The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Land-Use Change Matrix
2.3.2. Calculation Method of the Non-Agriculturalization of Cultivated Land
2.3.3. Calculation Method of Landscape Ecological Risk
2.3.4. Correlation between the Non-Agriculturalization of Cultivated Land and Landscape Ecological Risk
3. Results
3.1. Land-Use Change Matrix
3.2. Changes in the Non-Agriculturalization of Cultivated Land
3.3. Changes of Landscape Ecological Risk
3.4. Correlation between the Non-Agriculturalization of Cultivated Land and Landscape Ecological Risk
4. Discussion
4.1. Comparison with Previous Research Results
4.2. Formation Mechanism of the Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas
4.3. Land Management Policy
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, W.Y.; Jin, X.B.; Liu, J.; Zhou, Y.K. Impact of cultivated land fragmentation on spatial heterogeneity of agricultural agglomeration in China. J. Geogr. Sci. 2020, 30, 1571–1589. [Google Scholar] [CrossRef]
- Yin, G.Y.; Lou, Y.; Xie, S.; Wei, W.E. Valuation of the Response of Grain Productivity to Different Arable Land Allocation Intensities in the Land Use Planning System of China. Sustainability 2022, 14, 3109. [Google Scholar] [CrossRef]
- Ho, S.P.S.; Lin, G.C.S. Non-agricultural land use in post-reform China. China Q. 2004, 179, 758–781. [Google Scholar] [CrossRef]
- Busko, M.; Szafranska, B. Analysis of changes in land use patterns pursuant to the conversion of agricultural land to non-agricultural use in the context of the sustainable development of the Malopolska Region. Sustainability 2018, 10, 136. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal evolution of cultivated land non-agriculturalization and its drivers in typical areas of southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Azadi, H.; Barati, A.A.; Rafiaani, P.; Raufirad, V.; Zarafshani, K.; Mamoorian, M.; Passel, S.V.; Lebailly, P. Agricultural land conversion drivers in northeast Iran: Application of structural equation model. Appl. Spat. Anal. 2016, 9, 591–609. [Google Scholar] [CrossRef]
- Maryati, S.; Humaira, A.N.S.; Pratiwi, F. Spatial pattern of agricultural land conversion in West Java Province. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012034. [Google Scholar] [CrossRef]
- Verhoeve, A.; Dewaelheyns, V.; Kerselaers, E.; Rogge, E.; Gulinck, H. Virtual farmland: Grasping the occupation of agricultural land by non-agricultural land uses. Land Use Policy 2015, 42, 547–556. [Google Scholar] [CrossRef]
- Tufa, D.E.; Megento, T.L. Conversion of farmland to non-agricultural land uses in peri-urban areas of Addis Ababa Metropolitan city, Central Ethiopia. Geojournal 2022. [Google Scholar] [CrossRef]
- Li, G.L.; Chen, J.; Sun, Z.Y. Non-agricultural land expansion and driving forces: A multi-temporal study of Suzhou, China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 408–420. [Google Scholar] [CrossRef]
- Wang, D.C.; Sang, M.Q.; Huang, Y.; Chen, L.D.; Wei, X.W.; Chen, W.G.; Wang, F.C.; Liu, J.Y.; Hu, B.X. Trajectory analysis of agricultural lands occupation and its decoupling relationships with the growth rate of non-agricultural GDP in the Jing-Jin-Tang region, China. Environ. Dev. Sustain. 2019, 21, 799–815. [Google Scholar] [CrossRef]
- Liu, S.K.; Wang, J.J.; Lin, S.G.; Deng, S.Y.; Lu, R.C. The spatial features and migration path of cultivated land non-agriculturalization in the border areas of Guangxi Zhuang autonomous region. Chin. J. Agric. Res. Reg. Plan. 2022; in press. [Google Scholar]
- Fang, F.; Liang, H.G.; Liu, Y.S. The micro mechanism of the effect of land non-agriculturalization on rural development in typical agricultural plain region. Chin. J. Agric. Res. Reg. Plan. 2016, 37, 57–64. [Google Scholar]
- Liu, C.C.; Deng, C.X.; Li, Z.W.; Sun, H.F.; Chen, S.Q.; Zhao, H. Study on the evolution and influencing factors of the spatial pattern of rural land non-agriculturalization in typical suburban county: Taking Xiangtan county, Hunan Province as an example. Chin. J. Agric. Res. Reg. Plan. 2021, 42, 253–264. [Google Scholar]
- Li, M. The effect of land use regulations on farmland protection and non-agricultural land conversions in China. Aust. J. Agric. Resour. Econ. 2019, 63, 643–667. [Google Scholar] [CrossRef]
- Zhang, L.Y. The deviation and adjustments of farmland conversion in the process of urbanization in China. Reg. Econ. Rev. 2020, 3, 79–89. [Google Scholar]
- Cao, G.Z.; Liu, T.; Liu, H.; Miao, Y.B. Changing spatial and structural patterns of non-agricultural activities in outward-moving Beijing urban fringe. Chin. Geogr. Sci. 2012, 22, 718–729. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Liu, Y.S. Spatial differentiation and its influencing factors of non-agricultural land in Huang-Huai-Hai plain. Areal. Res. Dev. 2019, 38, 170–176. [Google Scholar]
- Li, R.; Wu, Q.L.; Zhang, J.J.; Wen, Y.Q.; Li, Q.G. Effects of land use change of sloping farmland on characteristic of soil erosion resistance in typical karst mountainous areas of southwestern China. Pol. J. Environ. Stud. 2019, 28, 2707–2716. [Google Scholar] [CrossRef]
- Zollinger, B.; Krannich, R.S. Factors influencing farmers’ expectations to sell agricultural land for non-agricultural uses. Rural Sociol. 2002, 67, 442–463. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xin, L.J.; Wang, Y.H. How farmers’ non-agricultural employment affects rural land circulation in China? J. Geogr. Sci. 2020, 30, 378–400. [Google Scholar] [CrossRef]
- Boltryk, P. Conversion of agricultural land into non- agricultural land in Poland. Ekon. Srod. 2020, 1, 40–56. [Google Scholar]
- Ye, S.J.; Song, C.Q.; Shen, S.; Gao, P.C.; Cheng, C.X.; Cheng, F.; Wan, C.J.; Zhu, D.H. Spatial pattern of arable land-use intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- Meng, J.J.; Zhu, L.J.; Wang, Q.; Guo, L.R.; Zhang, W.J. Influence of policy-driven land use transformation on multifunctional land use in the middle reaches of the Heihe river basin. Acta Sci. Nat. Univ. Pekin. 2020, 56, 1102–1112. [Google Scholar]
- Han, H.Q.; Yang, J.Q.; Liu, Y.; Zhang, Y.J.; Wang, J.W. Effect of the Grain for Green Project on freshwater ecosystem services under drought stress. J. Mt. Sci. 2022, 19, 974–986. [Google Scholar] [CrossRef]
- Zhu, C.L.; Zhou, Z.F.; Ma, G.X.; Yin, L.J. Spatial differentiation of the impact of transport accessibility on the multidimensional poverty of rural households in karst mountain areas. Environ. Dev. Sustain. 2022, 24, 3863–3883. [Google Scholar] [CrossRef]
- Cai, G.P.; Zhang, C.Q. Temporal and spatial analysis of land use changes based on the topography. J. Sichuan Agric. Univ. 2015, 33, 392–398. [Google Scholar]
- Wang, Z.J.; Liu, Y.; Li, Y.X.; Su, Y. Response of ecosystem health to land use changes and landscape patterns in the karst mountainous regions of southwest China. Int. J. Environ. Res. Public Health 2022, 19, 3273. [Google Scholar] [CrossRef]
- Peng, J.; Xu, Y.Q.; Cai, Y.L.; Xiao, H.L. The role of policies in land use/cover change since the 1970s in ecologically fragile karst areas of Southwest China: A case study on the Maotiaohe watershed. Environ. Sci. Policy 2011, 14, 408–418. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q. Human-desertification coupling relationship in a karst region of China. Land Degrad. Dev. 2021, 32, 4988–5003. [Google Scholar] [CrossRef]
- Kurucu, Y.; Chiristina, N.K. Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region, Turkey. Environ. Monit. Assess. 2008, 136, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Ge, B.Q.; Li, Y.F. Impacts of state-led and bottom-up urbanization on land use change in the peri-urban areas of Shanghai: Planned growth or uncontrolled sprawl? Cities 2017, 60, 476–486. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.M.; Yu, B. Estimation on loss of ecological value in the process of land’s non-agriculturalization. China. Popul. Resour. Environ. 2013, 23, 146–150. [Google Scholar]
- Yang, W.J.; Liu, D.; Gong, Q.W. Estimation loss of agroecosystem service value in farmland conversion and its provincial difference in 2001–2016. Econ. Geogr. 2019, 39, 201–209. [Google Scholar]
- He, Y.H.Z.; Wang, L.; Niu, Z.; Nath, B. Vegetation recovery and recent degradation in different karst landforms of southwest China over the past two decades using GEE satellite archives. Ecol. Inform. 2022, 68, 101555. [Google Scholar] [CrossRef]
- Chen, T.T.; Peng, L.; Liu, S.Q.; Wang, Q. Land cover change in different altitudes of Guizhou-Guangxi karst mountain area, China: Patterns and drivers. J. Mt. Sci. 2017, 14, 1873–1888. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Zhang, Z.M.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.Y.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Mcnamara, P.; Wu, Y.F.; Dong, Y. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China. J. Environ. Manag. 2013, 128, 324–334. [Google Scholar] [CrossRef]
Towns | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V |
---|---|---|---|---|---|
Longchang (karst mid-mountain) | 0°–9.01° | 9.02°–13.42° | 13.43°–18.38° | 18.39°–25.65° | 25.66°–69.67° |
Liuguan (karst basin) | 0°–2.71° | 2.72°–4.69° | 4.70°–6.85° | 6.86°–9.97° | 9.98°–51.68° |
Xianchang (karst trough valley) | 0°–5.54° | 5.55°–9.25° | 9.26°–13.61° | 13.62°–19.78° | 19.79°–55.94° |
Minxiao (karst low hilly) | 0°–10.05° | 10.06°–15.87° | 15.88°–21.31° | 21.32°–27.95° | 27.96°–72.30° |
Town | Land Use Types | Cultivated Land | Forestland | Shrub-Grassland | Water Bodies | Built-Up Land | Unused Land | Roads | Total Area in 2010 |
---|---|---|---|---|---|---|---|---|---|
Longchang (karst mid-mountain) | Cultivated land | 8674.70 | 951.97 | 2224.76 | 5.06 | 238.76 | 5.41 | 95.22 | 12,195.88 |
Forestland | 832.35 | 4422.79 | 746.47 | 3.29 | 142.01 | 1.87 | 35.61 | 6184.39 | |
Shrub-grassland | 1718.58 | 1705.13 | 3130.53 | 14.76 | 121.64 | 10.35 | 51.82 | 6752.81 | |
Water bodies | 7.47 | 6.57 | 9.82 | 60.02 | 0.08 | 0.80 | 0.53 | 85.29 | |
Built-up land | 76.19 | 26.38 | 29.76 | 0.01 | 287.60 | 1.14 | 8.44 | 429.52 | |
Unused land | 6.80 | 0.62 | 2.81 | 10.80 | 0.52 | 2.44 | 0.82 | 24.82 | |
Roads | 97.01 | 39.61 | 33.77 | 0.88 | 17.73 | 0.71 | 132.96 | 322.67 | |
Total area in 2020 | 11,413.10 | 7153.07 | 6177.92 | 94.82 | 808.34 | 22.72 | 325.40 | 25,995.38 | |
Liuguan (karst basin) | Cultivated land | 1818.86 | 251.98 | 255.48 | 14.26 | 78.34 | 0.59 | 34.25 | 2453.75 |
Forestland | 119.61 | 542.28 | 105.39 | 2.18 | 10.86 | 0.79 | 3.23 | 784.34 | |
Shrub-grassland | 204.60 | 95.36 | 143.36 | 1.91 | 4.72 | 0.00 | 3.89 | 453.83 | |
Water bodies | 15.17 | 2.83 | 11.05 | 33.56 | 0.49 | 0.00 | 1.08 | 64.18 | |
Built-up land | 20.47 | 10.22 | 11.39 | 0.71 | 104.61 | 0.04 | 1.15 | 148.58 | |
Unused land | 6.77 | 6.52 | 13.93 | 0.30 | 0.17 | 0.03 | 0.16 | 27.88 | |
Roads | 0.65 | 0.05 | 0.12 | 0.03 | 0.45 | 0.00 | 27.67 | 28.96 | |
Total area in 2020 | 2186.12 | 909.24 | 540.71 | 52.95 | 199.62 | 1.45 | 71.43 | 3961.52 | |
Xianchang (karst trough valley) | Cultivated land | 1520.95 | 1221.56 | 530.27 | 22.65 | 140.81 | 6.60 | 21.49 | 3464.34 |
Forestland | 655.70 | 2954.71 | 765.72 | 5.46 | 43.28 | 8.49 | 19.17 | 4452.53 | |
Shrub-grassland | 234.41 | 808.00 | 992.40 | 0.77 | 16.96 | 3.62 | 4.51 | 2060.67 | |
Water bodies | 25.27 | 8.56 | 2.82 | 2.87 | 3.55 | 0.21 | 0.19 | 43.46 | |
Built-up land | 79.20 | 64.10 | 23.92 | 2.23 | 69.10 | 0.98 | 4.04 | 243.57 | |
Unused land | 6.91 | 16.31 | 22.15 | 0.01 | 0.78 | 0.65 | 1.33 | 48.13 | |
Roads | 5.40 | 9.13 | 6.33 | 0.25 | 5.65 | 0.16 | 48.35 | 75.27 | |
Total area in 2020 | 2527.83 | 5082.36 | 2343.61 | 34.24 | 280.12 | 20.71 | 99.08 | 10,387.96 | |
Minxiao (karst low hilly) | Cultivated land | 2532.27 | 1087.71 | 329.43 | 47.16 | 150.23 | 9.98 | 93.33 | 4250.11 |
Forestland | 443.17 | 17774.27 | 667.29 | 43.65 | 64.10 | 12.08 | 85.10 | 19,089.67 | |
Shrub-grassland | 119.29 | 1129.55 | 343.23 | 8.08 | 5.31 | 0.23 | 7.62 | 1613.31 | |
Water bodies | 21.11 | 13.65 | 12.93 | 95.73 | 3.31 | 0.85 | 4.51 | 152.09 | |
Built-up land | 29.60 | 21.26 | 8.68 | 1.70 | 210.11 | 0.81 | 9.72 | 281.89 | |
Unused land | 6.87 | 19.86 | 18.26 | 3.95 | 1.29 | 1.54 | 3.11 | 54.88 | |
Roads | 19.97 | 27.37 | 12.81 | 4.23 | 5.92 | 0.33 | 62.42 | 133.06 | |
Total area in 2020 | 3172.28 | 20,073.68 | 1392.63 | 204.50 | 440.26 | 25.82 | 265.83 | 25,575.00 |
Town | Rate of Conversion from Cultivated Land to Ecological Land | Rate of Conversion from Cultivated Land to Living Land | Total Rate of Conversion from Cultivated Land to Non-Cultivated Land |
---|---|---|---|
Longchang (karst mid-mountain) | 26.02 | 2.71 | 28.73 |
Liuguan (karst basin) | 21.36 | 4.55 | 25.91 |
Xianchang (karst trough valley) | 51.43 | 4.72 | 56.15 |
Minxiao (karst low hilly) | 34.69 | 5.59 | 40.28 |
Town | Conversion Types | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V |
---|---|---|---|---|---|---|
Longchang (karst mid-mountain) | Rate of conversion from cultivated land to ecological land | 3.25 | 3.77 | 4.67 | 6.33 | 8.00 |
Rate of conversion from cultivated land to living land | 0.79 | 0.69 | 0.54 | 0.44 | 0.25 | |
Total rate of conversion from cultivated land to non-cultivated land | 4.04 | 4.45 | 5.20 | 6.77 | 8.25 | |
Liuguan (karst basin) | Rate of conversion from cultivated land to ecological land | 2.78 | 3.61 | 4.20 | 5.15 | 5.63 |
Rate of conversion from cultivated land to living land | 1.27 | 1.05 | 1.02 | 0.61 | 0.59 | |
Total rate of conversion from cultivated land to non-cultivated land | 4.04 | 4.66 | 5.22 | 5.76 | 6.22 | |
Xianchang (karst trough valley) | Rate of conversion from cultivated land to ecological land | 12.44 | 12.43 | 10.81 | 8.77 | 6.98 |
Rate of conversion from cultivated land to living land | 2.16 | 1.38 | 0.75 | 0.28 | 0.14 | |
Total rate of conversion from cultivated land to non-cultivated land | 14.60 | 13.81 | 11.56 | 9.05 | 7.12 | |
Minxiao (karst low hilly) | Rate of conversion from cultivated land to ecological land | 10.81 | 9.49 | 7.24 | 5.10 | 2.04 |
Rate of conversion from cultivated land to living land | 3.38 | 1.15 | 0.63 | 0.33 | 0.10 | |
Total rate of conversion from cultivated land to non-cultivated land | 14.19 | 10.64 | 7.87 | 5.43 | 2.14 |
Conversion Type | Longchang (Karst Mid-Mountain) | Liuguan (Karst Basin) | Xianchang (Karst Trough Valley) | Minxiao (Karst Low Hilly) |
---|---|---|---|---|
Conversion to forestland | 7.81 | 10.27 | 35.26 | 25.59 |
Conversion to shrub-grassland | 18.24 | 10.41 | 15.31 | 7.75 |
Conversion to water bodies | 0.04 | 0.58 | 0.65 | 0.91 |
Conversion to unused land | 0.04 | 0.02 | 0.19 | 0.23 |
Conversion to built-up land | 1.96 | 3.19 | 4.06 | 3.53 |
Conversion to roads | 0.78 | 1.40 | 1.62 | 2.20 |
Towns | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V | Total Area |
---|---|---|---|---|---|---|
Longchang (karst mid-mountain) | −1.4018 | −1.2992 | −1.1084 | −0.8274 | −0.4499 | −1.0180 |
Liuguan (karst basin) | 1.2768 | 1.0701 | 0.9876 | 0.9398 | 0.8968 | 1.0344 |
Xianchang (karst trough valley) | 0.1763 | 0.133 | 0.0555 | −0.0402 | −0.0327 | 0.0606 |
Minxiao (karst low hilly) | −0.0626 | −0.0549 | −0.0447 | −0.0322 | −0.0247 | −0.0373 |
Town | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V | Total Area |
---|---|---|---|---|---|---|
Longchang (karst mid-mountain) | −0.197 ** | −0.193 ** | −0.186 ** | −0.165 ** | −0.086 ** | −0.171 ** |
Liuguan (karst basin) | −0.280 ** | −0.281 ** | −0.290 ** | −0.303 ** | −0.322 ** | −0.297 ** |
Xianchang (karst trough valley) | −0.325 ** | −0.323 ** | −0.315 ** | −0.295 ** | −0.291 ** | −0.334 ** |
Minxiao (karst low hilly) | −0.151 ** | −0.149 ** | −0.143 ** | −0.132 ** | −0.127 ** | −0.146 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Peng, H.; Li, S.; Yang, J.; Yan, Z. The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China. Land 2022, 11, 1727. https://doi.org/10.3390/land11101727
Han H, Peng H, Li S, Yang J, Yan Z. The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China. Land. 2022; 11(10):1727. https://doi.org/10.3390/land11101727
Chicago/Turabian StyleHan, Huiqing, Huirong Peng, Song Li, Jianqiang Yang, and Zhenggang Yan. 2022. "The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China" Land 11, no. 10: 1727. https://doi.org/10.3390/land11101727
APA StyleHan, H., Peng, H., Li, S., Yang, J., & Yan, Z. (2022). The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China. Land, 11(10), 1727. https://doi.org/10.3390/land11101727