---|---|---|---|---|---|---|
RDPbenpop | % beneficiaries of RDP total investment support/total population of municipality | M4; M6; M7; M8; M16 | ||||
LAGbenpop | % beneficiaries of LAG total investment support/total population of municipality | M19 | ||||
Invsect_benpop | % beneficiaries of RDP and LAG sectoral investment support/total population of municipality | M4.1; M4.2; M6.1; M6.2; LEADER (M19.2- only farm investments and processing and marketing) | ||||
Invservinfra_pop | % beneficiaries of RDP and LAG non-sectoral investment support/total population of municipality | M4.3; M4.4; M6.4; all M7; LEADER (M19.2- only farm diversification, services and infrastructures) |
Variable Name | Variable Description | Min | Max | Mean | StDev |
---|---|---|---|---|---|
Macro-regional variables | |||||
North-West | Dummy variable = 1 if municipality belongs to North-West macro-region, 0 to the centre | - | - | - | - |
North-East | Dummy variable = 1 if municipality belongs to North-East macro-region, 0 to the centre | - | - | - | - |
South | Dummy variable = 1 if municipality belongs to South macro-region, 0 to the centre | - | - | - | - |
Islands | Dummy variable = 1 if municipality belongs to Islands macro-region, 0 to the centre | - | - | - | - |
Long-term demographic change (years 1991–2021) | |||||
Vital and resilient | Dummy variable = 1 if municipality belongs to the vital and resilient cluster, 0 to the mixed cluster | - | - | - | - |
Semi-resilient | Dummy variable = 1 if municipality belongs to the semi-resilient cluster, 0 to the mixed cluster | - | - | - | - |
Semi-fragile | Dummy variable = 1 if municipality belongs to the semi-fragile cluster, 0 to the mixed cluster | - | - | - | - |
Fragile | Dummy variable = 1 if municipality belongs to the fragile cluster, 0 to the mixed cluster | - | - | - | - |
Very fragile | Dummy variable = 1 if municipality belongs to the very fragile cluster, 0 to the mixed cluster | - | - | - | - |
Farming system | |||||
PDOPGIshare | % of producers with Protected Designation of Origin or Protected Geographical Indication on total farms (year 2020) | 0.0 | 200.0 | 37.5 | 27.8 |
Sharemarginfarm | % of producers under EUR 15,000 agricultural standard output on total farms (year 2020) | 0.0 | 100.0 | 42.3 | 14.7 |
Farmoutputvalue | Average Agricutural Standard Output per farm (Euro) (year 2015) | 284.0 | 3,074,000 | 50,152 | 97,268 |
UAAm | Average Utilised Agricultural Area per farm holding (Ha) (year 2020) | 0.1 | 382.9 | 16.8 | 20.7 |
Densafarm | Number of farms per 100 inhabitants (year 2020) | 0.2 | 720 | 44.1 | 46.1 |
Speedbroadband | Broad band speed from the fixed network (Mb/s) (2020) | 0.18 | 475.9 | 56.2 | 43.8 |
Indicators | Very Fragile | Fragile | Semi-Fragile | Mixed | Semi-Resilient | Resilient | Vital | Total |
---|---|---|---|---|---|---|---|---|
Population % share 1992 | 10% | 12% | 18% | 22% | 16% | 5% | 16% | 100% |
Population % share 2021 | 7% | 10% | 17% | 22% | 17% | 5% | 21% | 100% |
Population by altitude 2021: | ||||||||
- Mountain regions | 38.1 | 10.3 | 13.4 | 7.5 | 11.7 | 13.5 | 7.9 | 12.2 |
- Hill regions | 37.1 | 54.5 | 30.2 | 32.4 | 50.6 | 34.4 | 36.2 | 38.7 |
- Lowland regions | 24.8 | 35.2 | 56.4 | 60.1 | 37.7 | 52.1 | 55.9 | 49.2 |
- Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Population by municipality size: | ||||||||
- less that 2000 inh. | 25.4 | 4.9 | 5.8 | 2.6 | 6.3 | 2.1 | 2.3 | 5.6 |
- 2000–5000 inh. | 22.7 | 9.8 | 10.3 | 4.2 | 17.4 | 6.3 | 10.7 | 10.9 |
- 5001–20,000 inh. | 14.8 | 22.6 | 18.7 | 14.8 | 41.7 | 36.5 | 53.4 | 30.2 |
- 20,000–50,000 inh. | 4.5 | 10.4 | 13.5 | 16.9 | 21.5 | 36.2 | 21.9 | 17.6 |
- >50,000 inh. | 4.2 | 3.8 | 4.6 | 7.1 | 6.0 | 4.4 | 6.6 | 5.7 |
- Provincial capitals | 6.4 | 15.2 | 20.4 | 27.2 | 5.4 | 10.5 | 5.1 | 14.0 |
- Regional capitals | 21.9 | 33.3 | 26.7 | 27.2 | 1.6 | 3.9 | 0.0 | 15.9 |
- Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Population Indicators (2021) | Vital | Resilient | Semi-Resilient | Mixed | Semi-Fragile | Fragile | Very Fragile |
---|---|---|---|---|---|---|---|
Population density (Inh./Km2) | 326.9 | 245.7 | 204.1 | 332.6 | 193.3 | 193.6 | 54.5 |
Structural dependency index | 53.6 | 57.6 | 56.0 | 58.0 | 59.3 | 59.4 | 63.9 |
Ageing index | 20.8 | 23.6 | 23.0 | 24.2 | 25.3 | 25.1 | 28.3 |
Old age dependency ratio | 146.9 | 181.2 | 178.3 | 192.9 | 212.0 | 205.7 | 265.5 |
Employment rate | 66.0 | 65.5 | 62.5 | 64.8 | 62.7 | 56.5 | 57.9 |
Immigrants per 1000 inhab. | 95.6 | 90.8 | 70.7 | 109.6 | 97.3 | 57.7 | 55.5 |
Employees per 1000 inhabitants | 293.1 | 316.4 | 263.1 | 338.2 | 328.0 | 253.7 | 219.2 |
Agricultural Indicators | Vital | Resilient | Semi−Resilient | Mixed | Semi−Fragile | Fragile | Very Fragile |
---|---|---|---|---|---|---|---|
TAA−Annual Change rate 1990–2020 | −0.78 | −0.68 | −0.83 | −0.75 | −1.08 | −1.07 | −1.35 |
UAA−Annual Change rate 1990–2021 | −0.58 | −0.55 | −0.58 | −0.48 | −0.76 | −0.67 | −0.83 |
UAA per farm (ha; 2021) | 10.54 | 10.10 | 9.94 | 10.85 | 9.97 | 9.97 | 13.49 |
Farm holdings−Annual Change rate 1990–2021 | −3.10 | −2.82 | −3.11 | −2.92 | −2.98 | −2.68 | −3.24 |
AWU per farm 2020 | 1.3 | 2.0 | 1.1 | 2.9 | 1.8 | 1.8 | 0.9 |
Forest hectares per 1000 inhabitants 2010 | 81.05 | 105.16 | 151.81 | 93.91 | 178.22 | 164.98 | 734.99 |
Share of abandoned land (%) 2020 | 0.23 | 0.16 | 0.30 | 0.44 | 0.58 | 0.80 | 1.29 |
Agritourist farming of total farms (2020) | 3.42 | 3.37 | 2.40 | 2.13 | 12.99 | 1.45 | 21.40 |
Independent Variables | Dependent Variable: | Dependent Variable: | ||||
---|---|---|---|---|---|---|
PSRbenpop (% Beneficiaries of RDP Total Investment Support) | LAGbenpop (% Beneficiaries of LAG Total Investment Support) | |||||
Regional Differences | OLS−Aspatial | GS2SLS−SAR Model | SAR Total Impacts | OLS−Aspatial | GS2SLS−SAR Model | SAR Total Impacts |
North−West | 1.10 *** | 1.12 *** | 1.22 *** | 0.77 *** | 0.71 *** | 0.76 *** |
North−East | 0.99 *** | 0.60 *** | 0.65 *** | 0.63 *** | 0.53 *** | 0.57 *** |
South | −1.1 | −0.81 *** | −0.88 *** | −0.71 *** | −0.75 *** | −0.80 *** |
Islands | −0.26 *** | −0.17 * | −0.18 * | −0.71 *** | −0.80 *** | −0.86 *** |
Demographic change | ||||||
Vital&resilient | −0.06 | −0.05 | −0.05 | −0.41 ** | −0.34 * | −0.36 * |
Semi-Resilient | −0.06 | −0.04 | −0.04 | −0.38 ** | −0.29 * | −0.31* |
Semi-Fragile | 0.13 * | 0.07 | 0.08 | −0.01 | −0.03 | −0.03 |
Fragile | −0.10 | −0.09 | −0.09 | −0.01 | −0.06 | −0.07 |
Very fragile | 0.20 *** | 0.11 * | 0.11 * | 0.34 ** | 0.23 | 0.25 |
Farming system | ||||||
Log_PDOIGPshare | 0.06 *** | 0.05 *** | 0.05 *** | 0.06 ** | 0.06 * | 0.06 * |
Log_Sharemarginfarm | −0.13 ** | −0.15 *** | −0.16 *** | −0.39 *** | −0.31 ** | −0.33 ** |
Log_Farmoutputvalue | −0.08 *** | −0.01 | −0.01 | −0.21 *** | −0.14 ** | −0.15 ** |
Log_UAAm | 0.12 *** | 0.12 *** | 0.13 *** | 0.10 * | 0.03 | 0.03 |
Log_densafarm | 0.78 *** | 0.80 *** | 0.86 *** | 0.51 *** | 0.61 *** | 0.65 *** |
Log_speedbroadband | −0.20 *** | −0.15 *** | −0.16 *** | −0.42 *** | −0.37 *** | −0.40 *** |
Constant | −3.30 *** | −4.17 *** | 0.73 | −0.46 | ||
Spatial parameters | ||||||
ρ (spatial lag parameter) | 0.15 *** | 0.16 | ||||
λ (spatial error coefficient) | 0.99 *** | 0.94 *** | ||||
Statistics | ||||||
No. Observations | 4481 | 4481 | 961 | 961 | ||
R2 | 0.55 | 0.39 | ||||
Adjusted R2 | 0.55 | 0.38 | ||||
Pseudo_R2 | 0.53 | 0.37 |
Independent Variables | Dependent Variable: | Dependent Variable: | ||||
---|---|---|---|---|---|---|
% Beneficiaries of RDP and LAG Sectoral Investment Support | % Beneficiaries of RDP and LAG Non-Sectoral Investment Support | |||||
Regional Differences | OLS-Aspatial | GS2SLS-SAR Model | SAR Total Impacts | OLS-Aspatial | GS2SLS-SAR Model | SAR Total Impacts |
North-West | 1.41 *** | 1.38 *** | 1.46 *** | 0.71 *** | 0.59 *** | 0.65 *** |
North-East | 1.25 *** | 0.95 *** | 1.00 *** | −0.15 | −0.34 ** | −0.38 *** |
South | −1.79 *** | −1.66 *** | −1.76 *** | −1.09 *** | −1.04 *** | −1.16 *** |
Islands | 0.13 * | 0.15 | 0.16 | −0.57 *** | −0.61 *** | −0.68 *** |
Demographic change | ||||||
Vital&resilient | −0.03 | −0.02 | −0.02 | −0.08 | −0.06 | −0.07 |
Semi-Resilient | −0.02 | −0.01 | −0.01 | −0.10 | −0.05 | −0.05 |
Semi-Fragile | 0.12 * | 0.09 | 0.09 | 0.23 ** | 0.15 | 0.16 |
Fragile | 0.01 | −0.02 | −0.02 | 0.04 | 0.03 | 0.03 |
Very fragile | 0.11 | 0.08 | 0.09 | 0.61 *** | 0.44 *** | 0.49 *** |
Farming system | ||||||
Log_PDOIGPshare | 0.12 *** | 0.08 *** | 0.09 *** | 0.03 * | 0.03 | 0.03 |
Log_Sharemarginfarm | −0.19 *** | −0.18 *** | −0.19 *** | −0.11 | −0.10 | −0.11 |
Log_Farmoutputvalue | −0.06 ** | 0.00 | 0.00 | −0.31 *** | −0.24 *** | −0.26 *** |
Log_UAAm | 0.16 *** | 0.15 *** | 0.15 *** | 0.19 *** | 0.16 *** | 0.18 *** |
Log_densafarm | 0.82 *** | 0.82 *** | 0.87 *** | 0.47 *** | 0.59 *** | 0.66 *** |
Log_speedbroadband | −0.18 *** | −0.15 *** | −0.15 *** | −0.39 *** | −0.29 *** | −0.32 *** |
Constant | −4.12 *** | −4.76 *** | 0.04 | −1.12 * | ||
Spatial parameters | ||||||
ρ (spatial lag parameter) | 0.11 *** | 0.25 *** | ||||
λ (spatial error coefficient) | 0.95 *** | 0.95 *** | ||||
Statistics | ||||||
No. Observations | 3431 | 3431 | 2317 | 2317 | ||
R2 | 0.64 | 0.41 | ||||
Adjusted R2 | 0.64 | 0.41 | ||||
Pseudo_R2 | 0.63 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantino, F.; De Fano, G.; Asaro, G. Evaluating the Impact of Long-Term Demographic Changes on Local Participation in Italian Rural Policies (2014–2020): A Spatial Autoregressive Econometric Model. Land 2024, 13, 1581. https://doi.org/10.3390/land13101581
Mantino F, De Fano G, Asaro G. Evaluating the Impact of Long-Term Demographic Changes on Local Participation in Italian Rural Policies (2014–2020): A Spatial Autoregressive Econometric Model. Land. 2024; 13(10):1581. https://doi.org/10.3390/land13101581
Chicago/Turabian StyleMantino, Francesco, Giovanna De Fano, and Gianluca Asaro. 2024. "Evaluating the Impact of Long-Term Demographic Changes on Local Participation in Italian Rural Policies (2014–2020): A Spatial Autoregressive Econometric Model" Land 13, no. 10: 1581. https://doi.org/10.3390/land13101581
APA StyleMantino, F., De Fano, G., & Asaro, G. (2024). Evaluating the Impact of Long-Term Demographic Changes on Local Participation in Italian Rural Policies (2014–2020): A Spatial Autoregressive Econometric Model. Land, 13(10), 1581. https://doi.org/10.3390/land13101581