Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection, Preprocessing, and Analysis
3. Results
3.1. Land-Use and -Cover Changes
3.2. Wildfires and Changes in NDVI and NDMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
DMZ | 1984 | 2006 | |||||||||||||
Bare | Deci | Built | Conifer | Paddy | Vege | Water | Bare | Deci | Built | Conifer | Paddy | Vege | Water | ||
1919 | Bare | 8.14% | 41.43% | 0.01% | 2.28% | 12.05% | 35.99% | 0.09% | |||||||
Deci | 8.38% | 66.57% | 0.00% | 4.56% | 3.83% | 16.66% | 0.00% | ||||||||
Built | 6.73% | 59.62% | 0.00% | 0.94% | 9.39% | 23.32% | 0.00% | ||||||||
Conifer | 11.20% | 58.11% | 0.06% | 7.44% | 4.76% | 18.38% | 0.05% | ||||||||
Paddy | 4.07% | 27.33% | 0.01% | 4.50% | 10.28% | 52.73% | 1.09% | ||||||||
Vege | 12.43% | 51.42% | 0.00% | 0.53% | 8.18% | 27.35% | 0.09% | ||||||||
Water | 5.01% | 10.50% | 0.14% | 4.07% | 4.07% | 38.01% | 38.21% | ||||||||
1994 | Bare | 21.36% | 1.53% | 11.11% | 1.27% | 1.02% | 0.92% | 0.30% | 31.09% | 16.11% | 4.10% | 1.94% | 9.50% | 33.38% | 3.89% |
Deci | 25.56% | 81.07% | 11.11% | 72.46% | 53.44% | 38.17% | 1.42% | 1.03% | 70.07% | 0.37% | 6.17% | 1.61% | 19.69% | 1.06% | |
Built | 2.68% | 0.26% | 29.63% | 2.47% | 0.36% | 0.46% | 2.94% | 5.31% | 8.79% | 23.63% | 6.59% | 13.74% | 15.93% | 26.01% | |
Conifer | 0.05% | 0.05% | 0.00% | 0.89% | 0.02% | 0.06% | 2.54% | 3.09% | 13.40% | 4.12% | 21.65% | 18.56% | 10.31% | 28.87% | |
Paddy | 8.58% | 3.07% | 14.81% | 5.56% | 27.74% | 7.94% | 5.79% | 1.98% | 3.70% | 1.56% | 1.42% | 73.31% | 15.58% | 2.44% | |
Vege | 41.55% | 13.89% | 14.81% | 14.30% | 17.35% | 51.60% | 1.73% | 3.64% | 18.90% | 0.66% | 0.88% | 5.86% | 68.03% | 2.04% | |
Water | 0.21% | 0.13% | 18.52% | 3.05% | 0.08% | 0.86% | 85.28% | 0.92% | 0.77% | 4.06% | 0.46% | 5.44% | 8.50% | 79.86% | |
2017 | Bare | 35.44% | 0.40% | 11.73% | 0.31% | 0.45% | 1.12% | 2.14% | |||||||
Deci | 2.32% | 93.18% | 2.79% | 80.00% | 3.61% | 36.32% | 5.64% | ||||||||
Built | 4.51% | 0.01% | 33.87% | 0.16% | 0.28% | 0.05% | 4.96% | ||||||||
Conifer | 0.00% | 0.01% | 0.15% | 4.66% | 0.48% | 0.01% | 0.17% | ||||||||
Paddy | 3.81% | 0.39% | 9.53% | 8.31% | 78.90% | 2.56% | 11.35% | ||||||||
Vege | 53.46% | 6.01% | 36.22% | 6.47% | 15.84% | 59.90% | 32.76% | ||||||||
Water | 0.46% | 0.00% | 5.72% | 0.09% | 0.45% | 0.05% | 42.98% | ||||||||
CCZ | 1984 | 2006 | |||||||||||||
Bare | Deci | Built | Conifer | Paddy | Vege | Water | Bare | Deci | Built | Conifer | Paddy | Vege | Water | ||
1919 | Bare | 19.12% | 33.67% | 0.63% | 0.60% | 11.67% | 32.33% | 1.97% | |||||||
Deci | 14.48% | 50.75% | 2.32% | 2.43% | 6.03% | 19.35% | 4.64% | ||||||||
Built | 22.23% | 43.81% | 0.00% | 0.82% | 6.32% | 26.83% | 0.00% | ||||||||
Conifer | 13.40% | 65.97% | 0.06% | 2.29% | 3.21% | 14.84% | 0.23% | ||||||||
Paddy | 9.96% | 30.30% | 0.03% | 1.23% | 26.45% | 29.46% | 2.57% | ||||||||
Vege | 12.01% | 56.33% | 0.30% | 1.11% | 3.74% | 21.87% | 4.64% | ||||||||
Water | 1.35% | 2.47% | 0.07% | 0.32% | 5.45% | 9.44% | 80.90% | ||||||||
1994 | Bare | 22.89% | 3.23% | 13.02% | 1.68% | 2.29% | 5.13% | 0.68% | 24.72% | 11.18% | 12.11% | 11.72% | 0.90% | 34.06% | 5.30% |
Deci | 23.86% | 70.28% | 4.69% | 73.52% | 15.70% | 26.93% | 0.51% | 3.36% | 60.65% | 3.49% | 5.36% | 7.67% | 17.37% | 2.11% | |
Built | 4.82% | 1.04% | 24.48% | 1.49% | 0.84% | 1.69% | 4.88% | 13.35% | 6.06% | 20.00% | 9.80% | 1.26% | 21.93% | 27.60% | |
Conifer | 11.45% | 6.99% | 22.40% | 8.39% | 65.43% | 22.79% | 5.12% | 1.77% | 15.93% | 4.42% | 21.24% | 12.39% | 8.85% | 35.40% | |
Paddy | 0.02% | 0.05% | 0.00% | 0.25% | 0.06% | 0.15% | 0.24% | 6.65% | 1.78% | 6.28% | 63.32% | 1.55% | 15.63% | 4.79% | |
Vege | 35.88% | 18.31% | 17.71% | 13.49% | 15.39% | 41.41% | 4.16% | 8.62% | 17.20% | 6.51% | 19.26% | 1.71% | 43.38% | 3.32% | |
Water | 1.08% | 0.10% | 17.71% | 1.18% | 0.29% | 1.90% | 84.42% | 0.92% | 0.29% | 4.50% | 1.66% | 0.35% | 2.38% | 89.90% | |
2017 | Bare | 16.11% | 0.57% | 5.03% | 0.35% | 1.03% | 3.53% | 0.57% | |||||||
Deci | 4.22% | 88.86% | 4.19% | 67.97% | 3.86% | 20.26% | 2.00% | ||||||||
Built | 14.60% | 0.40% | 22.36% | 1.93% | 4.26% | 2.67% | 1.20% | ||||||||
Conifer | 12.63% | 1.25% | 14.43% | 10.96% | 67.98% | 10.56% | 1.80% | ||||||||
Paddy | 0.24% | 0.17% | 0.31% | 6.84% | 1.91% | 0.21% | 0.07% | ||||||||
Vege | 49.61% | 8.74% | 43.62% | 11.53% | 20.37% | 62.52% | 8.85% | ||||||||
Water | 2.59% | 0.00% | 10.07% | 0.42% | 0.60% | 0.25% | 85.52% |
Appendix E
Plant Type | Year | NDVI | NDMI | ||
---|---|---|---|---|---|
CCZ | DMZ | CCZ | DMZ | ||
Deciduous | 1984 | 0.78 ± 0.11 | 0.79 ± 0.1 | 0.32 ± 0.08 | 0.33 ± 0.08 |
1994 | 0.79 ± 0.07 | 0.78 ± 0.05 | 0.27 ± 0.08 | 0.26 ± 0.06 | |
2006 | 0.84 ± 0.03 | 0.84 ± 0.03 | 0.31 ± 0.03 | 0.29 ± 0.03 | |
2017 | 0.89 ± 0.02 | 0.88 ± 0.02 | 0.33 ± 0.04 | 0.31 ± 0.03 | |
Conifer | 1984 | 0.79 ± 0.11 | 0.79 ± 0.11 | 0.32 ± 0.08 | 0.32 ± 0.09 |
1994 | 0.74 ± 0.06 | 0.73 ± 0.07 | 0.37 ± 0.04 | 0.37 ± 0.03 | |
2006 | 0.84 ± 0.04 | 0.84 ± 0.03 | 0.35 ± 0.04 | 0.33 ± 0.03 | |
2017 | 0.91 ± 0.03 | 0.89 ± 0.04 | 0.43 ± 0.06 | 0.41 ± 0.05 | |
Vegetation | 1984 | 0.79 ± 0.1 | 0.8 ± 0.1 | 0.32 ± 0.08 | 0.33 ± 0.08 |
1994 | 0.75 ± 0.08 | 0.75 ± 0.07 | 0.27 ± 0.07 | 0.27 ± 0.07 | |
2006 | 0.78 ± 0.05 | 0.79 ± 0.06 | 0.28 ± 0.05 | 0.27 ± 0.06 | |
2017 | 0.79 ± 0.09 | 0.81 ± 0.08 | 0.29 ± 0.06 | 0.29 ± 0.06 |
Appendix F
References
- Vasilijević, M.; Zunckel, K.; McKinney, M.; Erg, B.; Schoon, M.; Rosen Michel, T. Transboundary conservation: A systematic and integrated approach. In Best Practice Protected Area Guidelines Series; The World Conservation Union (IUCN): Gland, Switzerland, 2015; pp. 12–107. ISBN 1817-3713. [Google Scholar]
- Thornton, D.H.; Branch, L.C. Transboundary mammals in the Americas: Asymmetries in protection challenge climate change resilience. Divers. Distrib. 2019, 25, 674–683. [Google Scholar] [CrossRef]
- Wang, T.; Feng, L.; Mou, P.; Wu, J.; Smith, J.L.D.; Xiao, W.; Yang, H.; Dou, H.; Zhao, X.; Cheng, Y.; et al. Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan. Landsc. Ecol. 2016, 31, 491–503. [Google Scholar] [CrossRef]
- Vitkalova, A.V.; Feng, L.; Rybin, A.N.; Gerber, B.D.; Miquelle, D.G.; Wang, T.; Yang, H.; Shevtsova, E.I.; Aramilev, V.V.; Ge, J. Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards. Conserv. Lett. 2018, 11, e12574. [Google Scholar] [CrossRef]
- Liu, J.; Yong, D.L.; Choi, C.Y.; Gibson, L. Transboundary Frontiers: An Emerging Priority for Biodiversity Conservation. Trends Ecol. Evol. 2020, 35, 679–690. [Google Scholar] [CrossRef]
- Petursson, J.G.; Vedeld, P.; Kaboggoza, J. Transboundary biodiversity management: Institutions, local stakeholders, and protected areas: A case study from Mt. Elgon, Uganda And Kenya. Soc. Nat. Resour. 2011, 24, 1304–1321. [Google Scholar] [CrossRef]
- Griffin, P.J.; Ali, S.H. Managing transboundary wetlands: The Ramsar Convention as a means of ecological diplomacy. J. Environ. Stud. Sci. 2014, 4, 230–239. [Google Scholar] [CrossRef]
- Kim, K.C. Preserving Biodiversity in Korea’s Demilitarized Zone. Science 1997, 278, 242–243. [Google Scholar] [CrossRef]
- National Institute of Ecology Comprehensive Report of Biodiversity in the DMZ and its Vicinities; Ministry of Environment: Sejong, Korea, 2016; ISBN 9791186197592.
- Kim, J.H.; Park, S.; Kim, S.H.; Kang, K.; Waldman, B.; Lee, M.H.; Yu, M.; Yang, H.; Chung, H.Y.; Lee, E.J. Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecol. Evol. 2020. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.H.; Kim, J.G. Classification of small irrigation ponds in western Civilian Control Zone in Korea. J. Wetl. Res. 2011, 13, 275–289. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Sánchez-Zapata, J.A.; Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 2010, 56, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.-Y.; Yeom, C.-M.; Kim, J.H.; Park, S.; Lee, Y.-W.; Pyo, G.; Kim, S.H. Species Diversity and Community Characteristics of Benthic Macroinvertebrates from Irrigation Ponds in the Western CCZ area, Korea. Korean J. Ecol. Environ. 2020, 53, 173–184. [Google Scholar] [CrossRef]
- Lee, D.W. Ecological Implications of Landscape Elements in Traditional Korean Villages; Seoul National University Press: Seoul, Korea, 2005; ISBN 8952105834. [Google Scholar]
- Koh, D.Y. The Place-ness of the DMZ: The rise of DMZ tourism and the real DMZ project. Positions 2019, 27, 654–685. [Google Scholar] [CrossRef]
- Sung, C.-Y.; Cho, W. Landscape Analysis of Habitat Fragmentation in the North and South Korean Border. Korean J. Environ. Ecol. 2012, 26, 952–959. [Google Scholar]
- Paek, B.; Park, Y. ‘Security-Economy Nexus’ and Geo-political Economies of Territorization and De-territorializatin in the Border Regions of the Korean Peninsula. J. Korean Geogr. Soc. 2019, 54, 199–228. [Google Scholar]
- Kim, S.-T.; Jung, M.-P.; Kim, H.-S.; Shin, J.-H.; Lim, J.-H.; Kim, T.-W.; Lee, J.-H. Insect Fauna of Adjacent Areas of DMZ in Korea. J. Ecol. Environ. 2006, 29, 125–141. [Google Scholar] [CrossRef]
- Park, E.J.; Nam, M.A. Changes in Land Cover and the Cultivation Area of Ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 2013, 27, 507–515. [Google Scholar]
- Sung, H.-C.; Kim, S.-R.; Kang, D.-I.; Seo, J.-Y.; Lee, S.-M. Analysis on the Type of Damaged Land in DeMilitarized Zone(DMZ) Area and Restoration Direction. J. Korea Soc. Environ. Restor. Technol. 2016, 19, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Kim, J.H.; Kim, S.H. Habitat Fragmentation by a Levee and Its Impact on Frog Population in the Civilian Control Zone. J. Wetl. Res. 2016, 18, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Chung, H.Y.; Kim, S.H.; Kim, J.G. The influence of water characteristics on the aquatic insect and plant assemblage in small irrigation ponds in Civilian Control Zone, Korea. J. Wetl. Res. 2016, 18, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.-H.; Yoon, J.-D.; Shin, J.-H.; Joo, G.-J. Status of freshwater fish around the Korean Demilitarized Zone and its implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 819–828. [Google Scholar] [CrossRef]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Wang, S.W.; Gebru, B.M.; Lamchin, M.; Kayastha, R.B.; Lee, W.-K. Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manage. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Marcucci, D.J. Landscape history as a planning tool. Landsc. Urban Plan. 2000, 49, 67–81. [Google Scholar] [CrossRef]
- National Geographic Information Institute. Available online: http://map.ngii.go.kr/ms/map/NlipMap.do (accessed on 1 March 2018).
- Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 June 2021).
- ENVI Atmospheric Corrections. Available online: https://www.l3harrisgeospatial.com/docs/routines-163.html (accessed on 2 July 2017).
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; California University San Diego La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1985; pp. 318–351. [Google Scholar]
- Richards, J.A.; Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3, ISBN 3642300618. [Google Scholar]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Band, L. Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates. Int. J. Remote Sens. 1993, 14, 2519–2534. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Konietschke, F.; Placzek, M.; Schaarschmidt, F.; Hothorn, L.A. nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw. 2015, 64. [Google Scholar] [CrossRef] [Green Version]
- Holden, Z.A.; Smith, A.M.S.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote Sens. 2005, 26, 4801–4808. [Google Scholar] [CrossRef]
- Korean Statistical information service Population Data. Available online: http://kosis.kr/index/index.do (accessed on 16 January 2019).
- Bae, J.S.; Joo, R.W.; Kim, Y.-S. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 2012, 29, 198–207. [Google Scholar] [CrossRef]
- Bae, J.S.; Kim, T.-H. Changes in Timber Supply-and-Demand, and Forest Resources of Joseon in the Japanese colonial period: Poor Forest Resources and Excessive Timber Production. J. Asiat. Stud. 2021, 64, 113–152. [Google Scholar] [CrossRef]
- Choung, Y.; Lee, B.C.; Cho, J.H.; Lee, K.S.; Jang, I.S.; Kim, S.H.; Hong, S.K.; Jung, H.C.; Choung, H.L. Forest responses to the large-scale east coast fires in Korea. Ecol. Res. 2004, 19, 43–54. [Google Scholar] [CrossRef]
- Chung, S.H.; Lee, Y.G.; Lee, S.T. Characteristics of Occurrence and Growth for Oak Sprouts on the Slope: With Particular Focused on Chungcheong Region of South Korea. J. Korean For. Soc. 2018, 107, 336–343. [Google Scholar]
- Lee, C.; You, Y.; Robinson, G.R. Secondary Succession and Natural Habitat Restoration in Abandoned Rice Fields of Central Korea. Restor. Ecol. 2002, 10, 306–314. [Google Scholar] [CrossRef]
- Liu, L.; Ge, J. Effects of fire disturbance on the forest structure and succession in the natural broad-leaved/Korean pine forest. J. For. Res. 2003, 14, 269–274. [Google Scholar] [CrossRef]
- Odum, E.P.; Barrett, G.W. Fundamentals of Ecology, 5th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Franklin, J.; Syphard, A.D.; He, H.S.; Mladenoff, D.J. Altered fire regimes affect landscape patterns of plant succession in the foothills and mountains of southern California. Ecosystems 2005, 8, 885–898. [Google Scholar] [CrossRef]
- Lim, J.-H.; Kim, J.-H.; Bae, S.-W. Natural Regeneration Patten of Pine Seedlings on the Burned Forest Site in Gosung, Korea. Korean J. Agric. For. Meteorol. 2012, 14, 222–228. [Google Scholar] [CrossRef]
- Keddy, P.A. Wetland Ecology: Principles and Conservation; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- De Jager, N.R.; Van Appledorn, M.; Fox, T.J.; Rohweder, J.J.; Guyon, L.J.; Meier, A.R.; Cosgriff, R.J.; Vandermyde, B.J. Spatially explicit modelling of floodplain forest succession: Interactions among flood inundation, forest successional processes, and other disturbances in the Upper Mississippi River floodplain, USA. Ecol. Modell. 2019, 405, 15–32. [Google Scholar] [CrossRef]
- Deegan, B.M.; White, S.D.; Ganf, G.G. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquat. Bot. 2007, 86, 309–315. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Q.; Xu, Y.S.; Yu, F.H. Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 223, 83–89. [Google Scholar] [CrossRef]
- Wilcox, D.A. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands. Aquat. Ecosyst. Health Manag. 2004, 7, 223–231. [Google Scholar] [CrossRef]
- Garssen, A.G.; Baattrup-Pedersen, A.; Voesenek, L.A.C.J.; Verhoeven, J.T.A.; Soons, M.B. Riparian plant community responses to increased flooding: A meta-analysis. Glob. Chang. Biol. 2015, 21, 2881–2890. [Google Scholar] [CrossRef]
- Jian, Z.; Ma, F.; Guo, Q.; Qin, A.; Xiao, W. Long-term responses of riparian plants’ composition to water level fluctuation in China’s Three Gorges Reservoir. PLoS ONE 2018, 13, e0207689. [Google Scholar] [CrossRef] [PubMed]
- Vulink, J.T.; Van Eerden, M.R. Hydrological conditions and herbivory as key operators for ecosystem development in Dutch artificial wetlands. In Grazing and Conservation Management; Springer: Dordrecht, The Netherlands, 1998; pp. 217–252. [Google Scholar]
- Henwood, W.D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Great Plains Res. 2010, 20, 121–134. [Google Scholar]
- Phifer, C.C.; Knowlton, J.L.; Webster, C.R.; Flaspohler, D.J.; Licata, J.A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. 2017, 26, 3073–3101. [Google Scholar] [CrossRef]
- Carbutt, C.; Henwood, W.D.; Gilfedder, L.A. Global plight of native temperate grasslands: Going, going, gone? Biodivers. Conserv. 2017, 26, 2911–2932. [Google Scholar] [CrossRef]
- Azpiroz, A.B.; Isacch, J.P.; Dias, R.A.; Di Giacomo, A.S.; Fontana, C.S.; Palarea, C.M. Ecology and conservation of grassland birds in southeastern South America: A review. J. Field Ornithol. 2012, 83, 217–246. [Google Scholar] [CrossRef]
- Kim, S.; Lee, A.S.; Hwang, S. Aid to North Korea for Capacity Building of the Unification of Korea—Comparative Analysis on the Role of States and International Organizations. J. Int. Polit. 2018, 23, 5–43. [Google Scholar] [CrossRef]
- Kang, M.-J.; Lim, Y.-H.; Yon, H.-A. A Plan of Land Use for Border Areas between South and North Korea in Preparing for Reunification: Focusing on the Projects for the Inter-Korean Cooperation; Korea Research Institute for Human Settlements: Sejong, Korea, 2017; ISBN 9791158982454. [Google Scholar]
- Lee, S.; Choi, S.; Lee, D.; Hwang, S.; Ahn, J. The Flora of Vascular Plants in the West Side of DMZ Area. Korean J. Environ. Ecol. 2016, 30, 1–18. [Google Scholar] [CrossRef]
- Son, H.J.; Kim, Y.S.; Ahn, C.-H.; Park, W.G. Analysis of the Flora and Vegetation Community in Forest Genetic Resources Reserves (Mt. Daeseng, Juparyeong), Near the DMZ. J. Korean For. Soc. 2016, 105, 19–41. [Google Scholar] [CrossRef]
- UN THE 17 GOALS | Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 19 June 2021).
Satellite | Sensor | Date | Resolution |
---|---|---|---|
Landsat | TM5 | 3 July 1984 | 30 m |
Landsat | TM5 | 12 September 1994 | 30 m |
Landsat | ETM | 5 September 2006 | 30 m |
Landsat | OLI | 26 August 2017 | 30 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Park, S.; Kim, S.H.; Lee, E.J. Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone. Land 2021, 10, 708. https://doi.org/10.3390/land10070708
Kim JH, Park S, Kim SH, Lee EJ. Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone. Land. 2021; 10(7):708. https://doi.org/10.3390/land10070708
Chicago/Turabian StyleKim, Jae Hyun, Shinyeong Park, Seung Ho Kim, and Eun Ju Lee. 2021. "Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone" Land 10, no. 7: 708. https://doi.org/10.3390/land10070708
APA StyleKim, J. H., Park, S., Kim, S. H., & Lee, E. J. (2021). Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone. Land, 10(7), 708. https://doi.org/10.3390/land10070708