Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design
Abstract
1. Introduction
2. Defining Spatial Scale Mismatches
2.1. Problems of Fit
2.2. Spatial Scale in Environmental Governance
2.3. Spatial Scale in Ecology
2.4. Spatial Scale Mismatches—SSMs
3. The Landscape-Scale Perspective and FAB Conservation
3.1. Functional Agri-Biodiversity (FAB)
3.2. The Landscape Scale
3.2.1. Pollination
3.2.2. Pest Control
3.2.3. Soil Production and Nitrogen Fixation
3.2.4. Farmland Birds
4. Two Policy Strategies: Collective Action and Spatial Planning Intervention
5. The European Union Agri-Biodiversity Conservation Policy
5.1. Overview of the EU Common Agricultural Policy
5.2. The Proposed CAP Measures Relevant for FAB Conservation: Scope and Spatial Perspective
5.2.1. Enhanced Conditionality
5.2.2. Eco-Schemes
5.2.3. Agri-Environmental-Climate Measures—AECMs
5.2.4. Natura 2000 and Water Framework Directive Payments
5.2.5. Cooperation Measure
6. The Landscape-Scale Perspective in the Post-2020 CAP Proposal
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAP | Common Agricultural Policy |
SSM | Spatial Scale Mismatch |
FAB | Functional Agri-Biodiversity |
AECM | Agri-Environmental Climate Measure |
SMR | Statutory Management Requirements |
GAEC | Good Agricultural and Environmental Condition of land |
1 | Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Preamble, n. 33. |
2 | It is worth noting that this also applies beyond services related to food and fibers provision. Indeed, a wide range of services in agriculture are best understood from a landscape perspective, notably cultural services such as educational, aesthetic and other non-material benefits that originate from the particular interplay between humans and the biological community occurring on farmland [14,83]. |
3 | Common farmland birds in EU and UK—Common bird—population index 1990–2017, available at https://www.eea.europa.eu/data-and-maps/daviz/common-birds-in-europe-population-index-6#tab-googlechartid_googlechartid_googlechartid_chart_4121 (accessed on 1 March 2021). |
4 | Eurostat Farmland Bird Index, available at http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_bio2&lang=en (accessed on 1 May 2021). |
5 | Conference of the Parties of the Convention of Biological Diversity—Decision 14/8 of 30 November 2018. |
6 | More information available at https://www.europarl.europa.eu/factsheets/en/sheet/104/the-common-agricultural-policy-in-figures (accessed on 1 June 2021). |
7 | EU Commission Regulation proposal COM/2018/392 final— 2018/0216 (COD), available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN (accessed on 1 May 2021). |
8 | Total farm holdings in 2016 were 10.5 million. Eurostat, 2018. Available at: https://ec.europa.eu/eurostat/documents/3217494/9455154/KS-FK-18-001-EN-N.pdf/a9ddd7db-c40c-48c9-8ed5-a8a90f4faa3f?t=1558692068000 (accessed on 1 June 2021). |
9 | See Overview of the rural development programmes 2014–2020, available at https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/rdp-2014-20-list_en.pdf (accessed on 1 June 2021). |
10 | For data on the physical size of farms in the EU, see https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Small_and_large_farms_in_the_EU_-_statistics_from_the_farm_structure_survey&oldid=406560 (accessed on 1 July 2021). |
References
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing Pesticide Use While Preserving Crop Productivity and Profitability on Arable Farms. Nat. Plants 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Vos, C.C.; Zonneveld, J.I.S. Patterns and Processes in a Landscape under Stress: The Study Area. In Landscape Ecology of a Stressed Environment; Vos, C.C., Opdam, P., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 1–27. [Google Scholar] [CrossRef]
- Geertsema, W.; Opdam, P.; Kropff, M. Plant Strategies and Agricultural Landscapes: Survival in Spatially and Temporally Fragmented Habitat. Landsc. Ecol. 2002, 17, 263–279. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity – Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Haenke, S.; Kovács-Hostyánszki, A.; Fründ, J.; Batáry, P.; Jauker, B.; Tscharntke, T.; Holzschuh, A. Landscape Configuration of Crops and Hedgerows Drives Local Syrphid Fly Abundance. J. Appl. Ecol. 2014, 51, 505–513. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; García-Feced, C.; Paracchini, M.L. A New View on EU Agricultural Landscapes: Quantifying Patchiness to Assess Farmland Heterogeneity. Ecol. Indic. 2016, 61, 317–327. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030—COM(2020) 380 Final; Brussels. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 1 June 2021).
- WWF. Living Planet Report 2020: Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Ehrlich, P.R.; Wilson, E. Biodiversity Studies: Science and Policy. Science 1991, 253, 758–762. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment; Technical Report; World Resources Institute, Island Press: Washington, DC, USA, 2005.
- European Court of Auditors. Biodiversity on Farmland: CAP Contribution Has Not Halted the Decline; Technical Report; Publications Office: Luxembourg, 2020. [Google Scholar]
- Lakner, S.; Holst, C.; Dittrich, A.; Hoyer, C.; Pe’er, G. Impacts of the EU’s Common Agricultural Policy on Biodiversity and Ecosystem Services: Drivers, Risks, and Societal Responses. In Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 383–389. [Google Scholar] [CrossRef]
- Pe’er, G.; Dicks, L.V.; Visconti, P.; Arlettaz, R.; Báldi, A.; Benton, T.G.; Collins, S.; Dieterich, M.; Gregory, R.D.; Hartig, F.; et al. EU Agricultural Reform Fails on Biodiversity. Science 2014, 344, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Pe’er, G.; Lakner, S.; Müller, R.; Passoni, G.; Bontzorlos, V.; Moreira, F.; Azam, C.; Berger, J.; Bezak, P.; Bonn, A.; et al. Is the CAP Fit for Purpose? An Evidence-Based Fitness Check Assessment; Technical Report; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig: Leipzig, Germany, 2017. [Google Scholar]
- Kleijn, D.; Berendse, F.; Smit, R.; Gilissen, N. Agri-Environment Schemes Do Not Effectively Protect Biodiversity in Dutch Agricultural Landscapes. Nature 2001, 413, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does Conservation on Farmland Contribute to Halting the Biodiversity Decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.; Lefebvre, O.; Balogh, L. A Green Deal for Implementing Agroecological Systems: Reforming the Common Agricultural Policy of the European Union. Landbauforschung 2021, 70, 83–93. [Google Scholar] [CrossRef]
- Young, O.R. The Institutional Dimensions of Environmental Change: Fit, Interplay, and Scale; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- Pelosi, C.; Goulard, M.; Balent, G. The Spatial Scale Mismatch between Ecological Processes and Agricultural Management: Do Difficulties Come from Underlying Theoretical Frameworks? Agric. Ecosyst. Environ. 2010, 139, 455–462. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batary, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity Conservation in Agriculture Requires a Multi-Scale Approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef] [PubMed]
- Paloniemi, R.; Apostolopoulou, E.; Primmer, E.; Grodzinska-Jurcak, M.; Henle, K.; Ring, I.; Kettunen, M.; Tzanopoulos, J.; Potts, S.; van den Hove, S.; et al. Biodiversity Conservation across Scales: Lessons from a Science–Policy Dialogue. Nat. Conserv. 2012, 2, 7–19. [Google Scholar] [CrossRef]
- Lefebvre, M.; Espinosa, M.; y Paloma, S.G.; Paracchini, M.L.; Piorr, A.; Zasada, I. Agricultural Landscapes as Multi-Scale Public Good and the Role of the Common Agricultural Policy. J. Environ. Plan. Manag. 2015, 58, 2088–2112. [Google Scholar] [CrossRef]
- Sayles, J.S.; Baggio, J.A. Social–Ecological Network Analysis of Scale Mismatches in Estuary Watershed Restoration. Proc. Natl. Acad. Sci. USA 2017, 114, E1776–E1785. [Google Scholar] [CrossRef] [PubMed]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Oliver, T.; Roy, D.B.; Hill, J.K.; Brereton, T.; Thomas, C.D. Heterogeneous Landscapes Promote Population Stability. Ecol. Lett. 2010, 13, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, L.; Wilson, R.J.; Maclean, I.M.D. Old Concepts, New Challenges: Adapting Landscape-Scale Conservation to the Twenty-First Century. Biodivers. Conserv. 2017, 26, 527–552. [Google Scholar] [CrossRef]
- Bàrberi, P.; Moonen, A. Reconciling Agricultural Production with Biodiversity Conservation; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Ekroos, J.; Ödman, A.M.; Andersson, G.K.S.; Birkhofer, K.; Herbertsson, L.; Klatt, B.K.; Olsson, O.; Olsson, P.A.; Persson, A.S.; Prentice, H.C.; et al. Sparing Land for Biodiversity at Multiple Spatial Scales. Front. Ecol. Evol. 2016, 3, 145. [Google Scholar] [CrossRef]
- Martin, D.; Gaston, K.J.; Skinner, A.M.J.; Nick, H.; Acs, S.; Armsworth, P.R. Field-Level Bird Abundances Are Enhanced by Landscape-Scale Agri-Environment Scheme Uptake. Biol. Lett. 2010, 6, 643–646. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Cash, D.W.; Adger, W.N.; Berkes, F.; Garden, P.; Lebel, L.; Olsson, P.; Pritchard, L.; Young, O. Scale and Cross-Scale Dynamics: Governance and Information in a Multilevel World. Ecol. Soc. 2006, 11, 8. [Google Scholar] [CrossRef]
- Cleveland, C.; Costanza, R.; Eggertsson, T.; Fortmann, L.; Low, B.; McKean, M.; Ostrom, E.; Wilson, J.; Young, O. A Framework for Modeling the Linkages between Ecosystems and Human Systems. Beijer Discuss. Pap. Ser. 1996, 76, 51. [Google Scholar]
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards Sustainability in World Fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- Baskin, Y. Yellowstone Fires: A Decade Later: Ecological Lessons Learned in the Wake of the Conflagration. BioScience 1999, 49, 93–97. [Google Scholar] [CrossRef][Green Version]
- Gottfried, R.; Wear, D.; Lee, R. Institutional Solutions to Market Failure on the Landscape Scale. Ecol. Econ. 1996, 18, 133–140. [Google Scholar] [CrossRef]
- Springer, A.M.; Estes, J.A.; van Vliet, G.B.; Williams, T.M.; Doak, D.F.; Danner, E.M.; Forney, K.A.; Pfister, B. Sequential Megafaunal Collapse in the North Pacific Ocean: An Ongoing Legacy of Industrial Whaling? Proc. Natl. Acad. Sci. USA 2003, 100, 12223–12228. [Google Scholar] [CrossRef] [PubMed]
- Cash, D.W.; Moser, S.C. Linking Global and Local Scales: Designing Dynamic Assessment and Management Processes. Glob. Environ. Chang. 2000, 10, 109–120. [Google Scholar] [CrossRef]
- Graham, J.; Amos, B.; Plumptre, T. Governance Principles for Protected Areas in the 21st Century. In Proceedings of the Fifth World Parks Congress Durban, Durban, South Africa, 12–13 September 2003; Available online: https://www.files.ethz.ch/isn/122197/pa_governance2.pdf (accessed on 1 June 2021).
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Governance Principles for Natural Resource Management. Soc. Nat. Resour. 2010, 23, 986–1001. [Google Scholar] [CrossRef]
- Bennett, N.J.; Satterfield, T. Environmental Governance: A Practical Framework to Guide Design, Evaluation, and Analysis. Conserv. Lett. 2018, 11, e12600. [Google Scholar] [CrossRef]
- de Sadeleer, N. Principle of Subsidiarity and the EU Environmental Policy. J. Eur. Environ. Plan. Law 2012, 9, 63–70. [Google Scholar] [CrossRef]
- Jordan, A.; Jeppesen, T. EU Environmental Policy: Adapting to the Principle of Subsidiarity? Eur. Environ. 2000, 10, 64–74. [Google Scholar] [CrossRef]
- Sayre, N.F. Ecological and Geographical Scale: Parallels and Potential for Integration. Prog. Hum. Geogr. 2005, 29, 276–290. [Google Scholar] [CrossRef]
- Allen, T.F.H.; Hoekstra, T. Toward a Unified Ecology, 2nd ed.; Columbia University Press: New York, NY, USA, 2015. [Google Scholar]
- Gibson, C.C.; Ostrom, E.; Ahn, T.K. The Concept of Scale and the Human Dimensions of Global Change: A Survey. Ecol. Econ. 2000, 32, 217–239. [Google Scholar] [CrossRef]
- Buizer, M.; Arts, B.; Kok, K. Governance, Scale and the Environment: The Importance of Recognizing Knowledge Claims in Transdisciplinary Arenas. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Mayer, A.L.; Cameron, G.N. Consideration of Grain and Extent in Landscape Studies of Terrestrial Vertebrate Ecology. Landsc. Urban Plan. 2003, 65, 201–217. [Google Scholar] [CrossRef]
- Hooghe, L.; Marks, G. Multi-Level Governance and European Integration; Governance in Europe, Rowman & Littlefield Publishers: Lanham, MD, USA, 2001. [Google Scholar]
- Feitelson, E.; Fischhendler, I. Spaces of Water Governance: The Case of Israel and Its Neighbors. Ann. Assoc. Am. Geogr. 2009, 99, 728–745. [Google Scholar] [CrossRef]
- Collins, W.W.; Qualset, C.O. (Eds.) Biodiversity in Agroecosystems; Advances in Agroecology; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Altieri, M.A. The Ecological Role of Biodiversity in Agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Lohbeck, M.; Winowiecki, L.; Aynekulu, E.; Okia, C.; Vågen, T.G. Trait-Based Approaches for Guiding the Restoration of Degraded Agricultural Landscapes in East Africa. J. Appl. Ecol. 2018, 55, 59–68. [Google Scholar] [CrossRef]
- Sinclair, A.R.E.; Fryxell, J.M.; Caughley, G.; Caughley, G. Wildlife Ecology, Conservation, and Management, 2nd ed.; Blackwell Pub: Malden, MA, USA; Oxford, UK, 2006. [Google Scholar]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple Functions Increase the Importance of Biodiversity for Overall Ecosystem Functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef]
- Brussaard, L. Biodiversity and Ecosystem Functioning in Soil. Ambio 1997, 26, 563–570. [Google Scholar]
- Vitousek, P.M.; Hooper, D.U. Biological Diversity and Terrestrial Ecosystem Biogeochemistry. In Biodiversity and Ecosystem Function; Schulze, E.D., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 3–14. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.M.N.; van Noordwijk, M. Biodiversity and Ecosystem Services in Agricultural Landscapes—Are We Asking the Right Questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Schulze, E.D.; Chapin, F.S. Plant Specialization to Environments of Different Resource Availability. In Potentials and Limitations of Ecosystem Analysis; Schulze, E.D., Zwölfer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 120–148. [Google Scholar] [CrossRef]
- de Bello, F.; Lavorel, S.; Díaz, S.; Harrington, R.; Cornelissen, J.H.C.; Bardgett, R.D.; Berg, M.P.; Cipriotti, P.; Feld, C.K.; Hering, D.; et al. Towards an Assessment of Multiple Ecosystem Processes and Services via Functional Traits. Biodivers. Conserv. 2010, 19, 2873–2893. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.L. A Trait-Based Approach to Comparative Functional Plant Ecology: Concepts, Methods and Applications for Agroecology. A Review. Agron. Sustain. Dev. 2012, 32, 365–399. [Google Scholar] [CrossRef]
- Martin, A.R.; Isaac, M.E. Functional Traits in Agroecology: Advancing Description and Prediction in Agroecosystems. J. Appl. Ecol. 2018, 55, 5–11. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and Other Ecosystem Services Produced by Mobile Organisms: A Conceptual Framework for the Effects of Land-Use Change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Prager, K.; Reed, M.; Scott, A. Encouraging Collaboration for the Provision of Ecosystem Services at a Landscape Scale—Rethinking Agri-Environmental Payments. Land Use Policy 2012, 29, 244–249. [Google Scholar] [CrossRef]
- Goldman, R.L.; Thompson, B.H.; Daily, G.C. Institutional Incentives for Managing the Landscape: Inducing Cooperation for the Production of Ecosystem Services. Ecol. Econ. 2007, 64, 333–343. [Google Scholar] [CrossRef]
- European Landscape Convention, Council of Europe. 2000. Available online: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/176?module=treaty-detail&treatynum=176 (accessed on 1 August 2021).
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The Interplay of Landscape Composition and Configuration: New Pathways to Manage Functional Biodiversity and Agroecosystem Services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef]
- Burel, F.; Baudry, J.; Butet, A.; Clergeau, P.; Delettre, Y.; Le Coeur, D.; Dubs, F.; Morvan, N.; Paillat, G.; Petit, S.; et al. Comparative Biodiversity along a Gradient of Agricultural Landscapes. Acta Oecologica 1998, 19, 47–60. [Google Scholar] [CrossRef]
- McKenzie, A.J.; Emery, S.B.; Franks, J.R.; Whittingham, M.J. Landscape-Scale Conservation: Collaborative Agri-Environment Schemes Could Benefit Both Biodiversity and Ecosystem Services, but Will Farmers Be Willing to Participate? J. Appl. Ecol. 2013, 50, 1274–1280. [Google Scholar] [CrossRef]
- Macfarlane, R. Building Blocks or Stumbling Blocks? Landscape Ecology and Farm-Level Participation in Agri-Environmental Policy. Landsc. Res. 2000, 25, 321–331. [Google Scholar] [CrossRef]
- Altieri, M. Agroecology: The Science of Sustainable Agriculture; CLC Press: Boca Raton, FL, USA, 2018; p. 433. [Google Scholar] [CrossRef]
- Weibull, A.C.; Bengtsson, J.; Nohlgren, E. Diversity of Butterflies in the Agricultural Landscape: The Role of Farming System and Landscape Heterogeneity. Ecography 2000, 23, 743–750. [Google Scholar] [CrossRef]
- Zingg, S.; Grenz, J.; Humbert, J.Y. Landscape-Scale Effects of Land Use Intensity on Birds and Butterflies. Agric. Ecosyst. Environ. 2018, 267, 119–128. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Fahrig, L. Response of Generalist and Specialist Insect Herbivores to Landscape Spatial Structure. Landsc. Ecol. 1997, 12, 185–197. [Google Scholar] [CrossRef]
- Holland, J.; Fahrig, L. Effect of Woody Borders on Insect Density and Diversity in Crop Fields: A Landscape-Scale Analysis. Agric. Ecosyst. Environ. 2000, 78, 115–122. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European Agricultural Landscapes, Common Agricultural Policy and Ecosystem Services: A Review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef]
- Willemen, L.; Verburg, P.H.; Hein, L.; van Mensvoort, M.E.F. Spatial Characterization of Landscape Functions. Landsc. Urban Plan. 2008, 88, 34–43. [Google Scholar] [CrossRef]
- Iverson Nassauer, J. Culture and Changing Landscape Structure. Landsc. Ecol. 1995, 10, 229–237. [Google Scholar] [CrossRef]
- Potts, S.; Biesmeijer, K.; Bommarco, R.; Breeze, T.; Carvalheiro, L.; Franzén, M.; González-Varo, J.P.; Holzschuh, A.; Kleijn, D.; Klein, A.M.; et al. Status and Trends of European Pollinators: Key Findings of the STEP Project; Pensoft Publishers: Sofia, Bulgaria, 2015; p. 72. [Google Scholar]
- Goulson, D.; Hughes, W.; Derwent, L.; Stout, J. Colony Growth of the Bumblebee, Bombus Terrestris, in Improved and Conventional Agricultural and Suburban Habitats. Oecologia 2002, 130, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.M.; Kremen, C. Resource Distributions Among Habitats Determine Solitary Bee Offspring Production in a Mosaic Landscape. Ecol. Appl. 2007, 17, 910–921. [Google Scholar] [CrossRef] [PubMed]
- van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological Control Using Invertebrates and Microorganisms: Plenty of New Opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- DeBach, P.; Paul DeBach, D.; David Rosen, E.; Rosen, D. Biological Control by Natural Enemies; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Bianchi, F.; Booij, C.; Tscharntke, T. Sustainable Pest Regulation in Agricultural Landscapes: A Review on Landscape Composition, Biodiversity and Natural Pest Control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Thies, C.; Tscharntke, T. Landscape Structure and Biological Control in Agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Thies, C.; Roschewitz, I.; Tscharntke, T. The Landscape Context of Cereal Aphid–Parasitoid Interactions. Proc. R. Soc. B Biol. Sci. 2005, 272, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil Invertebrates and Ecosystem Services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape Moderation of Biodiversity Patterns and Processes—Eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.J.; Vickery, J.A.; Norris, K. Farmland Biodiversity and the Footprint of Agriculture. Science 2007, 315, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Biodiversity: Farmland Bird Populations and Agricultural Land Cover. In OECD Compendium of Agri-Environmental Indicators; OECD Publishing: Paris, France, 2013; pp. 157–169. [CrossRef]
- Whittingham, M.J. Will Agri-Environment Schemes Deliver Substantial Biodiversity Gain, and If Not Why Not? J. Appl. Ecol. 2007, 44, 1–5. [Google Scholar] [CrossRef]
- Marja, R.; Herzon, I.; Viik, E.; Elts, J.; Mänd, M.; Tscharntke, T.; Batáry, P. Environmentally Friendly Management as an Intermediate Strategy between Organic and Conventional Agriculture to Support Biodiversity. Biol. Conserv. 2014, 178, 146–154. [Google Scholar] [CrossRef]
- Davey, C.M.; Vickery, J.A.; Boatman, N.D.; Chamberlain, D.E.; Parry, H.R.; Siriwardena, G.M. Assessing the Impact of Entry Level Stewardship on Lowland Farmland Birds in England. Ibis 2010, 152, 459–474. [Google Scholar] [CrossRef]
- Young, J.C.; Jordan, A.; Searle, K.R.; Butler, A.; Simmons, P.; Watt, A.D. Framing Scale in Participatory Biodiversity Management May Contribute to More Sustainable Solutions. Conserv. Lett. 2013, 6, 333–340. [Google Scholar] [CrossRef]
- Vanni, F. The Role of Collective Action. In Agriculture and Public Goods: The Role of Collective Action; Vanni, F., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 21–37. [Google Scholar] [CrossRef]
- Prager, K. Agri-Environmental Collaboratives for Landscape Management in Europe. Curr. Opin. Environ. Sustain. 2015, 12, 59–66. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Yang, X.; Tu, Q.; Hanley, N.; Kontoleon, A. Performance of Agglomeration Bonuses in Conservation Auctions: Lessons from a Framed Field Experiment. Environ. Resour. Econ. 2019, 73, 843–869. [Google Scholar] [CrossRef]
- OECD. Providing Agri-Environmental Public Goods through Collective Action; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Terwan, P.; Deelen, J.G.; Mulders, A.; Peeters, E. The Cooperative Approach under the New Dutch Agri-Environment- Climate Scheme; Technical Report; Ministry of Economic Affairs: The Hague, The Netherlands, 2016. [Google Scholar]
- Kleijn, D.; Sutherland, W.J. How Effective Are European Agri-Environment Schemes in Conserving and Promoting Biodiversity? J. Appl. Ecol. 2003, 40, 947–969. [Google Scholar] [CrossRef]
- Merckx, T.; Feber, R.E.; Riordan, P.; Townsend, M.C.; Bourn, N.A.; Parsons, M.S.; Macdonald, D.W. Optimizing the Biodiversity Gain from Agri-Environment Schemes. Agric. Ecosyst. Environ. 2009, 130, 177–182. [Google Scholar] [CrossRef]
- Siriwardena, G.M. The Importance of Spatial and Temporal Scale for Agri-Environment Scheme Delivery: Spatial and Temporal Scale of AES Delivery. Ibis 2010, 152, 515–529. [Google Scholar] [CrossRef]
- Leventon, J.; Schaal, T.; Velten, S.; Dänhardt, J.; Fischer, J.; Abson, D.J.; Newig, J. Collaboration or Fragmentation? Biodiversity Management through the Common Agricultural Policy. Land Use Policy 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Hauck, J.; Schindler, S.; Dittrich, A.; Zingg, S.; Tscharntke, T.; Oppermann, R.; Sutcliffe, L.M.E.; Hoyer, C.; et al. Adding Some Green to the Greening: Improving the EU’s Ecological Focus Areas for Biodiversity and Farmers. Conserv. Lett. 2017, 10, 517–530. [Google Scholar] [CrossRef]
- Früh-Müller, A.; Bach, M.; Breuer, L.; Hotes, S.; Koellner, T.; Krippes, C.; Wolters, V. The Use of Agri-Environmental Measures to Address Environmental Pressures in Germany: Spatial Mismatches and Options for Improvement. Land Use Policy 2019, 84, 347–362. [Google Scholar] [CrossRef]
- European Court of Auditors. Is Agri-Environment Support Well Designed and Managed? Technical Report; Publications Office: Luxembourg, 2011. [Google Scholar]
- Pardo, A.; Rolo, V.; Concepción, E.D.; Díaz, M.; Kazakova, Y.; Stefanova, V.; Marsden, K.; Brandt, K.; Jay, M.; Piskol, S.; et al. To What Extent Does the European Common Agricultural Policy Affect Key Landscape Determinants of Biodiversity? Environ. Sci. Policy 2020, 114, 595–605. [Google Scholar] [CrossRef]
- Nilsson, L.; Clough, Y.; Smith, H.G.; Alkan Olsson, J.; Brady, M.V.; Hristov, J.; Olsson, P.; Skantze, K.; Ståhlberg, D.; Dänhardt, J. A Suboptimal Array of Options Erodes the Value of CAP Ecological Focus Areas. Land Use Policy 2019, 85, 407–418. [Google Scholar] [CrossRef]
- European Commission The Future of Food and Farming—COM(2017) 713. 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017DC0713 (accessed on 1 June 2021).
- Franks, J.R. An Assessment of the Landscape-Scale Dimensions of Land Based Environmental Management Schemes Offered to Farmers in England. Land Use Policy 2019, 83, 147–159. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Petersen, J.E.; Hoogeveen, Y.; European Environment Agency; European Commission; Joint Research Centre; Institute for Environment and Sustainability. High Nature Value Farmland in Europe an Estimate of the Distribution Patterns on the Basis of Land Cover and Biodiversity Data; Publications Office: Luxembourg, 2008. [Google Scholar]
- Lomba, A.; Alves, P.; Jongman, R.H.G.; McCracken, D.I. Reconciling Nature Conservation and Traditional Farming Practices: A Spatially Explicit Framework to Assess the Extent of High Nature Value Farmlands in the European Countryside. Ecol. Evol. 2015, 5, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the Relationship between Farmland Biodiversity and Land-Use Intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Franks, J.R.; Mc Gloin, A. Environmental Co-Operatives as Instruments for Delivering across-Farm Environmental and Rural Policy Objectives: Lessons for the UK. J. Rural. Stud. 2007, 23, 472–489. [Google Scholar] [CrossRef]
- Dänhardt, J.; Nilsson, L.; Hristov, J.; Olsson, J.A.; Brady, M.; Olsson, P.; Smith, H.G.; Clough, Y. Collective Implementation of Ecological Focus Areas; Technical Report 6816; The Swedish Environmental Protection Agency: Stockholm, Sweden, 2018. [Google Scholar]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the Effectiveness of Protected Area Networks in Reducing Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed]
- Blankespoor, B.; Dasgupta, S.; Wheeler, D. Protected Areas and Deforestation: New Results from High Resolution Panel Data; SSRN Scholarly Paper ID 2519851; Social Science Research Network: Rochester, NY, USA, 2014. [Google Scholar]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A Global-Level Assessment of the Effectiveness of Protected Areas at Resisting Anthropogenic Pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef] [PubMed]
SMR 3 |
Directive 2009/147/EC (Birds Directive)—Article 3(1), Article 3(2)(b), Article 4(1), (2) and (4) SMR 3 requires compliance with the measures provided by Member States to protect the targeted bird species (listed in Annex I of the Directive) and in particular:
|
SMR 4 | Directive 92/43/EEC (Habitats Directive)—Article 6(1) and (2) SMR 4 requires compliance with the measures provided by Member States to protect the targeted habitats and species (listed in Annex I and II of the Directive) and in particular:
|
GAEC 9 |
|
GAEC 10 | Ban on converting or ploughing permanent grassland in Natura 2000 sites |
Measure | Collective Action | Spatial Planning | |
---|---|---|---|
Implementation Method | Explicit Reference in Comm. Proposal | ||
SMR 3, 4 | voluntary | No | ✓- Natura 2000 |
GAEC 9 | voluntary | No | No |
GAEC 10 | voluntary | No | ✓- Natura 2000 |
Eco-schemes | voluntary | No | No |
AECMs | voluntary (standard in the Netherlands, if confirmed) | ✓ | No |
Natura 2000 payments | voluntary | No | ✓- Natura 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falco, F.L.; Feitelson, E.; Dayan, T. Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land 2021, 10, 846. https://doi.org/10.3390/land10080846
Falco FL, Feitelson E, Dayan T. Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land. 2021; 10(8):846. https://doi.org/10.3390/land10080846
Chicago/Turabian StyleFalco, Francesca L., Eran Feitelson, and Tamar Dayan. 2021. "Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design" Land 10, no. 8: 846. https://doi.org/10.3390/land10080846
APA StyleFalco, F. L., Feitelson, E., & Dayan, T. (2021). Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land, 10(8), 846. https://doi.org/10.3390/land10080846