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Abstract: In this paper, an updated Smoothed Particle Hydrodynamics (SPH) method based on the
Simplified Finite Difference Interpolation scheme (SPH_SFDI) is presented to simulate the failure
process of ice. The Drucker–Prager model is embedded into the SPH code to simulate the four point
bending and uniaxial compression failure of ice. The cohesion softening elastic–plastic model is
also used in the SPH_SFDI framework. To validate the proposed modeling approach, the numerical
results of SPH_SFDI are compared with the standard SPH and the experimental data. The good
agreement demonstrated that the proposed SPH_SFDI method including the elastic–plastic cohesion
softening Drucker–Prager failure model can provide a useful numerical tool for simulating failure
progress of the ice in practical field. It is also shown that the SPH_SFDI can significantly improve the
capability and accuracy for simulating ice bending and compression failures as compared with the
original SPH scheme.

Keywords: ice failure; SPH_SFDI; Drucker–Prager model; bending; uniaxial compression; cohesion
softening elastic–plastic model

1. Introduction

With the increasing activities in Arctic regions, the method for the accurate calculation of the
corresponding ice loads on structures are crucial to the design of marine structures operating in ice [1].
To simulate ice–water or ice–ship interactions effectively, it is necessary to have a reasonable study and
understanding of the ice failure progress. The bending failure is the common failure behavior of the
ice and is important for ships in ice–ship interactions because of the inclined contact interfaces with
the ice [2,3]. In addition, under the compression of a ship or structure, compressive failure (crushing)
is also easy to occur during the failure process of the ice. Thus, it is of high importance to study the
bending and compression failure progress of the ice.

In the past few years, many full-scale tests and model tests of the ice failure have been
investigated [4–8]. However, the experimental data are highly dispersed because of different
experimental equipment, different test methods, and different measurements of the ice specimens.
In addition, some simplified empirical models are also used to study the ice failure and the interaction
of ice and structure [9–11]. However, these simplified empirical models only focus on some main
aspects of ice failure and are lack of the study of dynamics and some changing details during the ice
failure progress. Thus, it is very important to develop a reliable numerical ice model to simulate the
sea ice failure in the bending and compression process, especially the current studies on the behavior
of sea ice failure are not adequate; although some obtained numerical approaches were proposed to
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simulate sea ice failure, these studies mainly focus on the ice–structure interaction rather than on the
failure properties of sea ice itself.

The existing numerical methods for simulating ice destruction mainly include the finite element
method (FEM) [12], the discrete element method (DEM) [13] or their coupled forms [14,15]. To some
extent, these methods can achieve good simulation results for ice failure. However, due to the different
discretization schemes of FEM and DEM, the numerical continuity is not easily guaranteed on the solid
boundary in coupling method of FEM and DEM. For FEM, it has some common drawbacks relevant
to simulating ice failure, which are mesh tangling, and using erosion to predict failure patterns [16].
Deb and Pramanik [17] pointed out that DEM needs to make extensive calibration work to identify the
parameters for both deformability and strength.

In recent years, SPH method is emerging as a potential tool for simulating the large deformation
and failure behavior of solids. Because of its Lagrangian behaviors, cracks may initiate and propagate
immediately and naturally after the yielding of SPH particles. Therefore, SPH can simulate the large
deformations, failure behaviors effectively and accurately. Thus, it can be easily used to solve solid
failure problems, including the fracture, crushing and fragmentation with the application of solid state
constitutive relation.

SPH was originally introduced by Lucy [18] and Gingold and Monaghan [19] to solve
astrophysical problems. In recent years, SPH method has been successfully applied to a wide range
of problems, which include fluid flows [20], geophysical flows [21], water wave dynamics [22–24]
and wave–structure interaction problems [25,26]. Currently, there are two different approaches in
the SPH formulation: the “weakly compressible” (WCSPH) [20,21] and the “truly incompressible”
(ISPH) [27–29], the first of which is employed in this paper. Libersky and Petschek [30] applied
SPH to solid mechanics firstly. Benz and Asphaug [31] extended their work to simulation of the
fracture process in brittle solids. Then Randles and Libersky [32] used SPH successfully to study
dynamic response of solid material with large deformations. Bui et al. [33] applied SPH to model large
deformation or post-failure of soil. Deb and Pramanik [17] and Douillet-Grellier et al. [34] simulated
the brittle fracturing process of rock by SPH, respectively. Zhang et al. [35] tried to use the SPH method
based on the failure model [17] to study the fracture of ice. This paper draws on the elastic–perfectly
plastic constitutive equation in Bui et al. [33] and combines the cohesion softening law in Whyatt and
Board [36] and Drucker–Prager yield criterion to reflect the plasticity and brittleness of ice during the
failure progress. Recently, Das [16] used SPH mode in LS-DYNA to simulate ice beam in four-point
bending. In his study, the Von Mises yield criterion is embedded into the SPH to identify the failure
of ice. Besides, in his approach once failure is reached, the deviatoric stress components are scaled
directly to zero without the cohesion softening and stress correction used in this paper.

The main contribution of the paper lies in the following two aspects. On the one hand, the cohesion
softening elasto-plastic constitutive model integrated with the Drucker–Prager yield criterion with
plastic flow rules has been prospectively implemented to simulate the plastic failure of ice in the
SPH framework. As far as we know, similar failure investigations have been widely used in soil and
rock mechanics but almost not known in the ice field. The validation of numerical results shows that
this approach can accurately simulate the failure behavior of ice in the practical field. On the other
hand, the standard SPH algorithms lack some kinds of high accuracy due to the formulation of its
first-order derivative. To improve this situation the Simplified Finite Difference Interpolation (SFDI)
method proposed by Ma [37] is used to improve the shear stress and strain rate formulations thus
more reasonable failure path and pattern during the ice failure process can be achieved. The enhanced
performance of SPH_SFDI method (compared with the standard SPH method) in predicting a more
precise force and stress of ice field is also demonstrated by the robust comparisons between the
numerical results and experimental data. It needs to be pointed out that the SPH_SFDI method is
applied only to 2D test cases in this paper.
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2. Governing Equations

The governing equations in the SPH method include the mass conservation equation and
momentum conservation equation, which written in the Lagrangian form, are given as:

Dρ

Dt
= −1

ρ

∂vα

∂xα
(1)

Dvα

Dt
=

1
ρ

∂σαβ

∂xβ
+ gα (2)

where α and β are the Cartesian components in x, y and z directions; v is the particle velocity; ρ is
the ice density; σαβ is the tress tensor of ice particles; g is the gravitational acceleration; and D/Dt
is the particle derivative following motion. The ice constitutive relation need to be applied into the
system to solve the governing equations (Equations (1) and (2)). In this paper, the stress tensor can be
divided into two parts, which is same with [32] and includes the hydrostatic pressure and deviatoric
shear stress:

σαβ =
1
3

σγγδαβ + sαβ (3)

in which δαβ = Kronecker delta and satisfies the following conditions: δαβ = 1 if α = β or δαβ = 0 when
α 6= β.

2.1. Ice Elasto-Plastic Constitutive Model

To simulate the ice failure process, an elasto-plastic constitutive model [33] is applied into SPH in
this paper. The components of the strain rate

.
ε

αβ are given by:

.
ε

αβ
=

1
2

(
∂vα

∂xβ
+

∂vβ

∂xα

)
(4)

For an elasto-plastic material, the strain rate
.
ε

αβ can be divided into the elastic strain rate tensor
.
ε

αβ
e and the plastic strain rate tensor

.
ε

αβ
p . The elastic strain rate tensor

.
ε

αβ
e follows the generalized

Hooke’s law:

.
ε

αβ
e =

.
sαβ

2G
+

1− 2υ

3E
.
σ

γγ
δαβ (5)

which
.
sαβ

= the deviatoric shear stress rate tensor; G and E are the shear modulus and Young’s
modulus, respectively; and υ is Poisson’s ratio. The plastic strain rate tensor

.
ε

αβ
p is obtained according

to the flow rule:

.
ε

αβ
p =

.
λ

∂Q
∂σαβ

(6)

where
.
λ is the plastic multiplier rate, and Q is the plastic potential function which determines the

development direction of plastic strain. The plastic multiplier λ is computed through the consistency
condition, which is given by:

dF =
∂F

∂σαβ
dσαβ = 0 (7)

According to Equations (5) and (6), the total strain rate tensor can be expressed as:

.
ε

αβ
=

.
sαβ

2G
+

1− 2υ

3E
.
σ

γγ
δαβ +

.
λ

∂Q
∂σαβ

(8)
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According to Equations (3) and (8), the general stress–strain equation of the elastic–plastic ice
material can be given by:

.
σ

αβ
= 2G

.
eαβ

+ K
.
ε

γγ
δαβ −

.
λ

[(
K− 2G

3

)
∂Q

∂σmn δmnδαβ + 2G
∂Q

∂σαβ

]
(9)

in which α and β are free indexes, m and n are dummy indexes which denote the Cartesian components
x , y with the Einstein convention applied to repeated indices;

.
eαβ

=
.
ε

αβ − 1
3

.
ε

γγ
δαβ is the deviatoric

shear strain rate tensor; K = E/(3(1− 2υ)) is the elastic bulk modulus; and G = E/(2(1 + υ)) is the
shear modulus.

The plastic multiplier rate
.
λ of an elasto-plastic material can be calculated by substituting Equation (9)

into Equation (7) as follows:

.
λ =

2G
.
ε

αβ ∂F
∂σαβ +

(
K− 2G

3

) .
ε

γγ ∂F
∂σαβ δαβ

2G ∂F
∂σmn

∂Q
∂σmn +

(
K− 2G

3

)
∂F

∂σmn δmn ∂Q
∂σmn δmn

(10)

3. Failure Model in the SPH Framework

3.1. Drucker–Prager Model

The Drucker–Prager yield criterion (Figure 1) has been widely used in soil and rock mechanics but
is almost unknown in the ice field. In this paper, the Drucker–Prager yield criterion with flow rules has
been prospectively used to determine the plastic regime of the ice. The validation of numerical results
in Section 5 shows that the Drucker–Prager yield criterion can be used to identify the occurrence of the
plastic deformation of ice particles in SPH.
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In this study, the Drucker–Prager yield criterion can be expressed as following:

F(σαβ, c) =
√

J2(sαβ) + αφ I1(σ
αβ)− ξc = 0 (11)

in which c is the ice cohesion, J2(sαβ) is the second invariant of the stress tensor, and I1(σ
αβ) is one

third of the first invariant of the stress tensor. The parameters αφ and ξ are defined as:

αφ =
6 sin φ√

3(3− sin φ)
, ξ =

6 cos φ√
3(3− sin φ)

(12)
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where φ is the friction angle. In addition, the plastic potential function is also used to completely define
the relationship between the stress and strain. The flow rules are usually applied into SPH to simulate
solid fracture, including the associated flow rule and non-associated flow rule. In the associated flow
rules, the plastic potential function has the same form with the yield criterion, namely as:

Q(σαβ, c) =
√

J2(sαβ) + αφ I1(σ
αβ)− ξc (13)

The non-associated plastic potential function is taken to be:

Q(σαβ, c) =
√

J2(sαβ) + η I1(σ
αβ) (14)

where parameter η is related to dilatancy angle ϕ, which can be expressed as:

η =
6 sin ϕ√

3(3− sin ϕ)
(15)

Substituting Equation (13) into Equations (9) and (10), the stress–strain relationship with the
associated plastic flow rule is given by:

.
σ

αβ
= 2G

.
eαβ

+ K
.
ε

γγ
δαβ −

.
λ

(
ηKδαβ +

G√
J2

sαβ

)
(16)

When F(σαβ, c) < 0, it is in pure elasticity condition:

.
σ

αβ
=

{
2G

.
eαβ

+ K
.
ε

γγ
δαβ i f F(σαβ, c) < 0

2G
.
eαβ

+ K
.
ε

γγ
δαβ −

.
λ
(

ηKδαβ + G√
J2

sαβ
)

else
(17)

where the plastic multiplier rate
.
λ is calculated for the ice model by:

.
λ =

ηK
.
ε

γγ
+ G√

J2
sαβ .

ε
αβ

η2K + G
(18)

The stress–strain equation of the ice model with the non-associated flow rule is obtained by taking
Equation (14) into Equations (9) and (10) as follows:

.
σ

αβ
=

{
2G

.
eαβ

+ K
.
ε

γγ
δαβ i f F(σαβ, c) < 0

2G
.
eαβ

+ K
.
ε

γγ
δαβ −

.
λ
(

ηKδαβ + G√
J2

sαβ
)

else
(19)

where the plastic multiplier rate
.
λ can be written as:

.
λ =

ηK
.
ε

γγ
+ G√

J2
sαβ .

ε
αβ

ηηK + G
(20)

It can be seen from the above description that the main difference between the associative and
non-associative models is reflected in the dilatancy angle. In the associated flow rule ice model,
the Dilatancy angle is always equal to the friction angle, whereas dilatancy angle is optional in the
non-associated flow rule. It should be noted that according to the comparative analysis in the following
Section 5, non-associative flow rule yield more stable and precise numerical results than associative
flow rule in this paper.
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3.2. Numerical Errors in Computational Plasticity

In computation for plastic deformation of elastic–plastic material using the Drucker–Prager yield
criterion, the numerical errors are easy to occur, which corresponds to the following condition:

− αφ In
1 + kc <

√
Jn
2 (21)

In this study, a stress-rescaling procedure based on Bui et al. [33] is adopted to modify the stress.
The stress components are modified according to the following relation:

σ̃αβ = rnsαβ +
1
3

I1(σ
αβ)δαβ (22)

This scaling factor rn at the time step n is defined by:

rn =
−αφ In

1 + ξc√
Jn
2

(23)

In addition, if the condition −αφ In
1 + ζc < 0 is satisfied at the time step n, the normal stress

components need to be adjusted to the new correct values σ̃αβ:

σ̃αβ = σαβ +
1
3

(
In
1 (σ

αβ)− ξc
αφ

)
δαβ (24)

When−αφ In
1 + kc <

√
Jn
2 is satisfied, the stress tensor needs to take the plastic correction, which can

be expressed as:

σ̃αβ =

 σαβ + 1
3

(
I1(σ

αβ)− ξc
αφ

)
δαβ i f (−αφ I1 + ζc) < 0

−αφ In
1 +ξc√
Jn
2

sαβ + 1
3 I1(σ

αβ)δαβ else
(25)

3.3. Cohesion Softening

In this paper, the cohesion softening law [36] needs to be used in the Drucker–Prager model to
simulate the reduction of the ice strength under external loading numerically. In addition, the cohesion
softening model can imply the time dependency of ice failure, which is validated in Section 5.2.
The model of cohesion softening is realized by making cohesion c a purely linear function of the
accumulated plastic strain (Figure 2), which is similar to:

c = c(εp) = c0 + k(εp) (26)

The specific cohesion softening law in this paper is shown as:

c =

{
c0 − kεp i f c > cR
cR else

(27)

k is the specific softening coefficient and cR is the minimum cohesion. The accumulated plastic
strain εp can be obtained by the associative softening law as:

.
εp = −

.
λ

∂F
∂c

=
.
λξ (28)
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Because the relationship between cohesion and accumulated plastic strain is a purely mathematical
construct, it is difficult to obtain an exact characterization of this relationship. According to Figure 3,
different cohesion softening laws can get different results of the cohesion softening and the stress–strain
relationships, which can make the simulation of widespread material failure behaviors possible,
and can include both brittle and ductile failure. The higher order mathematical equation for cohesion
softening law may need to simulate more complex and precise material failure behaviors. More details
about the cohesion softening law can be seen in Whyatt and Board [36].
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4. SPH Formulations and Corrective SPH Method

4.1. The Particle Approximation and Spatial Derivatives of SPH

In SPH method, the computational domain is discretized into a set of particles which carry some
variables such as pressure, stress, velocity, density, etc. The smoothing kernels are used to approximate
a continuous flow field. The basic principle of SPH expression is that, for any quantity of particle i,
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whether a scalar or a vector, it can be approximated by the direct summation of the relevant quantities
of its neighbor particles j, which is shown as:

f (ri) =
N

∑
j=1

mj

ρj
f
(
rj
)
W
(
rij
)

(29)

and its gradient can be shown as:

∇ f (ri) =
N

∑
j=1

mj

ρj
f
(
rj
)
∇iW

(
rij
)

(30)

where i and j are the referred particle and its neighbor, respectively, and W
(
rij
)

is a kernel function and
has different forms. In this paper, the cubic B-spline kernel proposed by Monaghan and Lattanzio [38]
was used:

W
(
rij, h

)
= αd


2
3 − q2 + 1

2 q3 0 ≤ q < 1
1
6
(
2− q3) 1 ≤ q < 2

0 q ≥ 2
(31)

where q = r/h, αd = 15/
(
7πh2) for 2D cases, and h is equal to 1.2–1.4dx (dx is the initial particle spacing).

In SPH, the mass conservation Equation (1) can be approximated as follows:

Dρi
Dt

=
N

∑
j=1

mj

(
vα

i − vα
j

)∂Wij

∂xα
i

(32)

where ρi is the density of particle i with velocity component vi; and mj is the mass of particle j which
has velocity component vj. The most widely used SPH approximation of the momentum equation
(Equation (2)) is:

dvα
i

dt
=

N

∑
j=1

mj

σ
αβ
i
ρ2

i
+

σ
αβ
j

ρ2
j
−Πij · δαβ

∂Wij

∂xβ
i

+ gα (33)

where Πij is the artificial viscosity, which was proposed by Monaghan [39].
Finally, the position of particle i in SPH is calculated based on the following equation:

Dxα
i

Dt
= vα

i (34)

In addition, the XSPH method [39] is used to solve problems involving the tension. In this method,
particle i is defined based on an average velocity, which is shown as:

Dxα
i

Dt
= vα

i + ε
N

∑
j=1

mj

ρj

(
vα

j − vα
i

)
Wij, ε ∈ [0, 1] (35)

4.2. Artificial Stress Method

An artificial stress method presented by Monaghan [40] and Gray et al. [41] was used in many
papers to remove numerical instability [42] caused by the clumping of SPH particles when SPH is
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applied to solid mechanics. This method adopts an artificial repulsive force. The artificial repulsive
force proposed in Gray et al. [41] is used in this paper and takes the form:

dvα
i

dt
=

N

∑
j=1

mj

σ
αβ
i
ρ2

i
+

σ
αβ
j

ρ2
j
−Πij · δαβ + f n

ij

(
Rαβ

i + Rαβ
j

)∂Wij

∂xβ
i

+ gα (36)

where n is the variable exponent based on the smoothing kernel. fij is defined as

fij =
Wij

W(∆d, h)
(37)

where ∆d is the initial distance between neighbor particles. h is set to be 1.2∆d for the cubic B-spline
kernel in this paper.

The Rαβ
i and Rαβ

j in Equation (36) is the artificial stress tensor of particles i and j, respectively,
with the correction parameter ε (Gray et al. [41]) :

Rαβ
i = sc(Rαα

i + Rββ
i ) (38)

Rαα
i = c2Rαα

i + s2Rββ
i (39)

Rββ
i = s2Rαα

i + c2Rββ
i (40)

Rαα
i =

{
−ε

σαα
i

ρ2 i f σαα
i > 0

0 else
(41)

The same rule applies for Rββ
i with αα replaced by ββ.

Where σαα
i and σ

ββ
i are the new components of the stress tensor in the rotated frame:

σαα
i = c2σαα

i + 2scσ
αβ
i + s2σ

ββ
i (42)

σ
ββ
i = s2σαα

i + 2scσ
αβ
i + c2σ

ββ
i (43)

where c = cos θi and s = sin θi. θi is the angle of roiration for particle i, which statisfies

tan 2θi =
2σ

αβ
i

σαα
i − σ

ββ
i

(44)

More details about the artificial stress can be found in Gray et al. [41]. For the tests discussed in
this study, the parameter ε and n are equal to 0.3 and 4, respectively, to solve the tensile instability
problems in SPH.

4.3. Boundary Conditions

In this paper, we deal with boundary conditions by two types of particles: solid boundary particles
and mirror particles.

The solid boundary is fixed by the particles, which may prevent the real ice particles from
penetrating the solid wall (Figure 4). The boundary particles contribute to the velocity and stress
gradients for the real ice particles near the boundary. These boundary particles have the same velocity
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density as the solid wall and their density is set equal to reference density. The stresses of the boundary
particles on the solid boundary are calculated by using:

σ
αβ
w =

N
∑

i=1
σ

αβ
i Wwi

N
∑

i=1
Wwi

(45)

where σ
αβ
w is the stress of the particle w on a boundary solid boundary; i is its neighboring particle

and i can only be the real ice particle; and N is the number of particles in the support domain of wall
boundary particle w.

Water 2017, 9, 882 9 of 24 

 

where n  is the variable exponent based on the smoothing kernel. ijf  is defined as 

( ),
ij

ij

W
f

W d h
=

Δ
 (37)

where dΔ  is the initial distance between neighbor particles. h  is set to be 1.2 dΔ  for the cubic B-
spline kernel in this paper. 

The iR
αβ  and jR

αβ  in Equation (36) is the artificial stress tensor of particles i  and j , 

respectively, with the correction parameterε  (Gray et al. [41]) : 

( )i i iR sc R Rαβ αα ββ= +  (38)

2 2
i i iR c R s Rαα αα ββ= + (39)

2 2
i i iR s R c Rββ αα ββ= + (40)

2   

          

0

0

i
i

iR
els

if

e

αα
αα

αα
σε σ
ρ


− >= 



 (41)

The same rule applies for iR
ββ with αα  replaced by ββ . 

where i
αασ  and i

ββσ  are the new components of the stress tensor in the rotated frame: 

2 22i i i ic sc sαα αα αβ ββσ σ σ σ= + + (42)

2 22i i i is sc cββ αα αβ ββσ σ σ σ= + +  (43)

where cos ic θ=
 

and

 
sin is θ= .

 
iθ
 

is the angle of roiration for particle i ,which statisfies

 2tan 2 i
i

i i

αβ

αα ββ
σθ

σ σ
=

−
 (44)

More details about the artificial stress can be found in Gray et al. [41]. For the tests discussed in 
this study, the parameter ε  and n  are equal to 0.3 and 4, respectively, to solve the tensile instability 
problems in SPH. 

4.3. Boundary Conditions 

 

Figure 4. The treatment of the solid boundary. 

In this paper, we deal with boundary conditions by two types of particles: solid boundary 
particles and mirror particles. 

The solid boundary is fixed by the particles, which may prevent the real ice particles from 
penetrating the solid wall (Figure 4). The boundary particles contribute to the velocity and stress 
gradients for the real ice particles near the boundary. These boundary particles have the same velocity 
density as the solid wall and their density is set equal to reference density. The stresses of the 
boundary particles on the solid boundary are calculated by using: 

Figure 4. The treatment of the solid boundary.

In addition, the mirror particle (Figure 4) method following Libersky and Petschek [43] is also
used to simulate the solid boundary with the free-slip condition. For each real particle i that is close to
the wall, a mirror particle imir is set by a direct reflection of particle i across the boundary. The mirror
particle imir has the same tangential velocity (vimir ,t) with that of real particle: vimir ,t = vi,t to simulate
the free-slip boundary condition. The normal velocity (vimir ,n) of imir is set opposite to that of real
particle vimir ,n = vi,n to prevent the real particles from penetrating the boundary as shown in Figure 4.
The density and stress tensors of mirror particles are set to be equal to those of real ice particles.

4.4. Corrective SPH Method

The strain rate of the tensor Equation (4) needs to be converted into the discrete form to get the
stress rate based on the generalized Hooke’s law. In standard SPH, the strain rate is obtained by:

.
ε

αβ
=

1
2

[
N

∑
j=1

mj

(
vα

j − vα
i

)∂Wij

∂xβ
i

+
N

∑
j=1

mj

(
vβ

j − vβ
i

)∂Wij

∂xα
i

]
(46)

The standard SPH algorithm is lack of high accuracy due to kernel approximation of its first-order
derivative, such as Equation (46). To overcome the shortcomings in first order derivative accuracy of
the original SPH, this paper adopts the Simplified Finite Difference Interpolation (SPH_SFDI) method
to calculate the strain rate of the ice particles, more details about SFDI method can be found in Ma [37].
According to the results in Zheng et al. [44], SFDI can be a very good option as a high order accuracy.
For the purpose of the completion of theory, the formulas of strain rate of the tensor in 2D case can be
shown as:

.
ε

αβ
=

1
2

(
N

∑
j=1,j 6=i

ni,αBij,β − ni,βBij,α

ni,xni,y − ni,αβ
2

(
vα

j − vα
i

)
+

N

∑
j=1,j 6=i

ni,βBij,α − ni,αBij,β

ni,xni,y − ni,αβ
2

(
vβ

j − vβ
i

))
(47)

where ni,m =
N
∑

j=1,j 6=i

(rm
j −rm

i )2

|rj −ri|2
W
(
rij
)
, ni,mk =

N
∑

j=1,j 6=i

(rm
j −rm

i )(rk
j−rk

i )

|rj −ri|2
W
(
rij
)
, Bij,m =

(rm
j −rm

i )

|rj −ri|2
W
(
rij
)
,

in which α = x, y, β = x, y and m = x, k = y or m = y, k = x, and N is the neighbor particle number
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of particle i, rm
j is the component of the position vector in x or y direction. Similarly, the derivative of

other variables can also be calculated by this corrective method.
To justify that the SFDI method is more effective than the standard SPH method for the strain

rate calculation. Figure 5 shows the comparison of the bending stress in the middle of the ice beam for
four-point bending of the ice beam which will be discussed in Section 5.2. In Figure 5, the standard
formula is referred to Equation (46) and the SFDI is referred to Equation (47).Water 2017, 9, 882 11 of 24 

 

0.0 0.5 1.0
-0.5

0.0

0.5

St
re

ss
 (M

Pa
)

t(s)

 Theoretical value
 Standard formula
 SFDI

 
Figure 5. The stress comparison of theoretical value and numerical results: the traditional formula 
(Equation (46)) and the SFDI scheme (Equation (47)). 

According to the comparison of Figure 5, the results from SFDI scheme can get better agreement 
with the theoretical value than the ones of traditional equation. Especially when the fracture failure 
start to occur in the ice beam at about t = 0.45 s, the stress values by standard formula deviates from 
theoretical results obviously. The source of discrepancy is expected to be that the accuracy of strain 
rate in the standard formula is less than the ones in the SFDI scheme.  

In SPH_SFDI, the main procedures of numerical implementation of failure model of ice are 
shown as follows:  
(1) Calculate the values of αβε  and αβσ  from Equations (47), (17) or (19).  
(2) Calculate the stress components αβσ  based on the obtained stress rate αβσ .  
(3) Check the stress state and judge whether the corresponding stress need to be corrected: if 

1 2
n n

cI k Jφα− + < , the stress need to be modified by Equation (25). 

(4) Implement Cohesion softening model based on Equation (27). 

5. Numerical Simulations 

In this section, we firstly use the elastic vibration of a cantilever beam to verify the feasibility of 
SPH_SFDI method in solid mechanics. To test the effectiveness of the SPH_SFDI for simulating the 
failure progress of ice, two typical tests are included: the ice four-point bending and uniaxial ice 
compressive test. The enhanced performance of the SPH_SFDI algorithm will be demonstrated 
through the quantitative comparisons with the standard SPH and experimental data. 

5.1. Elastic Vibration of a Cantilever Beam 

The elastic vibration of a cantilever beam is used as a benchmark test to verify the reliability of 
the SPH_SFDI model for the calculation of solid mechanics. The cantilever beam is shown in Figure 
6, the dynamic load P is acting at the free end of the cantilever beam. The length L = 48 m, the height 
is D = 12 m, the elastic modulus is E = 3.0 × 107 N/m2, the Poisson’s ratio is 0.3υ = , and the mass 
density is P = 1 kg/m3. External excitation force P = 1000 ( )g t  and ( )g t  is a function related to time. 

 

Figure 5. The stress comparison of theoretical value and numerical results: the traditional formula
(Equation (46)) and the SFDI scheme (Equation (47)).

According to the comparison of Figure 5, the results from SFDI scheme can get better agreement
with the theoretical value than the ones of traditional equation. Especially when the fracture failure
start to occur in the ice beam at about t = 0.45 s, the stress values by standard formula deviates from
theoretical results obviously. The source of discrepancy is expected to be that the accuracy of strain
rate in the standard formula is less than the ones in the SFDI scheme.

In SPH_SFDI, the main procedures of numerical implementation of failure model of ice are shown
as follows:

(1) Calculate the values of
.
ε

αβ and
.
σ

αβ from Equations (47), (17) or (19).

(2) Calculate the stress components σαβ based on the obtained stress rate
.
σ

αβ.
(3) Check the stress state and judge whether the corresponding stress need to be corrected:

if −αφ In
1 + kc <

√
Jn
2 , the stress need to be modified by Equation (25).

(4) Implement Cohesion softening model based on Equation (27).

5. Numerical Simulations

In this section, we firstly use the elastic vibration of a cantilever beam to verify the feasibility
of SPH_SFDI method in solid mechanics. To test the effectiveness of the SPH_SFDI for simulating
the failure progress of ice, two typical tests are included: the ice four-point bending and uniaxial
ice compressive test. The enhanced performance of the SPH_SFDI algorithm will be demonstrated
through the quantitative comparisons with the standard SPH and experimental data.

5.1. Elastic Vibration of a Cantilever Beam

The elastic vibration of a cantilever beam is used as a benchmark test to verify the reliability of
the SPH_SFDI model for the calculation of solid mechanics. The cantilever beam is shown in Figure 6,
the dynamic load P is acting at the free end of the cantilever beam. The length L = 48 m, the height
is D = 12 m, the elastic modulus is E = 3.0 × 107 N/m2, the Poisson’s ratio is υ = 0.3, and the mass
density is P = 1 kg/m3. External excitation force P = 1000g(t) and g(t) is a function related to time.
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Figure 6. The cantilever beam and the dynamic loads.

A simple harmonic load g(t) = sin ωt is considered. ω is the frequency of harmonic load and in
this case ω = 27 s−1. Figure 7 shows the comparison of the displacement in y direction of the free
end of the cantilever beam (y) between the SPH and SPH_SFDI results with 10,000 particles and the
finite element method (FEM) solution from Long [45]. This shows that the displacement time histories
computed by the SPH_SFDI method shares a better agreement with the FEM data than the SPH result.
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To evaluate the enhanced performance of SPH_SFDI method further, the convergence properties
of the SPH and SPH_SFDI models are now examined in terms of the displacement y. For this purpose,
the time histories of displacement computed by SPH and SPH_SFDI are presented in Figure 8 with
the different particle numbers. Figure 9 gives the convergence tests on displacement, in which N is
the total particle number and different values using 1600, 3600, 6400 and 10,000 are analyzed here.
The relative error Err is defined as the errors between FEM result and SPH, SPH_SFDI results, which
are calculated by Err = |y0 − y|/y0, where y is the computed displacement by SPH and SPH_SFDI
from t = 0.0 s to t = 2.0 s, y0 is the displacement of FEM from t = 0.0 s to t = 2.0 s. It is shown in Figure 8
that the error of force decreases as the particle number increases unanimously for both the SPH and
SPH_ SFDI approaches. This indicates the convergence of all numerical models. However, the error
magnitude of SPH_SFDI is much smaller than that of SPH. Besides, we could also conclude from
Figure 9 that the convergence of SPH_ SFDI method is much better than that of the SPH, in that the
errors of the former reduce more rapidly following the refinement of spatial resolutions.
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5.2. Four-Point Pending of Ice Beam

The ice four-point bending experiment was conducted by Kujala et al. [4]. In their work, a loading
rig was used to bend the ice beam upward during the experiments. In addition, they used a hydraulic
cylinder to push two moving supports to produce a force, which were located 1 m apart in the middle
of the beam, so it can bend the ice beam upward. At the same time, two fixed supports, which were
4 m apart, were placed at both ends of the beam to against the ice beam. The detailed resulting
measurements can be found in Ehlers and Kujala [46].

In this section, the ice beam, the upper and lower supports are modeled with the particles, which is
shown in Figure 10. In total, 2768 particles are used for generating the ice beam. The length and
the height of the beam are L = 4.325 m and H = 0.4 m, respectively. The velocity of two moving
upward supports is 0.00275 m/s. The elastic modulus of the ice beam is E = 4.5 GPa, the cohesion is
c = 0.58 Mpa, and the friction angle is 36◦. The dilatancy angle ϕ in the non-associative plastic rule is
one-third of the friction angle (ϕ = φ/3).
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Figure 10. Computational model of the ice beam.

To show the fracture patterns clearly, Figure 11 gives the results obtained by SPH_SFDI using
the non-associative flow rule at different time. As shown in Figure 11a, two fracture cracks obviously
occur at the upper area by two moving supports and the ice beam breaks into three sections. Then the
cracks in the ice beam widen and two sections of ice beams on either side of the two bottom supports
sink downward as shown in Figure 12b. As the two supports move up slowly, the cracks in the ice
beam widen and the ice beam eventually breaks into three sections as shown in Figure 12c. It need to
highlight the point that in our numerical results, due to the complete symmetry of the characteristics
of ice beam and the external loading and supporting condition, the fracture location of the ice beam is
almost completely symmetric, which is not completely consistent with that in the experimental results.
In addition, there are slight crushing failures at the place contacted with the upper two fixed supports,
as the two upper supports are fixed and the ice beam has a tendency to move upward.
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Figure 12. Enlarged partial views of accumulated plastic strain of the failure path in the ice beam:
(a) standard SPH; and (b) SPH_SFDI.

The snapshots of the failure path predicted by SPH and SPH_SFDI using non-associative flow
rule at t = 2.75 s are shown in Figure 7. According to the results of Figure 7, the ice beam breaks
into three segments which can be obtained both by the standard SPH and SPH_SFDI. The fracture
points of the horizontal coordinate on lower two moving supports by standard SPH show the apparent
inward deviation compared with the ones of SPH_SFDI. Furthermore, it can be easily observed that the
particle distributions for the results of standard SPH are in chaotic, whereas the results of SPH_SFDI
are more stable and reliable.

To show the accuracy of numerical solutions of standard SPH and SPH_SFDI, Figure 13 gives the
comparison of the force time histories among stand SPH, SPH_SFDI and the experimental data [46].
The relationship between external force and flexural stress according to ITTC [47] is defined as:

F =
σBH2

6L0
(48)
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where B is the width of 3D ice beam. We use the same value of B as that in the experiment of
Kujala et al. [4]. L0 is the distance between the fixed support and the bottom moving support on the
same side. σ is flexural stress generated by bending of ice beam.

According to the results in Figure 13, the numerical results of SPH_SFDI have obviously better
agreement with the experimental data than the ones of standard SPH results. With the accuracy
improvement of the gradient approximation, the force time histories and fractured crack of the ice
beam bending can get more accurate and reliable results than the ones of standard SPH.
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Figure 13. Comparisons of external force among experimental data and different SPH results.

To validate that the numerical model can simulate the failure of ice beam at different times
effectively, the failure of ice beam with the same material parameters above under two extra moving
velocities of upward supports, such V1 = 0.001842 m/s and V2 = 0.003225 m/s are also considered.
Figure 14 gives the comparison of the force versus time curve under different moving velocities of two
upward supports among SPH_SFDI and the experimental data [46]. In addition, in Table 1, the results
from SPH_SFDI has been compared with experiment tests in terms of the failure force F′, failure time
t′ and the corresponding deflection δ. The good agreement between the numerical results and the
experiment data can be obtained clearly in Figure 14 and Table 1, although there exists some little
difference. Thus, the presented SPH_SFDI model including the cohesion softening model can imply the
time dependent of ice failure and get good simulated results for ice failure with different loading rates.
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Figure 14. Comparison of force versus time plot of the ice beams by numerical results and
experimental data with different velocities of two moving upward supports: (a) V1 = 0.001842 m/s;
and (b) V2 = 0.003225 m/s.
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Table 1. Comparison of SPH_SFDI and experiment data with different loading velocities.

Approach F′(V1) t′(V1) ffi(V1) F′(V2) t′(V2) ffi(V2)

EXP 6.87 kN 0.40 s 1.29 mm 6.87 kN 0.57 s 1.05 mm
SPH_SFDI 6.95 kN 0.39 s 1.24 mm 6.98 kN 0.59 s 1.15 mm

Note: V1 = 0.001842 m/s; V2 = 0.003225 m/s.

To show the effects of different plastic flow rules, Figure 15 gives the comparisons of the force
time histories by SPH_SFDI with associative plastic flow (Equation (17)) and non-associative plastic
flow (Equation (19)). To show the difference between associative and non-associative plastic flow
clearly, Figure 16 gives the snapshots of the cracks in the brittle failure process obtained by SPH_SFDI
with associative and non-associative flow rule at t = 2.75 s. The force obtained by the associative
rule is basically consistent with the experimental data and the failure paths are also consistent with
the non-associative flow rule. According to the results of Figure 16, the particles on the cracks,
especially near the left bottom support, are slightly disordered by associative flow rule. In comparison,
these particles near the same domain are more regular and reliable by non-associative flow rule.
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the cuboid. The top plate could be moved freely in the vertical direction with a certain velocity, which 
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Figure 18a, the stress–strain relation obtained by the SPH_SFDI method is in more agreement with 
experimental data than the ones of standard SPH, despite some unavoidable discrepancies due to the 
complication of the physical problem. Figure 18b gives the comparisons of the stress–strain curve in 
the experimental data with the results obtained by SPH_SFDI with associative and non-associative 
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Figure 16. Snapshot of the failure paths of accumulated plastic strain in SPH_SFDI results with different
flow rules: (a) associative flow rule; and (b) non-associative flow rule.

5.3. Uniaxial Compressive Test of Ice Specimen

In this section, it will justify the efficiency of SPH_SFDI scheme for the ice compressed behavior
simulation. Uniaxial compression of ice specimen is one of the most introduced benchmarks in this
field. A two-dimensional rectangle ice specimen will be considered. The width (D) and height (H)
of the ice specimen are 7 cm and 17.5 cm, respectively. The schematic geometry of this model can be
shown in Figure 17. An axial velocity with vertical downward is loaded on the upper platen, which is
of the value 0.0034675 m/s. The experiment of the same scale model was conducted by Li et al. [7] and
Zhang [48]. Two rigid plates on the top and bottom deal with solid boundary, which can support the
cuboid. The top plate could be moved freely in the vertical direction with a certain velocity, which
focuses on the compressed ice behavior. The ice specimen has the cohesion c = 0.45 Mpa, the friction
angle is 22.5◦. The dilatancy angle ϕ in the non-associative plastic rule is set to be one-third of the
friction angle (ϕ = φ/3).
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Figure 18a illustrates the comparisons of the axial stress–strain curves among the experimental
data [7], standard SPH and SPH_SFDI with non-associative flow rule. According to the results of
Figure 18a, the stress–strain relation obtained by the SPH_SFDI method is in more agreement with
experimental data than the ones of standard SPH, despite some unavoidable discrepancies due to the
complication of the physical problem. Figure 18b gives the comparisons of the stress–strain curve in
the experimental data with the results obtained by SPH_SFDI with associative and non-associative
plastic flow rules. According to the results of Figure 18, there exists a certain difference between the
numerical results and the experimental results for real sea ice. The elastic–plastic model of this paper
can get a reasonable agreement with the ones of experimental data. However, the nonlinear behavior
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of stress–strain time histories cannot be captured exactly; there exists many different factors, such the
ice viscosity, the anisotropy and the temperature, which should be further investigated to make it more
reliable for the numerical simulation of real sea ice.
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Zhang [48] (Figure 19a), the standard SPH and SPH_SFDI with non-associative flow rule. According 
to the results of Figure 19, the shear failures in the ice sample are predicted by the standard SPH and 
SPH_SFDI at t  = 0.69 s and t  = 1.38 s. The ice specimen exists the brittle failure and there is a main 
crack in the fracture pattern. The upper part of the body has the trend of sliding along the main crack 
and falling out of the specimen. Although the standard SPH method can predict the shear failure, the 
position of fracture crack differs greatly from the experimental result. The results of the SPH_SFDI are 
in better agreement with the experimental test than the ones of the standard SPH. In addition, some 
irrational damage occurred where the particle distribution is obviously ill conditioned in the SPH 
result, which can be seen in Figure 19b1,c1. By comparison, the results of SPH_SFDI are more stable 
and more regular. In summary, the present simulations also provide a strong indication that the 
results of SPH_SFDI method could be superior to the standard SPH in predicting the compressive 
failure process accurately. It should be noted that with the development of shear failure, the lower 
part of the ice specimen tilts under the downward sliding extrusion of the upper part and 
deformation occurs at the lower left corner, as shown in Figure 19c. 
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Figure 18. Comparisons of the stress–strain curve between experimental data and numerical results:
(a) standard SPH and SPH_SFDI with non-associative flow rule; and (b) only SPH_SFDI with different
flow rules.

Figure 19 shows the comparisons of the typical fracture pattern among experimental results of
Zhang [48] (Figure 19a), the standard SPH and SPH_SFDI with non-associative flow rule. According
to the results of Figure 19, the shear failures in the ice sample are predicted by the standard SPH and
SPH_SFDI at t = 0.69 s and t = 1.38 s. The ice specimen exists the brittle failure and there is a main
crack in the fracture pattern. The upper part of the body has the trend of sliding along the main crack
and falling out of the specimen. Although the standard SPH method can predict the shear failure,
the position of fracture crack differs greatly from the experimental result. The results of the SPH_SFDI
are in better agreement with the experimental test than the ones of the standard SPH. In addition,
some irrational damage occurred where the particle distribution is obviously ill conditioned in the
SPH result, which can be seen in Figure 19b1,c1. By comparison, the results of SPH_SFDI are more
stable and more regular. In summary, the present simulations also provide a strong indication that
the results of SPH_SFDI method could be superior to the standard SPH in predicting the compressive
failure process accurately. It should be noted that with the development of shear failure, the lower
part of the ice specimen tilts under the downward sliding extrusion of the upper part and deformation
occurs at the lower left corner, as shown in Figure 19c.
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Figure 20 shows a direct comparison for the brittle shear failure simulation by SPH_SFDI with
the associative flow rule and non-associative flow rule respectively. Although the stress–strain
curve obtained by the associative rule is basically consistent with the experimental data (seen in
Figure 18b) and the failure patterns predicted by the associative rule are also consistent with that of
the non-associative flow rule, it can be seen in Figure 20a that there is a slight particle strip distribution
in the SPH_SFDI results with associative flow rule. In contrast, the distribution of particles for the
SPH_SFDI result using non-associative flow rule is more stable and reliable, more details can be found
in Figure 20b. Therefore, with the combination of a comparative analysis of the different flow laws in
the four points bending, it can be found that the non-associative flow rule can yield the better results
for simulating the fractures.

In addition, Figure 21 shows the comparison of the bulge fracture patterns among the experiment
results by Zhang [48], the standard SPH and SPH_SFDI. According to the results of Figure 21b, the ice
sample exhibits the ductile failure feature and the bulge failure occurs in the bottom part of the ice
sample. During the compression process, the failure progress of the ice sample is slow and there is no
obvious main crack at the stage of the specimen failure. The bottom part of the ice sample distends
to the two outer sides and eventually fractures. It is also shown in Figure 21b that the predicted
cracks by SPH_SFDI can make a better agreement with the experimental test than the ones of the
standard SPH. Although the standard SPH method can predict the bulge failure, the position of bulge
fracture differs greatly from the experimental results. In addition, the particles below the damage
position are obviously disordered in the results of standard SPH, which can be shown in Figure 21b1.
By comparison, the results of SPH_SFDI are more reliable and the particle distributions of SPH_SFDI
are more regular.Water 2017, 9, 882 22 of 24 
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6. Conclusions

In this paper, the SPH_SFDI model including the elastic–plastic cohesion softening
Drucker–Prager failure model is proposed to simulate the bending and compression failure processes
of ice. The predicted force in a four-point bending and the axial stress of a uniaxial compressive
test are in a good agreement with the experimental data. The simulated fracture patterns are also
reasonably close to the reality. The conducted studies disclosed that the elasto-plastic cohesion
softening Drucker–Prager failure model, which originated from the soil and rock mechanics, can also
be effectively used to simulate the physical destruction phenomena during the failure process of the
ice. According to the comparisons between the numerical results conducted by the standard SPH and
improved SPH_SFDI, the performance of the latter is found to be much better in view of the numerical
accuracy and stability in the study of the bending and compression failure processes of ice.
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