Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Site and Previous Research
2.2. Sampling and Sample Pretreatment
2.3. Geochemical Characterization
2.4. Chronological Framework
2.4.1. Optically Stimulated Luminescence (OSL) Dating
2.4.2. 14C Dating
2.5. Data Handling
3. Results and Discussion
3.1. Factors of Formation of the Sedimentary Record
3.2. Phases of Creation of the Santa Mariña Landscape
3.2.1. 12th to Early 14th Centuries
3.2.2. Mid-14th to Mid-17th Centuries AD
3.2.3. Sedimentological Hiatus Corresponding from Mid-17th to 19th Century
3.2.4. 20th Century
3.3. On the Multifunctionality of Santa Mariña Landscape
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niemann, E. Polyfunctional landscape evaluation—Aims and methods. Landsc. Urban Plan. 1986, 13, 135–151. [Google Scholar] [CrossRef]
- De Groot, R.S. Environmental functions as a unifying concept for ecology and economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- Howard, P.; Puri, R.; Smith, L.; Altierri, M. A Scientific Conceptual Framework and Strategic Principles for the Globally Important Agricultural Heritage Systems Programme from a Social-Ecological Systems Perspective; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Bolliger, J.; Bättig, M.; Gallati, J.; Kläy, A.; Stauffacher, M.; Kienast, F. Landscape multifunctionality: A powerful concept to identify effects of environmental change. Reg. Environ. Chang. 2011, 11, 203–206. [Google Scholar] [CrossRef]
- Fischer, J.; Meacham, M.; Queiroz, C. A plea for multifunctional landscapes. Front. Ecol. Environ. 2017, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Loos, J.; Abson, D.J.; Dorresteijn, I. Sustainable Landscapes in Central Romania: A Social-Ecological Study on the Future of Southern Transylvania; Pensoft: Sofia, Bulgaria, 2016. [Google Scholar]
- Vejre, H.; Abildtrup, J.; Andersen, E.; Andersen, P.S.; Brandt, J.; Busck, A.; Dalgaard, T.; Hasler, B.; Huusom, H.; Kristensen, L.S.; et al. Multifunctional agriculture and multifunctional landscapes—Land use as an interface. In Multifunctional Land Use; Mander, Ü., Wiggering, H., Helming, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 93–104. [Google Scholar]
- Müller, F. State-of-the-art in ecosystem theory. Ecol. Model. 1997, 100, 135–161. [Google Scholar] [CrossRef]
- De Groot, R.; Hein, L. Concept and valuation of landscape functions at different scales. In Multifunctional Land Use; Mander, Ü., Wiggering, H., Helming, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 15–36. [Google Scholar]
- Bolliger, J.; Kienast, F. Landscape functions in a changing environment. Landsc. Online 2010, 21, 1–5. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; De Groot, R.S.; Verburg, P.H.; Heller, I.; Haines-Young, R. Assessing landscape functions with broad-scale environmental data: Insights gained from a prototype development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunstad, R.J.; Gaasland, I.; Vårdal, E. Multifunctionality of agriculture: An inquiry into the complementarity between landscape preservation and food security. Eur. Rev. Agric. Econ. 2005, 32, 469–488. [Google Scholar] [CrossRef]
- Frei, B.; Queiroz, C.; Chaplin-Kramer, B.; Andersson, E.; Renard, D.; Rhemtulla, J.M.; Bennett, E.M. A brighter future: Complementary goals of diversity and multifunctionality to build resilient agricultural landscapes. Glob. Food Secur. 2020, 26, 100407. [Google Scholar] [CrossRef]
- Van Huylenbroeck, G.; Vandermeulen, V.; Mettepenningen, E.; Verspecht, A. Multifunctionality of agriculture: A review of definitions, evidence and instruments. Living Rev. Landsc. Res. 2007, 1, 1–43. [Google Scholar] [CrossRef]
- Falvey, J.L. Religion and Agriculture: Sustainability in Christianity and Buddhism; Institute for International Development: Adelaide, Australia, 2005. [Google Scholar]
- LeVasseur, T.; Parajuli, P.; Wirzba, N. (Eds.) Religion and Sustainable Agriculture: World Spiritual Traditions and Food Ethics; University Press of Kentucky: Lexington, KY, USA, 2016. [Google Scholar]
- Rakodi, C. (Ed.) Religion, Religious Organisations and Development: Scrutinising Religious Perceptions and Organisations; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- García Quintela, M.V. Marina concubina, Marina virgen, Boand adúltera: Fecundidad extra-marital y creación de paisajes. In Folclore y Leyendas en la Península Ibérica. En Torno a la Obra de François Delpech; Tausiet, M., Tropé, H., Eds.; CSIC: Madrid, Spain, 2014; pp. 57–80. [Google Scholar]
- Blanco-Rotea, R.; Mañana-Borrazás, P.; Mato-Fresán, C.; Rodríguez-Costas, A. La basílica de la Ascensión y Os Fornos (Allariz, Ourense). Rev. Aquae Flaviae 2009, 41, 467–478. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Opportunities and Challenges for Business and Industry; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Iverson, L.; Echeverria, C.; Nahuelhual, L.; Luque, S. Ecosystem services in changing landscapes: An introduction. Landsc. Ecol. 2014, 29, 181–186. [Google Scholar] [CrossRef]
- Bürgi, M.; Silbernagel, J.; Wu, J.; Kienast, F. Linking ecosystem services with landscape history. Landsc. Ecol. 2015, 30, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Ferro-Vázquez, C.; Martínez-Cortizas, A.; Nóvoa-Muñoz, J.C.; Ballesteros-Arias, P.; Criado-Boado, F. 1500 years of soil use reconstructed from the chemical properties of a terraced soil sequence. Quat. Int. 2014, 346, 28–40. [Google Scholar] [CrossRef]
- Ferro-Vázquez, C.; González Prieto, S.J.; Martínez-Cortizas, A.; Criado-Boado, F. Deciphering the evolution of agrarian technologies during the last~1600 years using the isotopic fingerprint (δ13C, δ15N) of a polycyclic terraced soil. Estud. Quat./Quat. Stud. 2015, 12, 39–53. [Google Scholar] [CrossRef]
- Ferro-Vázquez, C.; Lang, C.; Kaal, J.; Stump, D. When is a terrace not a terrace? The importance of understanding landscape evolution in studies of terraced agriculture. J. Environ. Manag. 2017, 202, 500–513. [Google Scholar] [CrossRef] [Green Version]
- Narbarte-Hernández, J.; Iriarte, E.; Rad, C.; Carrancho-Alonso, A.; González-Sampériz, P.; Peña-Chocarro, L.; Quirós-Castillo, J.A. On the Origin of Rural Landscapes: Looking for Physico-Chemical Fingerprints of Historical Agricultural Practice in the Atlantic Basque Country (N Spain). Sci. Total Environ. 2019, 681, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Leopold, M.; Völkel, J. Colluvium: Definition, differentiation, and possible suitability for reconstructing Holocene climate data. Quat. Int. 2007, 162, 133–140. [Google Scholar] [CrossRef]
- García Quintela, M.V.; Seoane-Veiga, Y. La Larga Vida de dos rocas ourensanas. Arch. Español Arqueol. 2011, 84, 241–264. [Google Scholar]
- Morales, A. La Coronica General de España; Casa de Juan Iñiguez de Lequeríca: Alcalá de Henares, Spain, 1574. [Google Scholar]
- Lorenzo Fernández, J. El monumento protohistórico de Augas Santas y los ritos funerarios en los Castros. Cuad. Estud. Gallegos 1948, 3, 157–211. [Google Scholar]
- Chamoso Lamas, M. Santa Marina de Augas Santas. Cuad. Estud. Gallegos 1955, X, 41–88. [Google Scholar]
- Conde-Valvís Fernandez, F. Las termas romanas de la “Cibdá” de Armeá en Santa María de Augas Santas. In Actas del III Congreso Nacional de Arqueología (Galicia 1953); Institución Fernando el Católico, CSIC: Zaragoza, Spain, 1955; pp. 436–466. [Google Scholar]
- Conde-Valvís Fernandez, F. Dos villas romanas de la Cibdá de Armea, en Santa Mariña de Augas Santas. Rev. Guimarâes 1959, 69, 472–500. [Google Scholar]
- Bande Rodríguez, E.; Armada Bande, O. Evolución do Conxunto Histórico-artístico de Santa Mariña de Augas Santas; Diputación Provincial de Ourense: Ourense, Spain, 2002. [Google Scholar]
- Fariña Busto, F. Santa Mariña de Augas Santas. In Guías do Patrimonio Cultural; Santiago de Compostela, Fundación Caixa Galicia: Santiago, Spain, 2002; Volume 7. [Google Scholar]
- Barandela Rivero, I.; Lorenzo Rodríguez, J.M. El culto a Santa Mariña en el norte de la Península Ibérica y sus conexiones con la Europa Atlántica. Porta Aira 2011, 13, 117–143. [Google Scholar]
- García Quintela, M.V. Paisajes duales en la Galicia tradicional: Estructura, génesis y transformación. Rev. Dialectol. Y Tradic. Pop. 2014, LXIX, 29–52. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Martínez, M.P.; Alonso Toucido, F.; Lantes Suárez, O.; Rodíguez Paz, A.; Blanco-Rotea, R.; García-Quintela, M. El depósito ritual de jarritas de la Basílica de Augas Santas (Allariz, Ourense): Un ejemplo de sincretismo religioso en la Edad Media. Archeol. Mediev. 2019, XLVI, 287–313. [Google Scholar]
- Sanjurjo- Sánchez, J.; Blanco-Rotea, R.; García Quintela, M.V.; Burbidge, C.I. OSL dating of earthen mortars from a medieval building in North-Western Spain: Crypt of Basílica da Ascensión (Allariz, Ourense). Radiocarbon 2020, 62, 679–692. [Google Scholar] [CrossRef]
- Fernández Fernández, A.; Lago Cerviño, M.; Grande Rodríguez, M.; Pérez Losada, F.; Vázquez Mato, M.X. Monte do Señoriño (Armea-Allariz): Un nuevo asentamiento de inicios de la romanización en el Noroeste Peninsular. In CIAC XVIII Congreso Internacional de Arqueología Clásica; Álvarez Martínez, J.M., Nogales Basarrate, T., Rodà de Llanza, I., Eds.; Museo Nacional de Arte Romano: Mérida, Mexico, 2014; Volume 2, pp. 1769–1772. [Google Scholar]
- Fernández Fernández, A.; Valle Abad, P.; Casal, L.; Fernández, L. La cerámica galaico-romana deArmea (Allariz). Monte do Señoriño y Castro de Armea. In Monografías Ex Offcina Hispana II. As Producçoes Cerámicas Deimitaçao na Hispania; Morais, A., Fernández, A., Sousa, M.J., Eds.; Oporto: St Leonards, Australia, 2014; Volume I, pp. 281–301. [Google Scholar]
- Fernández Fernández, A.; Rodríguez Nóvoa, A.A. Contextos cerámicos de época romana de la "cibdá" de Armea (Santa Mariña de Augas Santas, Allariz). Un ejemplo de consumo y abastecimiento de una ciudad galaico-romana del interior de la Gallaecia. In Amphorae ex Hispania: Paisajes de Producción y Consumo: III Congreso Internacional de la Sociedad de Estudios de la Cerámica Antigua (SECAH)—Ex Offcina Hispana; Járregay, R., Berni, P., Eds.; Instituto Catalán de Arqueología Clásica: Tarragona, Spain, 2016; pp. 861–873. [Google Scholar]
- Guitián, F.; Carballas, T. Técnicas de Análisis de Suelos; Ed. Pico Sacro: Santiago de Compostela, Spain, 1976. [Google Scholar]
- Urrutia, M.; García-Rodeja, E.; Macías, F. Determinación del pH en suelos de carga variable de Galicia. Analales Edafol. Agrobiol. 1989, 48, 219–228. [Google Scholar]
- Viveen, V.; Sanjurjo-Sanchez, J.; Goy-Diz, A.; Veldkamp, A.; Schoorl, J.M. Paleofloods and ancient fishing weirs in NW Iberian rivers. Quat. Res. 2014, 84, 56–65. [Google Scholar] [CrossRef]
- Heer, A.J.; Adamiec, G.; Moska, P. How many grains are there on a single aliquot? Anc. TL 2012, 30, 9–16. [Google Scholar]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Truelsen, J.L.; Wallinga, J. Zeroing of the OSL signal as a function of grain size: Investigating bleaching and thermal transfer for a young fluvial sample. Geochronometria 2003, 22, 1–8. [Google Scholar]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Guerin, G.; Mercier, N.; Adamiec, G. Dose-rate conversion factors: Update. Anc. TL 2011, 29, 5–8. [Google Scholar]
- Brennan, B.J. Beta doses to spherical grains. Radiat. Meas. 2003, 37, 299–303. [Google Scholar] [CrossRef]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long term variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Barrientos Rodríguez, V. Reevaluación del potencial geotérmico de los granitos de Galicia en base a cartografía geoquímica y radiológica. Cad. Lab. Xeolóxico Laxe Rev. Xeol. Galega Hercínico Penins. 2018, 40, 123–138. [Google Scholar] [CrossRef]
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Gascoyne, M. Geochemistry of the actinides and their daughters. In Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences; Ivanovich, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, UK, 1992; pp. 34–62. [Google Scholar]
- MARNA. Map of Natural Gamma Radiation of Spain. Collection; National Council of Nuclear Security (Consejo de Seguridad Nuclear): Madrid, Spain, 2000. (in Spanish) [Google Scholar]
- Viveen, W.; Braucher, R.; Bourlès, D.; Schoorl, J.M.; Veldkamp, A.; Van Balen, R.T.; Wallinga, J.; Fernandez-Mosquera, D.; Vidal-Romani, J.R.; Sanjurjo-Sanchez, J. A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Glob. Planet. Chang. 2012, 94–95, 82–100. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Talamo, S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Reimer, P.J.; Brown, T.A.; Reimer, R.W. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 2004, 46, 1299–1304. [Google Scholar]
- Eriksson, L. Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA and PLS); Umetrics AB: Umea, Sweden, 1999. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Balesdent, J.; Mariotti, A. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol. Biochem. 1987, 19, 25–30. [Google Scholar] [CrossRef]
- Koerner, W.; Dambrine, E.; Dupouey, J.L.; Benoit, M. δ15N of forest soil and understorey vegeta-tion reflect the former agricultural land use. Oecologia 1999, 121, 421–425. [Google Scholar] [CrossRef]
- Choi, W.J.; Ro, H.M.; Hobbie, E.A. Patterns of natural N-15 in soils and plants from chemically and organically fertilized uplands. Soil Biol. Biochem. 2003, 35, 1493–1500. [Google Scholar] [CrossRef]
- Senbayram, M.; Dixon, L.; Goulding, K.W.T.; Bol, R. Long-term influence of manure and mineral nitrogen applications on plant and soil d15N and d13C values from the Broadbalk Wheat Experiment. Rapid Commun. Mass Spectrom. 2008, 22, 1735–1740. [Google Scholar] [CrossRef] [Green Version]
- Taboada, T.; Martínez-Cortizas, A.; García, C.; García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 2006, 131, 218–236. [Google Scholar] [CrossRef]
- Taboada, T.; Martínez-Cortizas, A.; García, C.; García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 2006, 356, 192–206. [Google Scholar] [CrossRef]
- Fernández-Pompa, F.; Chamón Cobos, C.; Piles Mateo, E.; Estevez González, C.; Arce Duarte, M. Mapa geológico de la Hoja nº 226 (Allariz). In Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), 1st ed.; IGME: Madrid, Spain, 1972. [Google Scholar]
- Arce, J.; Boquera, J.; Chamón Cobos, C.; Estévez González, C.; Fernández-Pompa, F.; Piles Mateo, E. Memoria de la Hoja nº 226 (Allariz). In Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), 1st ed.; IGME: Madrid, Spain, 1974. [Google Scholar]
- García Quintela, M. La construcción del paisaje cristiano de Galicia: Hacia la definición de un modelo de transformación. Estud. Quat./Quat. Stud. 2015, 12, 143–159. [Google Scholar] [CrossRef]
- Blanco-Rotea, R.; García Rodríguez, S.; Mato-Fresán, C.; Sanjurjo-Sánchez, J. La Basílica da Ascensión y Os Fornos (Allariz, Ourense) y la cristianización de la arquitectura en la Antigüedad Tardía. Quat. Est. 2015, 12, 111–132. [Google Scholar] [CrossRef]
- Curran, J. Pagan City and Christian Capital. Rome in the Fourth Century; Clarendon Press: Oxford, UK, 2000. [Google Scholar]
- Haas, C. Alexandria in Late Antiquity. Topography and Social Conflict; The Johns Hopkins U.P.: Baltimore, UK; London, UK, 1996. [Google Scholar]
- Deliyannis, D.M. Ravenna in Late Antiquity; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Trombley, F.R. Paganism in the Greek World at the End of antiquity. The case of Rural Anatolia and Greece. Harv. Theol. Rev. 1985, 78, 327–352. [Google Scholar] [CrossRef]
- Nixon, L. Making a Landscape Sacred: Outlying Churches and Icon Stands in Sphakia, Southwestern Crete; Oxbow: Oxford, UK, 2006. [Google Scholar]
- Turner, S. Making a Christian Landscape. The Countryside in Early-Medieval Cornwall, Devon and Wessex; University of Exeter Press: Exeter, UK, 2006. [Google Scholar]
- Codou, Y.; Colin, M.-G.; Le Nézet-Célestin, M. La christianisation des campagnes (IVe -VIIIe s.). Gallia 2007, 64, 57–83. [Google Scholar] [CrossRef]
- Andrén, A. The significance of places: The Christianization of Scandinavia from a spatial point of view. World Archaeol. 2013, 45, 27–45. [Google Scholar] [CrossRef]
- García Quintela, M.V.; Sánchez-Pardo, J.C. Landscape, Christianisation and social power in late antique and early medieval Galicia. In Sacred Landscapes in Antiquity: Creation, Transformation and Manipulation; Haussler, R., Chiai, G.F., Eds.; Oxbow: Oxford, UK, 2020; pp. 179–193. [Google Scholar]
- Sánchez-Pardo, J.C.; García Quintela, M.V. Ecclesiastical Landscapes in Early Medieval Galicia: Physical and Symbolic Transformations. In Ecclesiastical Landscapes in Medieval Europe: A Comparative Approach; Sánchez-Pardo, J.C., Marron, E., Tiplic, M.E., Eds.; Archaeopress: Oxford, UK, 2020; pp. 182–196. [Google Scholar]
- Amado Rolán, N.; Blanco-Rotea, R.; García Rodríguez, S. La colegiata de Santa María a Real de Xunquiera de Ambía: La recuperación de su pazo prioral. Cuad. Estud. Gallegos 2008, 121, 139–172. [Google Scholar] [CrossRef]
- Pifczyk, S.; Gębala, M.; Deryło, A.; Chyż, B. The Map of Holy Places in Europe. Available online: https://biqdata.wyborcza.pl/biqdata/7,159116,22172206,the-map-of-holy-places-in-europe.html (accessed on 1 August 2021).
- Ballesteros Arias, P.; Criado Boado, F.; Andrade Cernadas, J. Formas y fechas de un paisaje agrario de época medieval: A cidade da Cultura en Santiago de Compostela. Rev. Arqueol. Espac. 2006, 26, 193–225. [Google Scholar]
- Ballesteros Arias, P.; Blanco-Rotea, R. Aldeas y espacios agrarios altomedievales en Galicia. In The Archaeology of Early Medieval Villages in Europe, Documentos de Arqueología e Historia; Quirós Castillo, J.A., Ed.; Servicio Editorial de la Universidad del País Vasco: Bilbao, Spain, 2009; Volume 1, pp. 115–136. [Google Scholar]
- Ballesteros Arias, P. La arqueología rural y la construcción de un paisaje agrario medieval. El caso de Galicia. In Por una Arqueología Agraria. Perspectivas de Investigación Sobre Espacios de Cultivo en las Sociedades Medievales Hispánicas; Kirchner, H., Ed.; Archaeopress: Oxford, UK, 2010; pp. 25–39. [Google Scholar]
- Desprat, S.; Goñi MF, S.; Loutre, M.F. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth Planet. Sci. Lett. 2003, 213, 63–78. [Google Scholar] [CrossRef]
- McCormick, M.; Büntgen, U.; Cane, M.A.; Cook, E.R.; Harper, K.; Huybers, P.; Litt, T.; Manning, S.W.; Mayewski, P.A.; More, A.F.; et al. Climate change during and after the Roman Empire: Reconstructing the past from scientific and historical evidence. J. Interdiscip. Hist. 2012, 43, 169–220. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Criado Boado and González-Pérez, C. Diseño Conceptual del Incipit. 2011. Available online: https://digital.csic.es/handle/10261/38172 (accessed on 1 August 2021).
- Sánchez, P. Territorio y Poblamiento en Galicia Entre la Antigüedad y la Plena Edad Media. Ph.D. Thesis, Universidad de Santiago de Compostela, Santiago, Spain, 2008. [Google Scholar]
- Martínez-Cortizas, A.; Pontevedra-Pombal, X.; Garcıa-Rodeja, E.; Novoa-Munoz, J.C.; Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 1999, 284, 939–942. [Google Scholar] [CrossRef]
- Lebreiro, S.M.; Francés, G.; Abrantes, F.F.G.; Diz, P.; Bartels-Jónsdóttir, H.B.; Stroynowski, Z.N.; Gil, I.M.; Pena, L.D.; Rodrigues, T.; Jones, P.D.; et al. Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelta and Muros Ría) during the last two millennia. Holocene 2006, 16, 1003–1015. [Google Scholar] [CrossRef]
- Kaal, J.; Criado-Boado, F.; Costa-Casais, M.; López-Sáez, J.A.; López-Merino, L.; Mighall, T.; Carrión, Y.; Silva-Sánchez, N.; Martínez-Cortizas, A. Prehistoric land use at an archaeological hot-spot (the rock art park of Campo Lameiro, NW Spain) inferred from charcoal, synan-thropic pollen and non-pollen palynomorph proxies. J. Archaeol. Sci. 2013, 40, 1518–1527. [Google Scholar] [CrossRef]
- Martínez-Cortizas, A.; Mighall, T.; Pontevedra Pombal, X.P.; Nóvoa Muñoz, J.; Peiteado Varela, E.P.; Perez Rebolo, R.P. Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during the last 5300 years. Holocene 2005, 15, 698–706. [Google Scholar] [CrossRef]
- López-Merino, L.; Sánchez, N.S.; Kaal, J.; López-Sáez, J.A.; Cortizas, A.M. Post-disturbance vegetation dynamics during the Late Pleistocene and the Holocene: An example from NW Iberia. Glob. Planet. Chang. 2012, 92, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Bür Mier, M.; Fernández Fernández, J.; Alonso González, P. The Investigation of Currently Inhabited Villages of Medieval Origin: Agrarian Archaeology in Asturias (Spain). Quat. Int. 2014, 346, 41–55. [Google Scholar] [CrossRef]
- Quirós Castillo, J.A.; Nicosia, C.; Polo-Díaz, A.; del Árbol, M.R. Agrarian archaeology in northern Iberia: Geoarchaeology and early medieval land use. Quat. Int. 2014, 346, 56–68. [Google Scholar] [CrossRef]
- Quirós Castillo, J.A. Oltre la frammentazione postprocessualista. Archeologia agraria nel Nordovest della Spagna. Archeol. Mediev. 2014, 41, 23–38. [Google Scholar]
- Fernández-Fernández, J. The archaeology of a medieval village and its agricultural area: Villanueva de Santo Adriano (Asturias, Northwest of the Iberian Peninsula). Historia Agraria. 2017, 72, 79–107. [Google Scholar]
- Balboa López, X.L. El fuego en la historia de los montes gallegos: De las rozas al incendio forestal. In Incendios Históricos. Una Aproximación Multidisciplinar; Universidad Internacional de Andalucía: Seville, Spain, 1999; pp. 255–277. [Google Scholar]
- Molina, F. Producción e ecoloxía do monte galego. Rev. Galega Estud. Agrar. 1979, 2, 34–35. [Google Scholar]
- Bouhier, A. La Galice: Essai Géographique Danalyse et Dinterpretation dun Vieux Complexe Agraire; Imprimerie Yonnaise: La Roche-sur-Yon, France, 1979. [Google Scholar]
- Pérez Rodríguez, F.J. Santa Mariña de Augas Santas en la Edad Media (ss.XI-XV). Divers. Rerum 2013, 8, 275–284. [Google Scholar]
- Jenkins, W.J.; Tucker, M.E.; Grim, J. (Eds.) Routledge Handbook of Religion and Ecology; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Ballesteros Arias, P. El Paisaje Rural Gallego. La Arqueología y la Etnografía Como Métodos de Estudio Sobre su Génesis y Transformación en el Tiempo. Ph.D. Thesis, Universidad del País Vasco, Vizcaya, Spain, 2020. [Google Scholar]
- Sánchez Pardo, J.C.; Fernández Ferreiro, M. Monasterios familiares y espacios agrarios en la Galicia del año mil. Un estudio comparativo de los dominios de San Salvador de Bande y Santiago de Barbadelo. Studia Historica. Hist. Mediev. 2019, 37, 105–135. [Google Scholar] [CrossRef]
- Quirós Castillo, J.A. Early medieval landscapes in north-west Spain: Local powers and communities, fifth–tenth centuries. Early Mediev. Eur. 2011, 19, 285–311. [Google Scholar] [CrossRef]
- Aston, M. Monasteries in the Landscape; Amberley Publishing Limited: Stroud, UK, 2009. [Google Scholar]
- Bond, J. Monastic Landscapes; Tempus Pub Ltd.: Stroud, UK, 2003. [Google Scholar]
- Jerris, R. Cult lines and hellish mountains: The development of sacred landscape in the early medieval Alps. J. Mediev. Early Mod. Stud. 2002, 32, 85–108. [Google Scholar] [CrossRef]
- Pestell, T. Landscapes of Monastic Foundation: The Establishment of Religious Houses in East Anglia c. 650–1200; Boydell Press: Suffolk, UK, 2004. [Google Scholar]
- Martínez-Cortizas, A.; Ferro-Vázquez, C.; Kaal, J.; Biester, H.; Costa Casais, M.; Taboada, T.; Rodríguez-Lado, L. Bromine accumulation in acidic black colluvial soils. Geochim. Cosmochim. Acta 2016, 174, 143–155. [Google Scholar] [CrossRef]
- Yuita, K. Iodine, bromine and chlorine contents in soils and plants of Japan: III. Iodine, bromine and chlorine contents in the andosols and in plants of central Honshu. Soil Sci. Plant Nutr. 1983, 29, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Vaquero Díaz, M.B. Documentación medieval de Santa Mariña de Augas Santas no arquivo da Catedral de Ourense. Divers. Rerum 2013, 8, 251–274. [Google Scholar]
- Grismer, M.E. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows. Hydrology 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Oliva, M.; Ruiz-Fernández, J.; Barriendos, M.; Benito, G.; Cuadrat, J.M.; Domínguez-Castro, F.; García-Ruiz, J.M.; Giralt, S.; Gómez-Ortiz, A.; Hernández, A.; et al. The Little Ice Age in Iberian mountains. Earth-Sci. Rev. 2018, 177, 175–208. [Google Scholar] [CrossRef]
- Blom, P. Nature’s Mutiny: How the Little Ice Age of the Long Seventeenth Century Transformed the West and Shaped the Present; Liveright Publishing: New York, NY, USA, 2019. [Google Scholar]
- Sandoval Verea, F. O Santuario, a igrexa colexial e o Couto de Santa Mariña de Augas Santas a finais do século XVI. Divers. Rerum 2013, 8, 285–316. [Google Scholar]
- Barriendos, M. Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675–1715): An analysis of data from rogation ceremonies. Holocene 1997, 7, 105–111. [Google Scholar] [CrossRef]
- Domínguez-Castro, F.; García-Herrera, R.; Ribera, P.; Barriendos, M. A shift in the spatial pattern of Iberian droughts during the 17th century. Clim. Past 2010, 6, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, P. La Vida Cotidiana en la Galicia del Antiguo Régimen; Crítica, D.L.: Barcelona, Spain, 1994. [Google Scholar]
- González Lopo, D.L. Mentalidad religiosa y comportamientos sociales en la Galicia atlántica (1550–1850). Obradoiro Hist. Mod. 2002, 11, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Madsen, A.T.; Murray, A.S. Optically stimulated luminescence dating of young sediments: A review. Geomorphology 2009, 109, 3–16. [Google Scholar] [CrossRef]
- Ingold, T. The temporality of the landscape. World Archaeol. 1993, 25, 152–174. [Google Scholar] [CrossRef]
- Haider, L.J.; Boonstra, W.J.; Akobirshoeva, A.; Schlüter, M. Effects of development interventions on biocultural diversity: A case study from the Pamir Mountains. Agric. Hum. Values 2020, 37, 683–697. [Google Scholar] [CrossRef] [Green Version]
Sample | Method | Depth (cm) | U (mg kg−1) | Th (mg kg−1) | K (%) | Dr (mGy a−1) | N | Ods (%) | De (Gy) | Age (y) | Age AD |
---|---|---|---|---|---|---|---|---|---|---|---|
SM3-01 | OSL | 120.5 | 7.94 ± 0.16 | 10.60 ± 0.21 | 5.06 ± 0.05 | 7.17 ± 0.23 | 31 | 8 ± 3 | 6.18 ± 0.23 | 861 ± 43 | 1152 ± 13 |
SM3-06 | OSL | 102.5 | 7.75 ± 0.16 | 11.95 ± 0.24 | 4.98 ± 0.05 | 7.10 ± 0.23 | 30 | 9 ± 3 | 5.55 ± 0.22 | 781 ± 40 | 1233 ± 10 |
SM3-17 | OSL | 47.5 | 6.07 ± 0.12 | 10.8 ± 0.22 | 4.81 ± 0.05 | 7.48 ± 0.24 | 30 | 13 ± 4 | 4.26 ± 0.19 | 570 ± 32 | 1444 ± 32 |
SM3-20 | OSL | 32.5 | 6.86 ± 0.13 | 11.20 ± 0.22 | 4.81 ± 0.05 | 8.04 ± 0.23 | 29 | 17 ± 4 | 3.00 ± 0.15 | 374 ± 22 | 1640 ± 22 |
SM3-23 | OSL | 17.5 | 11.2 ± 0.22 | 15.85 ± 0.33 | 4.65 ± 0.05 | 9.02 ± 0.23 | 20 | 62 ± 13 | 0.46 ± 0.08 | 51 ± 9 | 1963 ± 9 |
Sample (Lab Code) | Method | Depth (cm) | 14C | ± | F14C | ± | Calibration range (2σ) | Relative area | Cal Age (AD/BC) | ||
SM3-07 (Beta-376756) | 14C-AMS | 97.5 | 830 | 30 | 0.902 | 0.003 | Cal AD 1165 to 1265 (Cal BP 785 to 685) | 1.00 | 1192 |
Modelled Age (cal AD) | Period | Geochemical and Sedimentological Properties | Local Context | Inferred Land Use (Landscape Function) |
---|---|---|---|---|
2012 | 20th century | High sediment accumulation rate. High C and P contents. Decrease in δ15N. | Major transformation of the Basilica in 1962. Grassland in the last decades. | Religious and less intensive agriculture (cultural, provision). |
1995 | ||||
1978 | ||||
1961 | ||||
1944 | ||||
1927 | ||||
1639 | Late Medieval and Modern Periods | Low accumulation rates: colluvial processes. Decrease in δ15N. | Several minor refurbishments of the Basilica. | Religious and less intensive agriculture (cultural, provision). |
1573 | ||||
1507 | ||||
1441 | ||||
1416 | ||||
1391 | High accumulation rate. Higher degree of pedogenesis. Increased Al content and δ15N. | Religious and intensive agriculture (cultural, provision). | ||
1366 | ||||
1341 | ||||
1316 | High Middle Ages | High accumulation rate. Lower δ15N and finer and more homogeneous particle size of sediments in this phase. | Second reform of the building: burial of the chapel and construction of the Basilica. | Religious and less intensive agriculture (cultural, provision). |
1291 | ||||
1266 | ||||
1242 | ||||
1217 | ||||
1192 | ||||
1190 | Very high sediment accumulation rate: terracing. Hydromorphic properties. Abundance of charcoal, increase in δ15N. | Large reform of the Santa Mariña chapel and construction of the parish church. | Religious and agriculture (cultural, provision). | |
1180 | ||||
1176 | ||||
1170 | ||||
1159 | ||||
1149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro-Vázquez, C.; Blanco-Rotea, R.; Sanjurjo-Sánchez, J.; García-Rodríguez, S.; García Quintela, M.V. Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain). Land 2021, 10, 992. https://doi.org/10.3390/land10090992
Ferro-Vázquez C, Blanco-Rotea R, Sanjurjo-Sánchez J, García-Rodríguez S, García Quintela MV. Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain). Land. 2021; 10(9):992. https://doi.org/10.3390/land10090992
Chicago/Turabian StyleFerro-Vázquez, Cruz, Rebeca Blanco-Rotea, Jorge Sanjurjo-Sánchez, Sonia García-Rodríguez, and Marco V. García Quintela. 2021. "Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain)" Land 10, no. 9: 992. https://doi.org/10.3390/land10090992
APA StyleFerro-Vázquez, C., Blanco-Rotea, R., Sanjurjo-Sánchez, J., García-Rodríguez, S., & García Quintela, M. V. (2021). Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain). Land, 10(9), 992. https://doi.org/10.3390/land10090992