Virtual Forest Environment Influences Inhibitory Control
Abstract
:1. Introduction
2. Materials and Methods of Experiment 1
2.1. Participants
2.2. Materials
2.2.1. Video
2.2.2. GNG Task
2.3. Experimental Procedure
2.4. Analysis
2.4.1. GNG Task
3. Results of Experiment 1
GNG Task
4. Materials and Methods of Experiment 2
4.1. Participants
4.2. Materials
4.2.1. Video
4.2.2. GNG Task
4.2.3. ANT
4.3. Experimental Procedure
4.4. Analysis
4.4.1. GNG Task
4.4.2. ANT
4.4.3. COVID-19 Effects
5. Results of Experiment 2
5.1. GNG Task
5.2. ANT
5.3. COVID-19 Effects
6. General Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janik, H.; Kraft, K.; Trabandt, A. Efficacy of Healing Forest Therapy for Patients with Chronic Obstructive Pulmonary Disease (COPD). Eur. J. Integr. Med. 2021, 48, 101944. [Google Scholar] [CrossRef]
- Wu, Q.; Ye, B.; Lv, X.; Mao, G.; Wang, S.; Chen, Z.; Wang, G. Adjunctive Therapeutic Effects of Cinnamomum Camphora Forest Environment on Elderly Patients with Hypertension. Int. J. Gerontol. 2020, 14, 327–331. [Google Scholar] [CrossRef]
- Bikomeye, J.C.; Balza, J.S.; Kwarteng, J.L.; Beyer, A.M.; Beyer, K.M.M. The Impact of Greenspace or Nature-Based Interventions on Cardiovascular Health or Cancer-Related Outcomes: A Systematic Review of Experimental Studies. PLoS ONE 2022, 17, e0276517. [Google Scholar] [CrossRef]
- Chae, Y.; Lee, S.; Jo, Y.; Kang, S.; Park, S.; Kang, H. The Effects of Forest Therapy on Immune Function. Int. J. Environ. Res. Public. Health 2021, 18, 8440. [Google Scholar] [CrossRef]
- Corazon, S.S.; Sidenius, U.; Poulsen, D.V.; Gramkow, M.C.; Stigsdotter, U.K. Psycho-Physiological Stress Recovery in Outdoor Nature-Based Interventions: A Systematic Review of the Past Eight Years of Research. Int. J. Environ. Res. Public. Health 2019, 16, 1711. [Google Scholar] [CrossRef] [Green Version]
- Kotera, Y.; Richardson, M.; Sheffield, D. Effects of Shinrin-Yoku (Forest Bathing) and Nature Therapy on Mental Health: A Systematic Review and Meta-Analysis. Int. J. Ment. Health Addict. 2022, 20, 337–361. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Carlone, L.; Maggini, V.; Firenzuoli, F.; Bedeschi, E. Effects of Forest Bathing (Shinrin-Yoku) on Individual Well-Being: An Umbrella Review. Int. J. Environ. Health Res. 2022, 32, 1842–1867. [Google Scholar] [CrossRef]
- Donelli, D.; Meneguzzo, F.; Antonelli, M.; Ardissino, D.; Niccoli, G.; Gronchi, G.; Baraldi, R.; Neri, L.; Zabini, F. Effects of Plant-Emitted Monoterpenes on Anxiety Symptoms: A Propensity-Matched Observational Cohort Study. Int. J. Environ. Res. Public. Health 2023, 20, 2773. [Google Scholar] [CrossRef]
- Bang, K.S.; Lee, I.S.; Kim, S.J.; Song, M.K.; Park, S.E. The Effects of Urban Forest-walking Program on Health Promotion Behavior, Physical Health, Depression, and Quality of Life: A Randomized Controlled Trial of Office-workers. J. Korean Acad. Nurs. 2016, 46, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Chun, M.H.; Chang, M.C.; Lee, S.-J. The Effects of Forest Therapy on Depression and Anxiety in Patients with Chronic Stroke. Int. J. Neurosci. 2017, 127, 199–203. [Google Scholar] [CrossRef]
- Brown, D.K.; Barton, J.L.; Pretty, J.; Gladwell, V.F. Walks4Work: Assessing the Role of the Natural Environment in a Workplace Physical Activity Intervention. Scand. J. Work. Environ. Health 2014, 40, 390–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, D.; Grafetstätter, C.; Proßegger, J.; Pichler, C.; Wöll, E.; Fischer, M.; Dürl, M.; Geiersperger, K.; Höcketstaller, M.; Frischhut, S.; et al. Green Exercise and Mg-ca-SO4 Thermal Balneotherapy for the Treatment of Non-Specific Chronic Low Back Pain: A Randomized Controlled Clinical Trial. BMC Musculoskelet. Disord. 2019, 20, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneguzzo, F.; Albanese, L.; Antonelli, M.; Baraldi, R.; Becheri, F.R.; Centritto, F.; Donelli, D.; Finelli, F.; Firenzuoli, F.; Margheritini, G.; et al. Short-Term Effects of Forest Therapy on Mood States: A Pilot Study. Int. J. Environ. Res. Public. Health 2021, 18, 9509. [Google Scholar] [CrossRef]
- Sonntag-Öström, E.; Nordin, M.; Lundell, Y.; Dolling, A.; Wiklund, U.; Karlsson, M.; Carlberg, B.; Slunga Järvholm, L. Restorative Effects of Visits to Urban and Forest Environments in Patients with Exhaustion Disorder. Urban For. Urban Green. 2014, 13, 344–354. [Google Scholar] [CrossRef]
- Frumkin, H.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, J.P.H.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; Wolf, K.L.; et al. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugolini, F.; Massetti, L.; Calaza-Martínez, P.; Cariñanos, P.; Dobbs, C.; Ostoić, S.K.; Marin, A.M.; Pearlmutter, D.; Saaroni, H.; Šaulienė, I.; et al. Effects of the COVID-19 Pandemic on the Use and Perceptions of Urban Green Space: An International Exploratory Study. Urban For. Urban Green. 2020, 56, 126888. [Google Scholar] [CrossRef]
- Ross, A.M.; Jones, R.J.F. Simulated Forest Immersion Therapy: Methods Development. Int. J. Environ. Res. Public. Health 2022, 19, 5373. [Google Scholar] [CrossRef]
- Jo, H.; Song, C.; Miyazaki, Y. Physiological Benefits of Viewing Nature: A Systematic Review of Indoor Experiments. Int. J. Environ. Res. Public. Health 2019, 16, 4739. [Google Scholar] [CrossRef] [Green Version]
- White, M.P.; Yeo, N.L.; Vassiljev, P.; Lundstedt, R.; Wallergård, M.; Albin, M.; Lõhmus, M. A Prescription for “Nature”-the Potential of Using Virtual Nature in Therapeutics. Neuropsychiatr. Dis. Treat. 2018, 14, 3001–3013. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shi, Y.; Zhang, B.; Chiang, Y. The Influence of Forest Resting Environments on Stress Using Virtual Reality. Int. J. Environ. Res. Public. Health 2019, 16, 3263. [Google Scholar] [CrossRef] [Green Version]
- Grassini, S.; Segurini, G.V.; Koivisto, M. Watching Nature Videos Promotes Physiological Restoration: Evidence From the Modulation of Alpha Waves in Electroencephalography. Front. Psychol. 2022, 13, 871143. [Google Scholar] [CrossRef]
- Valtchanov, D.; Barton, K.R.; Ellard, C. Restorative Effects of Virtual Nature Settings. Cyberpsychology Behav. Soc. Netw. 2010, 13, 503–512. [Google Scholar] [CrossRef]
- Litleskare, S.; MacIntyre, E.T.; Calogiuri, G. Enable, Reconnect and Augment: A New ERA of Virtual Nature Research and Application. Int. J. Environ. Res. Public. Health 2020, 17, 1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The Effect of Virtual Reality Forest and Urban Environments on Physiological and Psychological Responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Mostajeran, F.; Krzikawski, J.; Steinicke, F.; Kühn, S. Effects of Exposure to Immersive Videos and Photo Slideshows of Forest and Urban Environments. Sci. Rep. 2021, 11, 3994. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.E.; Joye, Y.; Koole, S.L. Why Viewing Nature Is More Fascinating and Restorative than Viewing Buildings: A Closer Look at Perceived Complexity. Urban For. Urban Green. 2016, 20, 397–401. [Google Scholar] [CrossRef]
- Zabini, F.; Albanese, L.; Becheri, F.R.; Gavazzi, G.; Giganti, F.; Giovanelli, F.; Gronchi, G.; Guazzini, A.; Laurino, M.; Li, Q.; et al. Comparative Study of the Restorative Effects of Forest and Urban Videos during COVID-19 Lockdown: Intrinsic and Benchmark Values. Int. J. Environ. Res. Public. Health 2020, 17, 8011. [Google Scholar] [CrossRef]
- Shin, W.S.; Shin, C.S.; Yeoun, P.S.; Kim, J.J. The Influence of Interaction with Forest on Cognitive Function. Scand. J. For. Res. 2011, 26, 595–598. [Google Scholar] [CrossRef]
- Michael, S.G.; Richard, B.I.; George, R.M. Richard Cognitive Neuroscience: The Biology of the Mind: Fourth International Student Edition; W.W.Norton: New York, NY, USA, 2013; ISBN 978-0-393-92228-8. [Google Scholar]
- Barkley, R.A. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.R.; Fletcher, P.C.; Bullmore, E.T.; Sahakian, B.J.; Robbins, T.W. Stop-Signal Inhibition Disrupted by Damage to Right Inferior Frontal Gyrus in Humans. Nat. Neurosci. 2003, 6, 115–116. [Google Scholar] [CrossRef]
- Gavazzi, G.; Lenge, M.; Bartolini, E.; Bianchi, A.; Agovi, H.; Mugnai, F.; Guerrini, R.; Giordano, F.; Viggiano, M.P.; Mascalchi, M. Left Inferior Frontal Cortex Can Compensate the Inhibitory Functions of Right Inferior Frontal Cortex and Pre-Supplementary Motor Area. J. Neuropsychol. 2019, 13, 503–508. [Google Scholar] [CrossRef]
- Gavazzi, G.; Rossi, A.; Orsolini, S.; Diciotti, S.; Giovannelli, F.; Salvadori, E.; Pantoni, L.; Mascalchi, M.; Viggiano, M.P. Impulsivity Trait and Proactive Cognitive Control: An FMRI Study. Eur. J. Neurosci. 2019, 49, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Orsolini, S.; Salvadori, E.; Bianchi, A.; Rossi, A.; Donnini, I.; Rinnoci, V.; Pescini, F.; Diciotti, S.; Viggiano, M.P.; et al. Functional Magnetic Resonance Imaging of Inhibitory Control Reveals Decreased Blood Oxygen Level Dependent Effect in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Stroke 2019, 50, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Feil, J.; Sheppard, D.; Fitzgerald, P.B.; Yücel, M.; Lubman, D.I.; Bradshaw, J.L. Addiction, Compulsive Drug Seeking, and the Role of Frontostriatal Mechanisms in Regulating Inhibitory Control. Neurosci. Biobehav. Rev. 2010, 35, 248–275. [Google Scholar] [CrossRef]
- Carbone, F.; Zamarian, L.; Rass, V.; Bair, S.; Ritter, M.; Beer, R.; Mahlknecht, P.; Heim, B.; Limmert, V.; Peball, M.; et al. Cognitive Dysfunction 1 Year after COVID-19: Evidence from Eye Tracking. Ann. Clin. Transl. Neurol. 2022, 9, 1826–1831. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Chen, F.; Cui, L. COVID-19 and Cognitive Impairment: Neuroinvasive and Blood–brain Barrier Dysfunction. J. Neuroinflamm. 2022, 19, 222. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, F.; Massetti, L.; Pearlmutter, D.; Sanesi, G. Usage of Urban Green Space and Related Feelings of Deprivation during the COVID-19 Lockdown: Lessons Learned from an Italian Case Study. Land Use Policy 2021, 105, 105437. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E. The Attention System of the Human Brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the Efficiency and Independence of Attentional Networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Mathôt, S.; Schreij, D.; Theeuwes, J. OpenSesame: An Open-Source, Graphical Experiment Builder for the Social Sciences. Behav. Res. Methods 2012, 44, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Rousselet, G.; Pernet, C.; Wilcox, R. An Introduction to the Bootstrap: A Versatile Method to Make Inferences by Using Data-Driven Simulations. Available online: https://files.osf.io/v1/resources/h8ft7/providers/osfstorage/5cebe77123fec40018e6c1f3?format=pdf&action=download&direct&version=5 (accessed on 29 May 2023).
- Grassini, S.; Revonsuo, A.; Castellotti, S.; Petrizzo, I.; Benedetti, V.; Koivisto, M. Processing of Natural Scenery Is Associated with Lower Attentional and Cognitive Load Compared with Urban Ones. J. Environ. Psychol. 2019, 62, 1–11. [Google Scholar] [CrossRef]
- Crivelli, L.; Palmer, K.; Calandri, I.; Guekht, A.; Beghi, E.; Carroll, W.; Frontera, J.; García-Azorín, D.; Westenberg, E.; Win-kler, A.S.; et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s Dement. 2022, 18, 1047–1066. [Google Scholar] [CrossRef] [PubMed]
- Akıncı, B.; Oğul, Ö.E.; Hanoğlu, L.; Kulaç, B.; Ören, D.; Ulu, O.; Basançelebi, B. Evaluation of Cognitive Functions in Adult Individuals with COVID-19. Neurol. Sci. 2023, 44, 793–802. [Google Scholar] [CrossRef]
- Favieri, F.; Forte, G.; Agostini, F.; Giovannoli, J.; Di Pace, E.; Langher, V.; Tambelli, R.; Pazzaglia, M.; Giannini, A.M.; Casagrande, M. The Cognitive Consequences of the COVID-19 Pandemic on Members of the General Population in Italy: A Preliminary Study on Executive Inhibition. J. Clin. Med. 2022, 11, 170. [Google Scholar] [CrossRef]
- Verbruggen, F.; McLaren, I.P.L.; Chambers, C.D. Banishing the Control Homunculi in Studies of Action Control and Behavior Change. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2014, 9, 497–524. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, V.; Gavazzi, G.; Giovannelli, F.; Bravi, R.; Giganti, F.; Minciacchi, D.; Mascalchi, M.; Cincotta, M.; Viggiano, M.P. Mouse Tracking to Explore Motor Inhibition Processes in Go/No-Go and Stop Signal Tasks. Brain Sci. 2020, 10, 464. [Google Scholar] [CrossRef]
- Aron, A.R.; Poldrack, R.A. Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 2424–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavazzi, G.; Giovannelli, F.; Currò, T.; Mascalchi, M.; Viggiano, M.P. Contiguity of Proactive and Reactive Inhibitory Brain Areas: A Cognitive Model Based on ALE Meta-Analyses. Brain Imaging Behav. 2021, 15, 2199–2214. [Google Scholar] [CrossRef]
- Gavazzi, G.; Giovannelli, F.; Noferini, C.; Cincotta, M.; Cavaliere, C.; Salvatore, M.; Mascalchi, M.; Viggiano, M.P. Subregional Prefrontal Cortex Recruitment as a Function of Inhibitory Demand: An FMRI Metanalysis. Neurosci. Biobehav. Rev. 2023, 152, 105285. [Google Scholar] [CrossRef]
- Braver, T.S. The Variable Nature of Cognitive Control: A Dual Mechanisms Framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Berto, R. Exposure to Restorative Environments Helps Restore Attentional Capacity. J. Environ. Psychol. 2005, 25, 249–259. [Google Scholar] [CrossRef]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting with Nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- Hassan, A.; Tao, J.; Li, G.; Jiang, M.; Aii, L.; Zhihui, J.; Zongfang, L.; Qibing, C. Effects of Walking in Bamboo Forest and City Environments on Brainwave Activity in Young Adults. Evid.-Based Complement. Altern. Med. ECAM 2018, 2018, 9653857. [Google Scholar] [CrossRef]
- Pasanen, T.; Johnson, K.; Lee, K.; Korpela, K. Can Nature Walks with Psychological Tasks Improve Mood, Self-Reported Restoration, and Sustained Attention? Results From Two Experimental Field Studies. Front. Psychol. 2018, 9, 2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, S.; Berman, M.G. Directed Attention as a Common Resource for Executive Functioning and Self-Regulation. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2010, 5, 43–57. [Google Scholar] [CrossRef]
- Kuo, F.E.; Sullivan, W.C. Environment and Crime in the Inner City: Does Vegetation Reduce Crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, N.; Przybylski, A.K.; Ryan, R.M. Can Nature Make Us More Caring? Effects of Immersion in Nature on Intrinsic Aspirations and Generosity. Pers. Soc. Psychol. Bull. 2009, 35, 1315–1329. [Google Scholar] [CrossRef] [Green Version]
- Cristillo, V.; Pilotto, A.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Gipponi, S.; Sattin, D.; Schiavolin, S.; Raggi, A.; Bezzi, M.; et al. Age and Subtle Cognitive Impairment Are Associated with Long-Term Olfactory Dysfunction after COVID-19 Infection. J. Am. Geriatr. Soc. 2021, 69, 2778–2780. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive Profile Following COVID-19 Infection: Clinical Predictors Leading to Neuropsychological Impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef] [PubMed]
Measures | Pre-Video | Post-Video | Δ |
---|---|---|---|
Forest | |||
Go RT (ms) | 427.0 ± 64 | 434.5 ± 95 | 7.5 ± 80 |
Go accuracy (%) | 88.5 ± 11 | 90.2 ± 12 | 1.7 ± 6 |
No-Go commission (n) | 6.6 ± 4 | 4.2 ± 3 | −2.4 ± 3 |
Urban | |||
Go RT (ms) | 435.4 ± 73 | 420.0 ± 60 | −15.4 ± 43 |
Go accuracy (%) | 89.8 ± 11 | 89.8 ± 11 | 0.0 ± 5 |
No-Go commission (n) | 5.2 ± 3 | 4.8 ± 4 | −0.4 ± 2 |
Measures | Pre-Video | Post-Video | Δ |
---|---|---|---|
Forest | |||
Go RT (ms) | 389.2 ± 53 | 400.1 ± 58 | 10.9 ± 42 |
Go accuracy (%) | 94.1 ± 4 | 95.2 ± 5 | 1.1 ± 4 |
No-Go commission (n) | 4.0 ± 3 | 2.9 ± 2 | −1.1 ± 2 |
Urban | |||
Go RT (ms) | 418.5 ± 86 | 403.1 ± 68 | −15.4 ± 52 |
Go accuracy (%) | 95.1 ± 5 | 94.2 ± 6 | −0.9 ± 3 |
No-Go commission (n) | 2.9 ± 3 | 3.3 ± 3 | 0.5 ± 2 |
Measures | COVID-19 Free | COVID-19 Affected |
---|---|---|
Go RT (ms) | 429.8 ± 91 | 416.2 ± 62 |
Go accuracy (%) | 93.8 ± 5 | 90.1 ± 11 |
No-Go commission (n) | 4.0 ± 3 | 4.8 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti, V.; Gavazzi, G.; Giganti, F.; Carlo, E.; Becheri, F.R.; Zabini, F.; Giovannelli, F.; Viggiano, M.P. Virtual Forest Environment Influences Inhibitory Control. Land 2023, 12, 1390. https://doi.org/10.3390/land12071390
Benedetti V, Gavazzi G, Giganti F, Carlo E, Becheri FR, Zabini F, Giovannelli F, Viggiano MP. Virtual Forest Environment Influences Inhibitory Control. Land. 2023; 12(7):1390. https://doi.org/10.3390/land12071390
Chicago/Turabian StyleBenedetti, Viola, Gioele Gavazzi, Fiorenza Giganti, Elio Carlo, Francesco Riccardo Becheri, Federica Zabini, Fabio Giovannelli, and Maria Pia Viggiano. 2023. "Virtual Forest Environment Influences Inhibitory Control" Land 12, no. 7: 1390. https://doi.org/10.3390/land12071390
APA StyleBenedetti, V., Gavazzi, G., Giganti, F., Carlo, E., Becheri, F. R., Zabini, F., Giovannelli, F., & Viggiano, M. P. (2023). Virtual Forest Environment Influences Inhibitory Control. Land, 12(7), 1390. https://doi.org/10.3390/land12071390