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Abstract: The optimal temporal resolution for rainfall applications in urban hydrological models 

depends on different factors. Accumulations are often used to reduce uncertainty, while a 

sufficiently fine resolution is needed to capture the variability of the urban hydrological processes. 

Merging radar and rain gauge rainfall is recognized to improve the estimation accuracy. This work 

explores the possibility to merge radar and rain gauge rainfall at coarser temporal resolutions to 

reduce uncertainty, and to downscale the results. A case study in the UK is used to cross-validate 

the methodology. Rainfall estimates merged and downscaled at different resolutions are compared. 

As expected, coarser resolutions tend to reduce uncertainty in terms of rainfall estimation. 

Additionally, an example of urban application in Twenterand, the Netherlands, is presented. The 

rainfall data from four rain gauge networks are merged with radar composites and used in an 

InfoWorks model reproducing the urban drainage system of Vroomshoop, a village in Twenterand. 

Fourteen combinations of accumulation and downscaling resolutions are tested in the InfoWorks 

model and the optimal is selected comparing the results to water level observations. The uncertainty 

is propagated in the InfoWorks model with ensembles. The results show that the uncertainty 

estimated by the ensemble spread is proportional to the rainfall intensity and dependent on the 

relative position between rainfall cells and measurement points. 

Keywords: Kriging with External Drift; radar-rain gauge merging; rain gauge random error model; 

rainfall temporal downscaling; uncertainty propagation; rainfall ensembles 

 

1. Introduction 

The problem of the optimal spatial and temporal resolution for rainfall estimates in urban 

hydrology applications has been widely debated. On the one hand, many studies analyse the ideal 

resolution for model application. The optimal temporal and spatial resolutions for urban hydrology 

is studied by Schilling [1] as a function of hydrologic parameters of the catchment. In the work of 

Berne et al. [2], equations are derived to calculate the optimal spatial and temporal resolutions, given 

the area of a catchment, and they recommend 5 min–3 km for catchments of 1000 ha and 3 min–2 km 

for catchments of 100 ha. Gabellani et al. [3] suggest that a temporal resolution equal to 0.2 the 

characteristic catchment time and a spatial resolution of 0.2 the characteristic catchment dimension 

are the minimum requirements to avoid major errors in runoff estimation. Nevertheless, models have 

drastically evolved in the last 20 years and the concept of optimal resolution with them. Thanks to 

the increased computation capabilities, models are more complex and can represent finer scale 

phenomena, especially in the urban environment. There is a trend of moving towards integrated 

models, able to predict both the water quality and quantity, representing urban drainage networks, 
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surface runoff processes, river hydraulics, chemical dynamics, wastewater treatment plants, and so 

on [4]. At the same time, rainfall measurements have improved with the use of weather radars, which 

are able to achieve a finer spatial resolution and improved the accuracy thanks to technological 

advancements such as the use of dual polarization and Doppler capabilities [5,6]. Today, weather 

radars can provide rainfall estimates at 5-min/1 km resolutions, although they still present a lower 

accuracy compared to point measurements, due to the indirect nature of the radar rainfall estimation 

[7,8]. Radar data at fine temporal resolution can present temporal sampling errors, which can be 

reduced with accumulation or with advanced storm advection techniques [9–11]. Merging radar and 

rain gauge rainfall information is recognized to improve the radar rainfall estimation accuracy, 

maintaining the radar spatial resolution characteristics [12–16] and the accuracy of the point rain 

gauge measurements. Among the most popular techniques, Kriging with External Drift (KED) and 

Conditional Merging (CM) proved to achieve a good performance [12,14,17,18]. Although KED has 

the advantage of providing a strong platform for uncertainty estimation, thanks to the easily 

derivable kriging variance, it may not perform comparably well at short temporal resolutions, which 

are often necessary for urban hydrological applications [19]. In particular, KED is very sensitive to 

low quality data at fine temporal resolutions [19]. A possible approach is to improve robustness of 

KED using a co-kriging with external drift approach, or an extensive data pre-processing to achieve 

a sufficient data quality [20,21]. 

This work aims at exploring the possibility of using KED at a coarser temporal resolution, in 

order to improve the result stability and reduce the impact of random errors, and subsequently 

downscale the results. By downscaling both the KED estimation and the associated variance, the 

rainfall uncertainty can be studied and propagated in urban hydrological models. Most of the 

downscaling techniques discussed in the literature are stochastic [22–25], usually used to explore 

climatic variability. Instead, in this work, we use a data-driven approach, based on the radar data 

available at 5-min resolution to downscale the KED estimates and variance. The aim of this approach 

is to study the uncertainty associated with the rainfall data, rather than the process variability. 

A case study with about 200 rain gauges and radar composites from 3 C-band radars, in an area 

of about 200 by 200 km2 in England is used to perform cross-validation and verify the methodology. 

Twelve combinations of different accumulation and downscaling resolutions are tested. Additionally, 

an example of application to urban modelling is presented. The optimal accumulation and 

downscaling resolutions for a specific model are identified by comparing different products with 14 

combinations of accumulation resolutions and downscaling resolutions in a case study in the 

Netherlands. The generated rainfall products are tested, using an InfoWorks urban hydrological 

model. The case study is based on a high-intensity convective rainfall event that occurred in the 

Municipality of Twenterand, in the east of the Netherlands, causing severe flooding in the village of 

Vroomshoop. The InfoWorks model of the Vroomshoop area and water level measurements are used 

to identify the optimal combination of accumulation and downscaling resolutions for the specific 

model, by comparing the deterministic KED predictions. For the selected product, the uncertainty 

propagation is studied, producing an ensemble from the probabilistic KED result and using it in the 

InfoWorks model.  

In Section 2, the case studies are described, presenting the datasets and the model. In Section 3, 

the methods used to compare the accumulation and downscaling times, to merge radar and rain 

gauge data, to downscale the merged products, and to produce the ensemble are presented.  

Sections 4 and 5 present and discuss the results respectively. Section 6 summarizes the conclusions 

and recommendations. 

2. Dataset and Model 

2.1. Case Study 1: United Kingdom 

The objective of the proposed methodology is to optimize rainfall for an urban model application. 

The case study in Twenterand, Overijssel, The Netherlands, is used for this purpose, thanks to the 

available InfoWorks model. However, a validation of the used techniques, in terms of rainfall 
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reproduction capabilities, needs to be performed. The case study in the Netherlands cannot be used 

for this purpose, because the number of available rain gauges that could be used as a reference is 

limited, and their accuracy and temporal resolution are highly variable. For this reason, we use a 

different dataset to evaluate how the proposed approach performs in terms of rainfall prediction. A 

case study in the northern part of England is considered. The same methodology applied to the Dutch 

case study is applied to the UK case study, but instead of using the products in a model, the rainfall 

products are validated through cross-validation. For the test, we consider six months of data, between 

1 January 2016 at 00:00 UTC and 30 June 2016 23:59 UTC, considering only the hourly time steps in 

which at least a rain gauge records an intensity above 2 mm/h. 

2.1.1. Rain Gauges 

The area covers 200 by 200 km2, and 226 rain gauges managed by the Environment Agency (EA) 

are available upon request [26]. The dataset has been quality checked manually and consists of a 

uniform set of tipping bucket rain gauges with a bucket resolution of 0.2 mm and the time series are 

provided at a temporal resolution of 15 min. For this work, the request at the EA National Request 

Service [26] was for all the 15-minute data for all England, from January to September 2016; 

subsequently, only the rain gauges in the study area have been selected. The dataset is indicated as 

EA in this work and the position of the rain gauges is shown in Figure 1. 

2.1.2. Radars 

On the same area, radar composites produced by the UK Met Office are available through the 

BADC (British Atmospheric Data Centre) portal [27]. The composites, available at 1-km and 5-min 

resolutions, are already corrected for beam blockage, clutter, anomalous propagation, attenuation, 

variations in the vertical reflectivity profile, bright band and orographic enhancement, and are mean 

field bias corrected with an independent set of rain gauges on hourly basis [28,29]. The radar rainfall 

data are already transformed in rainfall intensity in (mm/h). The composites in the study area are 

derived by three C-band radars. The considered area is shown in Figure 1, together with the position 

of the three radars. 

 

Figure 1. The UK study area is presented, including the Environment Agency (EA) rain gauges and 

the three radars available in the area. 
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2.2. Case Study 2: The Netherlands 

The case study in the east of the Netherlands is used as an example of urban hydrological 

modelling application. The rainfall dataset is made of measurements from different rain gauge 

networks and a weather radar system. The study area is a square 64 km by 64 km wide. The analysed 

interval is five days long, from 13 June 2016 at 00:00 to 17 June 2016 at 23:59 (Central European 

Summer Time). The selected event has already been studied by Witteveen+Bos, an engineering and 

consultancy company based in Deventer, Overijssel, the Netherlands [30], because it resulted in the 

flooding of the village of Vroomshoop, inside the municipality of Twenterand. The highly convective 

rainfall event on 15 June 2016 reached an intensity of 31 mm/h on Vroomshoop according to the rain 

gauge measurements from the Municipality of Twenterand, with a return period of about five years, 

and the sewer system recorded a rise in the water level of around 3 m according to the water level 

measurements provided by the Municipality of Twenterand. 

2.2.1. Rain Gauges 

The available rain gauges are from four different networks with different characteristics. The 

Municipality of Twenterand (TWE) owns four tipping bucket rain gauges providing accumulations 

every 3 min. The Het Weer Actueel (HWA) is a nation-wide network of amateur tipping bucket rain 

gauges that provides accumulations at variable intervals. The Royal Meteorological Institute of the 

Netherlands (KNMI) manages two different networks, a set of accurate automatic rain gauges that 

use a floating device mechanism, and a network of manual water level rain gauges [31]. The 

automatic set is more accurate and provides hourly validated measurements, but it is sparse. The 

manual network is denser, but provides measurements only daily. The available rain gauges from 

the four different networks are reported in Figure 2. 

 

Figure 2. The Dutch study area is presented, including all the available rain gauge datasets. In the 

bottom-right panel, the three available water measurement points are shown. 
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A quality check is performed on all of the networks; one rain gauge from the Municipality of 

Twenterand (TWE 129) and one from the HWA network (HWA 60) in the area of interest are removed 

because of suspicious behaviour. The TWE 129 shows signs of partial blockage, while the HWA 60 

presents a stepping behaviour, with long dry spells followed by high isolated values. Table 1 shows 

the number of rain gauges available for each network, after quality check. 

Table 1. Available rain gauges in the study area and their characteristics. 

Network Number Accumulation Type 

TWENTERAND (TWE) 3 * 3 min Tipping bucket 

HWA AMATEUR (HWA) 14 * 5 min to 5 h Variable tipping bucket 

KNMI HOURLY (KNMI-H) 2 60 min Floating device 

KNMI DAILY (KNMI-D) 20 24 h Water level reading 

Note: * Number of rain gauges available after quality check. 

2.2.2. Radars 

The KNMI provides radar measurements from two C-band radars, namely Den Helder and De 

Bilt, represented in Figure 2. The two radars complete four 360° scans at four different elevations (0.3°, 

1.1°, 2.0°, and 3.0°) every five min. For areas farther than 80 km from the radars, such as the study 

area, the lowest elevation angle is used in composites, unless data is missing [32]. The KNMI provides 

both measurements of reflectivity and rainfall estimates. The reflectivity dataset is provided every 5 

min on a 1 km by 1 km grid in stereographic projection; it is not cut on the Dutch border, and it is not 

corrected with rain gauges. The KNMI also provides rainfall estimates derived from the reflectivity 

measurements corrected hourly for mean-field bias, and daily for spatial adjustments, but the 

composites are cut on the Dutch border. Since the study area contains a portion of German territory, 

the KNMI rainfall dataset cannot be used; therefore, in this work, the rainfall estimate is calculated 

from the KNMI reflectivity measurements. 

2.2.3. Vroomshoop InfoWorks Model and Water Level Data 

The municipality of Twenterand carries on water quantity measurements in the village of 

Vroomshoop, to check the sewage system functioning. For operational and decisional purposes, the 

Municipality of Twenterand has commissioned to Witteveen+Bos the setup of a sewer system model 

of the area of Vroomshoop. Witteveen+Bos has built an InfoWorks model that describes the area of 

Vroomshoop, about 12 km2, composed of 1227 nodes, 1282 links, 12 pumps, 17 weirs and 65 storm 

overflows. The model has been calibrated according to the C2100 guideline [33]. The InfoWorks 

model is a 1-D full hydrodynamic urban sewer flow model. It solves the 1-D Saint-Venant equations 

(shallow water equations) in a conduit system. Rainfall flows into the system through catchment 

areas that are connected to the manholes (nodes). Any area drains to the closest manhole. The 

catchment areas are divided into different types of surfaces: closed (asphalt) or open (bricks) 

pavement and flat or sloped roofs. Unpaved areas are assumed not to drain to the sewer system. The 

catchment areas were surveyed during the setup of the model, in 2012. The rainfall runoff model 

consists of several components with different parameters for the four surface types: depression 

storage, evaporation (open pavement only), infiltration (Horton) and routing delays (linear reservoir). 

The tuning of the rainfall runoff parameters is part of the calibration procedure of the model. The 

results of the model are compared to the water level measurements from the three sensors available 

for this work, provided by the Municipality of Twenterand. The position of the sensors is reported in 

Figure 2, in the low-right corner as stars, and in Figure 3, as red squares.  

Figure 3 is a simplified representation of the model, reporting the main components. 
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Figure 3. Simplified representation of the Vroomshoop InfoWorks model. 

3. Methods 

This work studies the possibility to find an optimal temporal aggregation 𝑇1 to merge radar and 

rain gauge rainfall data using kriging with external drift and an optimal temporal downscaling 𝑇2 

to disaggregate the merged product and use it in an urban hydrologic model. It must be considered 

that this work aims at illustrating the methodology to follow, and the identified optimal resolutions 

for the case study in the Netherlands are specific for the presented case study and sewer model. The 

combinations in Table 2 are used for validation in the UK case study, while the combinations in Tables 

3–5 are tested for the Dutch case study.  
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Table 2. Products tested in the UK case study. 

ID Networks N. Gauges Accumulation 𝑻𝟏 Downscaling 𝑻𝟐 

1 EA 226 1 h 15 min 

2 EA 226 1 h 30 min 

3 EA 226 1 h 1 h 

4 EA 226 3 h 15 min 

5 EA 226 3 h 30 min 

6 EA 226 3 h 1 h 

7 EA 226 12 h 15 min 

8 EA 226 12 h 30 min 

9 EA 226 12 h 1 h 

10 EA 226 24 h 15 min 

11 EA 226 24 h 30 min 

12 EA 226 24 h 1 h 

Table 3. Different sub-daily accumulations and downscaling intervals are tested with the available 

rain gauges at sub-daily resolution in the Dutch case study. 

ID Networks N. Gauges Accumulation 𝑻𝟏 Downscaling 𝑻𝟐 

13 HWA, TWE, KNMI-H 19 1 h 5 min 

14 HWA, TWE, KNMI-H 19 1 h 15 min 

15 HWA, TWE, KNMI-H 19 1 h 30 min 

16 HWA, TWE, KNMI-H 19 3 h 5 min 

17 HWA, TWE, KNMI-H 19 3 h 15 min 

18 HWA, TWE, KNMI-H 19 3 h 30 min 

19 HWA, TWE, KNMI-H 19 12 h 5 min 

20 HWA, TWE, KNMI-H 19 12 h 15 min 

21 HWA, TWE, KNMI-H 19 12 h 30 min 

Table 4. Daily accumulations are calculated with all the available rain gauges, including the daily 

ones in the Dutch case study. 

ID Networks N. Gauges Accumulation 𝑻𝟏 Downscaling 𝑻𝟐 

22 HWA, TWE, KNMI-H, KNMI-D 39 1 day 5 min 

23 HWA, TWE, KNMI-H, KNMI-D 39 1 day 15 min 

24 HWA, TWE, KNMI-H, KNMI-D 39 1 day 30 min 

Table 5. Non-corrected radar products are compared as well, at two different resolutions in the Dutch 

case study. 

ID Networks N. Gauges Accumulation 𝑻𝟏 Downscaling 𝑻𝟐 

25 - - 5 min - 

26 - - 15 min - 

An accumulation to a 15-min scale was also tested, but resulted in major instabilities. In 

particular, the KED algorithm aims at finding the optimal linear relationship between the studied 

process (rainfall as measured by the rain gauges) and the drift (radar estimates). At fine temporal 

resolution radar and rain gauges can disagree due to the uncertainty in the rain gauge data timing 

and the uncertainty in the radar rainfall intensity and spatial position. Such a situation can result in 

an optimal linear relationship with negative coefficients, which is unrealistic. The problem is much 



Water 2017, 9, 762  8 of 25 

 

rarer at coarser resolutions. As concerns the UK case study, being the rain gauge data at 15-min 

resolution, finer downscaling resolutions could not be validated, therefore downscaling resolutions 

of 15, 30 and 60 min are used. 

The methodology followed in this work is illustrated in Figure 4 and the passages are explained 

in the following sections. 

 

Figure 4. The methodology followed in this work is reported in the figure. In particular, the six 

numbered passages are discussed in the Methods Sections. 

3.1. Data Pre-Processing and Accumulation 

3.1.1. Radar 

As concerns the radar pre-processing, for each accumulation interval, all of the 5-min radar 

measurements available are used. The UK Met Office radar data are already corrected for errors, are 

available as rainfall intensity in (mm/h), and only require accumulation to 𝑇1. 

The KNMI data are already corrected for ground clutter and anomalous propagation as well [32], 

but the data are provided in (dBZ) and a conversion to (mm6/m3) is necessary. Then, the rainfall rate 

is calculated using the Z-R relationship [32]: 

Z = 200 R1.6 (1) 

As suggested by Overeem et al. [32], the values below 7 dBZ are not converted to avoid an 

excessive impact of noise, and are directly set to 0 mm/h. Once all the 5-min acquisitions are correctly 

converted from (dBZ) to rainfall rates in (mm/h), they are accumulated on the desired accumulation 𝑇1. 

3.1.2. Rain Gauges 

The first step for rain gauge data preparation is a quality check. Rain gauge records are checked 

for typical malfunctioning behaviours and are compared with neighbouring rain gauges and with 

the radar data. In the case a rain gauge presents an anomalous behaviour (e.g., absence of records, 

signs of blockage, absence of zeros, etc.) for the full examined period, the rain gauge time series is 

removed from the dataset (as happened for the Twenterand rain gauge TWA 129 and the amateur 

rain gauge HWA 60); if the anomalous behaviour happens for a limited time, the affected records are 

substituted with “NA” (Not Available). After quality check, “NA” values affect the 3.7% of the 

dataset.  
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The EA rain gauges are already in a uniform and evenly distributed 15-min resolution, therefore 

accumulations can be performed directly. The rain gauges for the Dutch case study have variable 

accumulation times, from 3 min to one day. To correctly distribute the measured precipitation, the 

dataset is divided into 1 min intervals and the recorded precipitation is evenly distributed on the 

accumulation minutes. For example, if 10 mm are recorded over a 10 min interval, the previous 10 

min will be assigned 1 mm each. Subsequently, the rain gauge records are accumulated to the desired 

accumulation 𝑇1. This passage helps to correctly distribute measurements recorded over two or more 

accumulation intervals. For large accumulation times, it results in a simplification, but it is still 

preferred to the option of considering all the rainfall accumulation at the end of the recorded period. 

For example, if a daily record measures 24 mm at 08:00 (CEST). over a 24-h period, we prefer to assign 

16 mm to the day before, and 8 mm to the day of the record, rather than 24 mm on the day of the 

record. However, it must be considered that daily records are used only for daily accumulations. 

After the accumulation, a check on the convective conditions is done. When precipitation has 

strong convective characteristics, the reliability of the rain gauges declines, because they cannot be 

considered representative of the 1 km cell they belong to [8,34,35]. This effect is stronger for shorter 

accumulation times and can have very negative impact in the merging phase [36]. To prevent this, a 

convective control routine is applied, similar to the one presented by Sideris et al. [36]. For each rain 

gauge and for each time step, the coefficient of variation and the standard deviation of the 5 pixels 

by 5 pixels square around the rain gauge are calculated. The rain gauge is marked as unreliable if the 

coefficient of variation or the standard deviation passes an empirical threshold, dependent on the 

accumulation rate and on their temporal resolution. In such cases, the rain gauge is eliminated from 

the merging dataset for the specific time step. 

3.2. Variogram Calculation 

The variogram calculation presents two problems to be addressed: 

 For the Dutch case study, the number of rain gauges is limited, and their resolution highly 

variable, therefore a reliable time-variant variogram calculation based on ground measurements 

is difficult to calculate. 

 The variogram for KED needs to be calculated on rainfall residuals, rather than on the rainfall 

field itself [37]. 

For this reason, the following approach in four passages, based on a Fast Fourier Transform 

(FFT), is used for each time step: 

1. The variogram of the rainfall field is calculated with the FFT approach by Marcotte [38], based 

on the radar data [39].  

2. The rain gauges are interpolated applying ordinary kriging with the calculated variogram. 

3. The residuals are calculated subtracting the radar field from the interpolated rain gauge field. 

4. The variogram of the residuals is calculated with the FFT approach. 

Once the empirical 2D variogram is calculated, it is fitted every 10° between 0° and 180° in 

azimuth (the variogram is symmetric about the 0–180° direction) with a Gaussian function: 

𝛾(𝑑) = {

0                                                   for 𝑑 = 0

𝑐0 + 𝑐 (1 − exp (−
3𝑑2

𝑎2
))    for 𝑑 > 0

 (2) 

where 𝑑 is the distance, 𝑐0  is the nugget, 𝑐 is the sill, and 𝑎 is the range. The average nugget, 

average sill, and average range over the tested directions are used for the merging. 

3.3. Merging Using Kriging with External Drift 

Universal kriging, as opposed to ordinary kriging, considers the mean of the studied field 𝑅(𝑥) 

non-stationary in space: 
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𝑅(𝑥) = 𝑚(𝑥) + 𝛿(𝑥) (3) 

where 𝑚(𝑥) is the mean and  𝛿(𝑥) is a zero-mean stationary random process [37]. Kriging with 

External Drift is a special case of universal kriging, in which the mean is considered a linear function 

of external factors. In the presented case, the mean of the rain gauge interpolation is considered a 

linear function of the radar rainfall estimate: 

𝑚(𝑥) =  𝛽1 ∙ 𝑟(𝑥) + 𝛽2 (4) 

where 𝑟(𝑥) is the radar rainfall estimate in 𝑥, and 𝛽1 is a linear coefficient, and 𝛽2 is the intercept, 

to be determined.  

The prediction in each point is derived from the observations with a weighted average: 

𝑅̂(𝑥0) =  ∑𝑤𝛼 ∙ 𝑅(𝑥𝛼)

𝑛

𝛼=1

 (5) 

where 𝑅̂(𝑥0) is the estimated rainfall in a generic point 𝑥0, 𝑅(𝑥𝛼) are the measured values in the 

rain gauge locations 𝑥𝛼 , 𝑛 is the number of observations, and 𝑤𝛼 are the kriging weights, estimated 

solving the kriging system: 

{
 
 
 
 

 
 
 
 ∑𝑤𝛼(𝑥0)

𝑛

𝛼=1

= 1                                                                                                      

∑𝑤𝛼(𝑥0) ∙ 𝐶(𝑥𝛽 − 𝑥𝛼) + 𝜇1 + 𝜇2 ∙ 𝑟(𝑥𝛽) = 𝐶(𝑥𝛽 − 𝑥0)     𝛽 = 1,… , 𝑛

𝑛

𝛼=1

∑𝑤𝛼(𝑥0) ∙ 𝑟(𝑥𝛼) = 𝑟(𝑥0)

𝑛

𝛼=1

                                                                                  

 (6) 

where 𝐶(𝑑) is a covariance function, 𝑥𝛼  and 𝑥𝛽 are generic rain gauge locations, 𝑟(𝑥) is the radar 

rainfall estimate in the position 𝑥, and 𝜇1  and 𝜇2  are Lagrange parameters [37]. The covariance 

function 𝐶(𝑑) is directly related to the variogram function 𝛾(𝑑) fitted with a Gaussian model as 

follow: 

𝐶(𝑑) = 𝑐 + 𝑐0 − 𝛾(𝑑) =  {

𝑐 + 𝑐0                                   for 𝑑 = 0

𝑐 (exp (−
3𝑑2

𝑎2
))              for 𝑑 > 0

 (7) 

The solution of such a system can be expressed in matrix form: 

𝑾 = 𝑪−1 ∙ 𝑫 =

[
 
 
 
 
 
𝑤1
𝑤2
⋮
𝑤𝑛
𝜇1
𝜇2 ]
 
 
 
 
 

=  

[
 
 
 
 
 
𝐶11 𝐶12 … 𝐶1𝑛 1 𝑟1
𝐶21 𝐶22 … 𝐶2𝑛 1 𝑟2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛1 𝐶𝑛2 … 𝐶𝑛𝑛 1 𝑟𝑛
1 1 … 1 0 0
𝑟1 𝑟2 … 𝑟𝑛 0 0]

 
 
 
 
 
−1

∙

[
 
 
 
 
 
𝐶10
𝐶20
⋮
𝐶𝑛0
1
𝑟0 ]
 
 
 
 
 

 (8) 

where 𝑟𝑖 are the radar measurement at rain gauge locations 𝑥𝑖, while 𝑟0 is the radar measurement 

in the prediction location 𝑥0. The matrix elements 𝐶𝑖𝑗 represent the covariance function calculated 

on the distance between 𝑥𝑖 and 𝑥𝑗. 

The kriging mean and variance for each point 𝑥0 are then calculated as: 

𝑅̂(𝑥0) = 𝑾
𝑇 ∙ 𝑹 (9) 

𝜎2(𝑥0) = 𝑐 −𝑾𝑇 ∙ 𝑫 (10) 

where 𝑹 is the vector of the measurements at rain gauge locations. 

3.4. Rain Gauge Error Modelling 
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The rain gauge errors can be included in the merging process using a Kriging for Uncertain Data 

(KUD) approach similar to the one by [40], assuming that the rain gauges are affected only by random 

errors, and that biases are already removed with calibration.  

The idea is that rain gauge random errors can be modelled as a nugget effect in the variogram 

[37,41]. To model a different error for different rain gauges, the covariance matrix 𝑪 needs to be 

modified. The advantage of using a covariance function rather than a variogram function, as in most 

kriging formulations [37,40,42], is that the covariance function is affected by the nugget only at 

distance 𝑑 = 0, therefore the covariance matrix modification is simple: 

𝐶 =  

[
 
 
 
 
 
𝐶11 + 𝑐01 𝐶12 … 𝐶1𝑛 1 𝑟1
𝐶21 𝐶22 + 𝑐02 … 𝐶2𝑛 1 𝑟2
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶𝑛1 𝐶𝑛2 … 𝐶𝑛𝑛 + 𝑐0𝑛 1 𝑟𝑛
1 1 … 1 0 0
𝑟1 𝑟2 … 𝑟𝑛 0 0]

 
 
 
 
 

 (11) 

where 𝑐0𝑖  is the nugget effect due to the uncertainty of the 𝑖𝑡ℎ rain gauge. The nugget effect for each 

rain gauge can be calculated separately using the rain gauge error models illustrated below, that 

calculate the error as function of the rainfall rate 𝑅(𝑡, 𝑥𝑖), and of the accumulation 𝑇1. 

3.4.1. Tipping Bucket Rain Gauge Error Model 

The random errors for tipping bucket rain gauges are modelled according to the model by Ciach 

[43]. This error model is applied to the rain gauges in the UK case study, to the ones from the 

Municipality of Twenterand (TWE), and to the rain gauges from the Het Weer Actueel network 

(HWA). The standard error is calculated as: 

𝜎err(𝑇1, 𝑅𝑇) =  𝑒0(𝑇1) +
𝑅0(𝑇1)

𝑅𝑇
  (12) 

where 𝑅𝑇  is the rainfall intensity at accumulation 𝑇 = 𝑇1  minutes, while 𝑒0(𝑇)  and 𝑅0(𝑇)  are 

coefficients dependant on the accumulation time. Figure 6 in Ciach’s work [43] shows the errors of 

the rain gauge data. Using this figure, we derived an approximated analytical formulation where 𝑇1  

is expressed in minutes: 

log10(𝑒0(𝑇1))  =  −0.5923 ∙ log10 𝑇1 − 1.4163 (13) 

log10(𝑅0(𝑇1)) =  −0.8789 ∙ log10 𝑇1 + 0.7363 (14) 

For each tipping bucket rain gauge at each time step, for each accumulation 𝑇1, the nugget can 

be calculated as: 

𝑐0𝑖(𝑡, 𝑇1) =  𝜎err(𝑇1, 𝑅𝑇(𝑡, 𝑥𝑖))
2
= (𝑒0(𝑇1) +

𝑅0(𝑇1)

𝑅𝑇(𝑡, 𝑥𝑖)
)

2

 (15) 

3.4.2. KNMI Automatic Rain Gauges 

KNMI automatic rain gauges are not tipping bucket devices. They measure the water level using 

the accurate measurement of a floating device position on the water surface. This type of rain gauges 

is more precise than the tipping bucket type, especially at low rainfall intensity, it is subject to less 

measuring errors, and it is calibrated by the KNMI [31,44]. 

A quantitative measurement of the KNMI automatic rain gauge accuracy can be derived from 

the laboratory test results reported in the KNMI technical report TR-287 [44], studying and comparing 

the accuracy of several rain gauges, in order to select devices able to meet the World Meteorological 

Organisation standards.  

In particular, the results reported in Section 3.2 and Figure 57 of the TR-287 report [44], show 

that the KNMI automatic rain gauges, after calibration, have an error around 1% at 1-min averaging, 

for intensities between 0 and 270 mm/h.  
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Considering that, in this work, we use different accumulations, the errors can be calculated 

considering the variance sum property: 

𝑉𝑎𝑟 (∑𝑋𝑖

𝑛

𝑖=1

) =  ∑ 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑛

𝑖,𝑗=1

  (16) 

where 𝑋 is a general variable, 𝑖 and 𝑗 are generic indices. 

In the case of rainfall accumulation, the variable to be summed are rainfall intensities at 1-min 

resolution, recorded at different time steps. The covariance between two generic 1-min rainfall 

intensities is not known. We propose to estimate an approximation of it using the rainfall auto-

correlation function. The rain gauge data from all the networks for the studied event are used to 

calculate the rainfall auto-correlation: 

𝐴𝐶̂(𝜏) =
𝐸{(𝑅𝑡 − 𝜇)(𝑅𝑡+𝜏 − 𝜇)}

𝜎2
  (17) 

where, 𝐴𝐶̂(𝜏) is the auto-correlation, 𝜏 is a generic time interval, 𝑅𝑡 is the rainfall intensity at time 

𝑡, whereas 𝜇 and 𝜎2 are, respectively, the mean and the variance of the rainfall over the time series; 

the process is considered stationary for simplicity. 

The auto-correlation is then fitted using an auto-correlation function with an exponential form: 

𝐴𝐶(𝜏) = exp(𝑏 ∙ 𝜏) (18) 

The exponential fitting of the rainfall auto-correlation function is shown in Figure 5. 

 

Figure 5. Rainfall intensity autocorrelation function. 

Knowing the auto-correlation function, Equation (16) can be expanded: 

𝑉𝑎𝑟(𝑅𝑇) =  ∑∑𝐶𝑂𝑉𝑖,𝑗

𝑇

𝑗=1

𝑇

𝑖=1

= 𝑉𝑎𝑟(𝑅1) ∙  ∑∑𝐴𝐶𝑖,𝑗

𝑇

𝑗=1

𝑇

𝑖=1

 (19) 

where 𝑅𝑇  is the rainfall intensity at accumulation 𝑇 = 𝑇1  minutes, 𝑅1  is the rainfall intensity at 

accumulation 𝑇 = 1 minute, 𝐶𝑂𝑉𝑖,𝑗 are the elements of the covariance matrix 𝐶𝑂𝑉 between all the 

1-min measurements in a 𝑇1 -minutes interval, and 𝐴𝐶𝑖,𝑗  are the elements of the auto-correlation 

matrix 𝑨𝑪, defined as follows: 
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𝑨𝑪 = 

[
 
 
 
 
𝐴𝐶(0)  𝐴𝐶(1) 𝐴𝐶(2) ⋯ 𝐴𝐶(𝑇1)

𝐴𝐶(1) 𝐴𝐶(0) 𝐴𝐶(1) ⋯ 𝐴𝐶(𝑇1 − 1)

𝐴𝐶(2) 𝐴𝐶(1) 𝐴𝐶(0) ⋯ 𝐴𝐶(𝑇1 − 2)
⋮ ⋮ ⋮ ⋱ ⋮

𝐴𝐶(𝑇1) 𝐴𝐶(𝑇1 − 1) 𝐴𝐶(𝑇1 − 2) ⋯ 𝐴𝐶(0) ]
 
 
 
 

 (20) 

where 𝑨𝑪(𝜏) is the function derived from Equation (18) with the interval in minutes. 

As concerns the variance element 𝑉𝑎𝑟(𝑅1), it is defined following the KNMI report, as the 

square of the 1% of the rainfall intensity at 1-min accumulation. Since the rainfall intensity at 1-min 

accumulation is not known, because the KNMI data are available at hourly accumulation, it can be 

approximated as function of the accumulation time 𝑇1: 

𝑉𝑎𝑟(𝑅1) = (1% 𝑅1)
2 = (1%

𝑅𝑇
𝑇1
)
2

 (21) 

Combining Equations (19)–(21), the relative error for each KNMI automatic rain gauge 

measurement in position x, at time t, and accumulation 𝑇1 can be expressed as follows: 

𝜎err(𝑇1, 𝑅𝑇(𝑡, 𝑥𝑖)) = 𝑎(𝑇1) ∙ 𝑅𝑇(𝑡, 𝑥𝑖) (22) 

where 

𝑎(𝑇1) = (
1%

𝑇1
)√∑ 𝐴𝐶𝑖,𝑗

𝑇

𝑖,𝑗=1

 (23) 

The corresponding nugget effect, for the application of Equation (11), is: 

𝑐0𝑖(𝑡, 𝑇1) = 𝜎err(𝑇1, 𝑅𝑇(𝑡, 𝑥𝑖))
2
 (24) 

3.4.3. KNMI Manual Rain Gauges 

The KNMI manual rain gauges are based on a water level system; each day volunteers and 

amateurs read the water level at 08:00 (CEST) and communicate the reading to the KNMI. The KNMI 

Technical Report TR-347 provides an estimate of the manual rain gauge uncertainty [31]. Differently 

from the previous error models that are considered bias-free, the report suggests that the KNMI 

manual rain gauges are affected by bias and we derived a correction. 

In particular, we combined the information from Figures 14 and 16 of the TR-347 report [31] to 

derive the following bias correction and error estimate as function of the rainfall rate: 

𝑅∗(𝑡, 𝑥𝑖) = 𝑅(𝑡, 𝑥𝑖) ∙ (1 − 0.125 ∙ 𝑅(𝑡, 𝑥𝑖)
−0.372)  (25) 

𝜎err(𝑅(𝑡, 𝑥𝑖)) = 𝑅(𝑡, 𝑥𝑖) ∙ (0.0489 ∙ 𝑅(𝑡, 𝑥𝑖)
−0.447)  (26) 

where 𝑅∗(𝑡, 𝑥𝑖) is the bias corrected rainfall rate at time t and position 𝑥𝑖 , 𝑅(𝑡, 𝑥𝑖) is the original 

rainfall rate before correction, and 𝜎err(𝑅(𝑡, 𝑥𝑖)) is the standard deviation. The corresponding nugget 

is derived from Equation (24). The standard deviation calculation in Equation (26) is derived from 

the report and is a function of the original rainfall rate, before bias correction. 

3.5. Downscaling 

Once the KED produces a probabilistic estimation of the rainfall intensity at temporal 

accumulation 𝑇1, we need to downscale it to the desired temporal resolution 𝑇2. The probabilistic 

estimate is made of a prediction and a variance estimate, and both need to be downscaled. 

3.5.1. Downscaling the KED Prediction 

To downscale the prediction, the original radar acquisitions are used to determine how to 

distribute the accumulated KED rainfall 𝑅KED.𝑇1(𝑡) among the time steps at resolution 𝑇2: 
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𝑅KED.𝑇2(𝑥, 𝑡) = 𝑅rad.𝑇2(𝑥, 𝑡) ∙
𝑅KED.𝑇1(𝑥, 𝑡)

𝑅rad.𝑇1(𝑥, 𝑡)
 (27) 

where 𝑅KED.𝑇1(𝑥, 𝑡)  is the KED prediction at accumulation 𝑇1 , for position 𝑥  and time step 𝑡 ; 

𝑅rad.𝑇1(𝑥, 𝑡) is the accumulation at 𝑇1 of the uncorrected radar acquisitions; 𝑅rad.𝑇2(𝑥, 𝑡) is calculated 

accumulating the uncorrected radar at 𝑇2; and 𝑅KED.𝑇2(𝑥, 𝑡) is the downscaled KED estimation at 𝑇2. 

Since the radar has a resolution of 5 min, the downscaling resolution 𝑇2 has to be a multiple of 5 min.  

To avoid divisions by zero or near-zero values, 0.00001 mm are added to the uncorrected radar 

estimates before accumulations, therefore both 𝑅rad.𝑇2(𝑥, 𝑡)  and 𝑅rad.𝑇1(𝑥, 𝑡) , derived as 

accumulations of uncorrected radar estimates at 𝑇2 and 𝑇1 respectively, will be increased of 0.00001 

mm for each contained radar estimate. 

3.5.2. Downscaling the KED Variance 

As regards the variance, the downscaling is based on two principles: 

1. The variance of a sum is the sum of the covariance between all summed elements (Equation (16)). 

2. The standard deviation is proportional to the rainfall rate. This comes from the fact that both 

radar and rain gauges are affected mainly by multiplicative errors [43,45–47]. 

From the first principle and Equation (16) we can derive: 

𝑉𝑎𝑟 (𝑅KED.𝑇1(𝑥, 𝑡)) =  𝑉𝑎𝑟 (𝑅KED.𝑇2(𝑥, 𝑡))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∙  ∑ 𝐴𝐶2𝑖,𝑗

𝑇1 𝑇2⁄

𝑖,𝑗=1

 (28) 

where (𝑉𝑎𝑟 (𝑅KED.𝑇2(𝑥, 𝑡)))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 is the mean variance value for all the time steps at 𝑇2  resolution 

contained in each time step at 𝑇1 accumulation; 𝐴𝐶2𝑖,𝑗 are the elements of an auto-correlation matrix 

similar to the one defined in Equation (20), but defined at time steps equal to 𝑇2, that is: 

𝑨𝑪𝟐 =  

[
 
 
 
 
𝐴𝐶(0)  𝐴𝐶(𝑇2) 𝐴𝐶(2𝑇2) ⋯ 𝐴𝐶(𝑇1)

𝐴𝐶(𝑇2) 𝐴𝐶(0) 𝐴𝐶(𝑇2) ⋯ 𝐴𝐶(𝑇1 − 𝑇2)

𝐴𝐶(2𝑇2) 𝐴𝐶(𝑇2) 𝐴𝐶(0) ⋯ 𝐴𝐶(𝑇1 − 2𝑇2)
⋮ ⋮ ⋮ ⋱ ⋮

𝐴𝐶(𝑇1) 𝐴𝐶(𝑇1 − 𝑇2) 𝐴𝐶(𝑇1 − 2𝑇2) ⋯ 𝐴𝐶(0) ]
 
 
 
 

 (29) 

To comply with the second principle instead, the following equation is derived: 

𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡)) =
𝑅rad.𝑇2(𝑥, 𝑡)

𝑅rad.𝑇1(𝑥, 𝑡)
∙
𝑇1
𝑇2
∙ 𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (30) 

where 𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡)) is the actual standard deviation at resolution 𝑇2 while (𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡)))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

is the average standard deviation of all the prediction at resolution 𝑇2 contained in each time step at 

resolution 𝑇1 . 𝑅rad.𝑇2(𝑥, 𝑡)  and 𝑅rad.𝑇1(𝑥, 𝑡)  are, respectively, the uncorrected radar estimates 

accumulated to 𝑇2 and 𝑇1. 

Combining Equations (28) and (30): 

𝑉𝑎𝑟 (𝑅KED.𝑇2(𝑥, 𝑡)) = (
𝑅rad.𝑇2(𝑥, 𝑡)

𝑅rad.𝑇1(𝑥, 𝑡)
∙
𝑇1
𝑇2
)

2

∙
𝑉𝑎𝑟 (𝑅KED.𝑇1(𝑥, 𝑡))

∑ 𝐴𝐶2𝑖,𝑗
𝑇1 𝑇2⁄

𝑖,𝑗=1

 (31) 

As in the prediction downscaling phase, to avoid divisions by zero or near-zero values, 0.00001 

mm are added to the uncorrected radar estimates before accumulation, therefore both 𝑅rad.𝑇2(𝑥, 𝑡) 

and 𝑅rad.𝑇1(𝑥, 𝑡), derived as accumulations of uncorrected radar estimates at 𝑇2 and 𝑇1, respectively, 

will be increased by 0.00001 mm for each contained radar estimate. 

3.6. Ensemble Generation and Propagation 
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Once a probabilistic estimate is derived, the uncertainty can be propagated with an ensemble, 

i.e., a collection of a large number of possible alternative realisations of rainfall time series.  

Each ensemble member is modelled as: 

𝑅ens𝑖(𝑥, 𝑡) =  𝑅KED.𝑇2(𝑥, 𝑡) + 𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡)) ∙ 𝜖𝑖(𝑥, 𝑡) (32) 

where 𝑅ens𝑖(𝑥, 𝑡) is the 𝑖𝑡ℎ ensemble member; 𝑅KED.𝑇2(𝑥, 𝑡) and 𝑆𝐷 (𝑅KED.𝑇2(𝑥, 𝑡)) are, respectively, 

the downscaled KED mean and the downscaled KED standard deviation; and 𝜖𝑖(𝑥, 𝑡)  is a 

standardized, zero-mean, spatially auto-correlated residual field. 

To generate 𝜖𝑖(𝑥, 𝑡), an unconditional simulation is used, with mean equal to zero, and standard 

deviation equal to one, using the residuals’ variogram at the corresponding time step. Subsequently, 

in order to reconstruct the auto-correlation of the residuals, a 𝐴𝑅(2)  model is used. The auto-

correlation and the parameters of the 𝐴𝑅(2)  model are derived from the residuals time series, 

calculated as in Section 3.2. 

4. Results 

4.1. Case Study 1: Evaluation of the Optimal Combination in Terms of Rainfall Product Quality 

The case study based in the UK has been used to validate the methodologies in terms of ability 

to reproduce the observed rainfall. This case study does not bring any information about the 

optimization of the rainfall for urban modelling applications, but proves that the used techniques are 

able to reproduce reasonable rainfall products. While the case study in the UK was suitable to validate 

the methodology, thanks to the large number of rain gauges and the uniform data quality, an urban 

model was not available; at the same time, the case study in the Netherlands was not suitable for 

validation, due to the limited number of rain gauges and the variable data quality, but allowed an 

urban modelling application. Therefore, two case studies are here presented. The same methodology 

used to generate the rainfall products has been used; in the first case study, the results have been 

cross-validated, while, in the second, they are applied to an urban drainage model and the 

uncertainty is estimated and propagated. The cross-validation is evaluated with the same skill scores 

used for the Dutch case study, although it must be kept in mind that the evaluated quantity is 

different (in the first case study it is based on rainfall intensity, while, in the second case study, it is 

based on water levels). Three indicators are calculated: Bias, Mean Root Transformed Error (MRTE), 

and Nash–Sutcliff Efficiency (NSE).  

BIAS = 𝑎𝑏𝑠 (
1

𝑡steps
∑ 𝑅KED − 𝑅obs

𝑡step𝑠

𝑗=1

) (33) 

MRTE =
1

𝑡steps
∑ (√𝑅KED − √𝑅obs)

2
 

𝑡steps

𝑗=1

 (34) 

NSE = 1 −
∑ (𝑅obs − 𝑅KED)

2𝑡steps
𝑗=1

∑ (𝑅obs − 𝑅obs̅̅ ̅̅ ̅̅ )2
𝑡steps
𝑗=1

 (35) 

where 𝑡steps  is the number of considered time steps in the event, 𝑅KED  is the rainfall intensity 

estimated with KED, 𝑅obs is the rainfall intensity observed by the validation rain gauges, and 𝑅obs̅̅ ̅̅ ̅̅  

is the average observed rainfall intensity. The bias and the MRTE are optimal when they tend to 0, 

while the NSE is optimal when it tends to 1. The three indicators are calculated for each of the 12 

tested rainfall products. The results of the cross-validation are reported in Table 6. 
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Table 6. The three indicators (bias, MRTE, and NSE) are reported for the 12 products of the UK case 

study, indicated with accumulation resolution (A) and downscaling resolution (D) in minutes. A 

conditional colour formatting is applied to easily compare the values, where green is a positive 

performance, and red a negative one. 

BIAS 

A\D 15 30 60 

60 0.065 0.069 0.078 

180 0.054 0.056 0.064 

720 0.048 0.045 0.051 

1440 0.045 0.043 0.045 

MRTE 

A\D 15 30 60 

60 0.193 0.166 0.147 

180 0.187 0.161 0.142 

720 0.165 0.139 0.123 

1440 0.147 0.127 0.113 

NSE 

A\D 15 30 60 

60 0.46 0.52 0.58 

180 0.46 0.51 0.55 

720 0.51 0.55 0.59 

1440 0.52 0.56 0.59 

Additionally, we want to investigate how well the uncertainty is estimated. To do so, we use 

rank histograms with a variation. Rank histograms are a tool used to evaluate a probabilistic 

prediction with a deterministic observation and are built looking in which prediction quantile the 

observation falls, for each time step and each rain gauge. The rank histogram shows how often the 

observation falls in each of the prediction quantiles. However, in this case, we want to consider the 

observation uncertainty too, as modelled in Section 3.4.1. For this reason, we select the prediction 

quantile where the product of the prediction probability and the observation probability is maximum. 

The rank histograms for the tested combinations are reported in Figure 6. 
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Figure 6. Rank histograms for the tested accumulation (𝑇1) and downscaling (𝑇2) combinations in the 

UK case study. 

4.2. Case Study 2: Identification of the Optimal Accumulation and Downscaling Resolution 

In the second case study in the Netherlands, the first passage is to identify which of the 14 tested 

rainfall combinations is optimal in terms of reproducing the water level observations, when used as 

an input in the presented InfoWorks model. The 14 different products are therefore directly used in 

the InfoWorks model, and the results are compared to water level observations. Figure 7 shows how 

the model outputs for the 14 tested products compare to the observations, for the three tested 

measuring points of Figures 2 and 3. 
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Figure 7. The 14 rainfall products are used as an input for the InfoWorks model and the results are 

compared to the water level observations in three distinct locations as reported in Figure 2. The names 

of the products describe the accumulation resolution (A) and the downscaling resolution (D) in 

minutes. Rad5 and Rad15 are the radar products at 5 and 15 min resolution, respectively, and Obs is 

the water level observation. 

To have a quantitative measurement of the products’ performance, three indicators are 

calculated: Bias, Mean Root Transformed Error (MRTE), and Nash–Sutcliff Efficiency (NSE).  

BIAS = abs(
1

𝑡steps
∑ ℎmod − ℎobs

𝑡steps

𝑗=1

) (36) 

MRTE =
1

𝑡steps
∑ (√ℎmod − √ℎobs)

2
 

𝑡steps

𝑗=1

 (37) 

NSE = 1 −
∑ (ℎobs − ℎmod)

2𝑡steps
𝑗=1

∑ (ℎobs − ℎobs̅̅ ̅̅ ̅̅ )
2𝑡steps

𝑗=1

 (38) 

where 𝑡steps is the number of considered time steps in the event, ℎmod is the water level estimated 

by the model, ℎobs is the observed water level, and ℎobs̅̅ ̅̅ ̅̅  is the average observed water level. The 

three indicators are calculated for each of the 14 tested rainfall products, and for each of the three 

measurement locations. The results are reported in Table 7. 

Table 7. The three indicators (bias, Mean Root Transformed Error—MRTE, and Nash-Sutcliffe 

Efficiency—NSE) are reported for the 14 products indicated with accumulation resolution (A) and 

downscaling resolution (D) in minutes, for the three measurement locations. Radar products are 

indicated with RD. A conditional colour formatting is applied to easily compare the values, where 

green is a positive performance, and red a negative one. 

A D 
VW162 VW984C1 VW263 

BIAS MRTE NSE BIAS MRTE NSE BIAS MRTE NSE 

1440 5 0.146 0.0092 0.58 0.052 0.0059 0.57 0.396 0.0177 0.02 

1440 15 0.147 0.0093 0.58 0.052 0.0060 0.57 0.400 0.0182 -0.01 

1440 30 0.146 0.0093 0.58 0.051 0.0060 0.57 0.399 0.0180 0.01 

720 5 0.159 0.0092 0.58 0.053 0.0059 0.57 0.310 0.0103 0.44 
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720 15 0.159 0.0092 0.58 0.053 0.0059 0.57 0.313 0.0104 0.44 

720 30 0.158 0.0092 0.58 0.052 0.0060 0.57 0.313 0.0103 0.44 

180 5 0.178 0.0061 0.73 0.070 0.0033 0.77 0.303 0.0088 0.53 

180 15 0.178 0.0061 0.73 0.070 0.0033 0.77 0.304 0.0088 0.53 

180 30 0.178 0.0059 0.74 0.071 0.0031 0.78 0.305 0.0089 0.53 

60 5 0.183 0.0061 0.73 0.072 0.0033 0.77 0.272 0.0066 0.65 

60 15 0.183 0.0061 0.73 0.071 0.0033 0.77 0.271 0.0066 0.65 

60 30 0.182 0.0059 0.74 0.071 0.0031 0.79 0.274 0.0066 0.65 

RD 15 0.184 0.0093 0.58 0.074 0.0058 0.59 0.298 0.0101 0.46 

RD 5 0.184 0.0094 0.58 0.075 0.0058 0.59 0.297 0.0102 0.46 

4.3. Case Study 2: Ensemble Generation and Propagation 

Once the optimal accumulation and downscaling resolution are selected, the corresponding 

downscaled KED product is considered in its probabilistic form, in order to study the uncertainty in 

the rainfall estimation and its propagation in the sewer model. 

An ensemble of 100 rainfall estimates is generated using the methodology illustrated in Section 

3.6 and each member is used as an input for the InfoWorks model, obtaining an ensemble of 100 

water level estimates. The results are represented in Figure 8. 

 

Figure 8. Using the rainfall ensemble as an input for the InfoWorks model, an ensemble of water level 

estimations is obtained. The ensemble is compared with the observations at three different locations. 

The ensemble is represented with the deterministic prediction (kriging mean), with the 5–95% 

quantile band, and the minimum–maximum band. 
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5. Discussion 

As regards the results of the methodology validation for the UK case study, as reported in 

Section 4.1 and Table 6, it is no surprise that larger accumulations tend to perform better. As expected, 

the uncertainty on the rainfall products is reduced by accumulation. Larger accumulation resolutions, 

associated with larger downscaling resolutions perform best for all the tested skill scores. It must be 

noted that the cross-validation is done between Kriging products and rain gauges; therefore, an error 

is always present, even for the case at 60 min accumulation and no (60 min) downscaling. The 

uncertainty estimation, as illustrated by the rank histograms in Figure 6, performs better at larger 

accumulations as well. In facts, if a perfect stochastic model were used, modelling a perfectly 

Gaussian process, and infinite observation points were available, rank histograms would be perfectly 

flat. This is not the case for any of the model histograms. Indeed, kriging produces a Gaussian 

probabilistic estimation, although rainfall errors are not Gaussian. Rainfall error probability 

distribution has a higher kurtosis, which results in a higher density of observations in the central and 

the extreme quantiles. While this is clearly visible for the coarser accumulations, the histograms 

relative to the finer accumulation scales show only a central higher peak. This usually corresponds 

to an overestimation of the uncertainty. 

As concerns the example application in Twenterand, the first observable result from Section 4.2, 

Figure 7 is that the model is not appropriately calibrated for the studied event. The model is calibrated 

following the C2100 guideline [33], which is the standard nation-wide calibration procedure. 

Although the calibration aims at obtaining a set of parameters that performs well in a number of 

design storms with different return periods, it cannot perform at the highest standard in all the 

situations, since some parameters are actually not stationary. Additionally, the model is designed to 

properly model the flow in pressurized conducts, but does not properly represent surface water 

storage that can happen during a flood. This generates a mismatch between the model results and 

the observations that might not be due to the rainfall uncertainty, and is similar for all the tested 

rainfall products. For example, at location VW263 there is an evident bias, while in locations VW162 

and VW984C1 the peak water level decreases too fast, compared to the observations. Additionally, 

some other sources of uncertainty can contribute to the mismatch, for example the inflow due to the 

urban sewage component, the uncertainty on the water level observations, or the model structure. In 

location VW263, the peak shows a different pattern compared to the observation. This effect might 

be linked to the presence of a pump close by, which may be modelled in an over-simplified way.  

The evident mismatch between the model and the observations does not prevent the 

methodology presented in this work to be effective, and presents a real case scenario: as mentioned 

before, operational models are often calibrated against a number of design rainfall events, but cannot 

be optimal in all the cases. We want to propose a methodology that is effective regardless of the other 

additional sources of uncertainty that may affect the model. However, it could be argued that the 

results are affected by the non-optimal working conditions of the model. This is indeed true, and it 

must be kept in mind that the optimization in such conditions is specific for the given model, in the 

given conditions and cannot be generalized. The presented case study should be considered only as 

an application example of the proposed methodology and no generalization on the obtained results 

should be drawn.  

Although the differences between the rainfall products are small compared to the mismatch 

between the model outputs and the water level observations, there are some noticeable differences, 

especially for minor peaks, that can still help us in selecting the best rainfall input. The first and the 

last minor peaks generated by the model for the VW263 measurement point are too high for daily 

accumulations (1440 min), but reasonably low for accumulations between 60 min and 12 h (720 min). 

The same effect can be observed for the small peaks following the major ones for locations VW162 

and VW984C1. 

The results in Table 7 show that different products perform differently for the three 

measurement points. Nevertheless, it is possible to evaluate which ones perform sufficiently well in 

all the cases. In terms of accumulation interval, the best results are obtained for an accumulation of 

three hours (180 min). Sixty-minute products perform well too, but have a more variable behaviour 
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in the different analysed cases. In terms of downscaling time, the differences are smaller, but the 

products downscaled at 30 min tend to perform slightly better, especially for the accumulations at 3 

h. This is probably due to the reduction in rainfall errors thanks to a coarser accumulation, rather 

than an advantage at model level. Although, in this application, we select the product downscaled at 

30 min, the other downscaling resolutions would work similarly well. Indeed, urban drainage models 

often work better at finer resolutions [2,48,49]. However, both the rain gauges and the radar used are 

subject to non-negligible errors and the reduction of uncertainty due to accumulation seems 

dominant in respect to the reduction of uncertainty due to the model capacity to represent finer 

temporal scales. 

The validation results are not in contrast with the results of the Dutch case study, used to 

optimise the resolution for modelling application. Indeed, the downscaling brings an advantage in 

the model application, where finer scale phenomena need to be represented correctly. The fact that 

the optimal downscaling resolution has been found at 30 min is due to the balance between the 

rainfall uncertainty reduction at larger downscaling resolutions, and the model uncertainty reduction 

at smaller downscaling resolutions. In fact, it can be observed that the differences between the results 

at different downscaling resolutions at model level in the second case study are much smaller than 

the differences at rainfall level in the first case study, where larger downscaling resolutions clearly 

produce better results. 

The results of the uncertainty propagation, as reported in Section 4.3, Figure 8, show that the 

rainfall uncertainty is not sufficient to explain the mismatch with the observations: as already 

mentioned in the previous section, the mismatch can be due to the model calibration, to other inputs’ 

uncertainty, to the water level observation uncertainty, and to the model simplification. 

The fact that the uncertainty bands correspond to the variability of the 14 products observed in 

Figure 7 confirms that the uncertainty model is robust. In fact, the uncertainty model is independent 

on the other 13 products tested in the previous phase, but it is still able to capture the uncertainty 

due, in this case, to the temporal resolution uncertainty. Additionally, it covers also other sources of 

rainfall uncertainty, such as rain gauge errors or interpolation approximations. The fact that the 

uncertainty band does not always cover the water level observations, confirms that the InfoWorks 

model is affected by other sources of uncertainty such as calibration, model structure, or other data 

errors. 

Additionally, the ensemble shows that the uncertainty tends to be larger in correspondence of 

peaks, but for some peaks the uncertainty band is much larger than for others. This is because kriging 

variance is proportional to the rainfall intensity and to the distance between the measurement points 

and the prediction points: two rainfall peaks with the same intensity can have a different associated 

uncertainty if they are closer or farther away from the rain gauge locations. The effect is even stronger 

if some measurements are missing, or removed because of convective conditions. Both the effects are 

realistic: rainfall uncertainty is known to be proportional to the rainfall intensity and is reasonable 

that the fewer measurements are available, the less certain the rainfall estimation is.  

It must be noted that the InfoWorks model of Vroomshoop covers an area smaller than the one 

studied for the rainfall products, using therefore only a portion of the KED products. The use of a 

larger area for the rainfall estimation assures that the rainfall estimation is robust, while the 

sensitivity of the uncertainty model to the rain gauge quality assures that the uncertainty is correctly 

dependant on the quality of the rain gauges closer to the Vroomshoop area. 

The proposed methodology is successful in improving the KED merging results for urban 

application, considering the associated uncertainty and its propagation to model outputs. However, 

some improvements could still be introduced. The tested accumulation and downscaling resolutions 

are just a limited number, used as an example to illustrate the methodology, rather than to actually 

identify the optimal resolutions with high accuracy; using a larger number of combinations could 

help identify the optimal resolutions more accurately. Furthermore, an existing operational model 

calibrated according to national guidelines was used, with some associated calibration uncertainty. 

The case study is informative in terms of robustness of the proposed method and in terms of 

evaluating the relative importance of the rainfall uncertainty in respect to the overall model 
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uncertainty, but more precise results could have been obtained with a model calibrated specifically 

for the actual study event.  

It must be considered that this work aims at illustrating an effective methodology for producing 

rainfall products optimized for a specific model, and the quantitative results are specific for the 

dataset and the model used. Additionally, it must be noted that this work does not aim at proposing 

a different merging technique; it aims at dealing with temporal scales with an existing merging 

technique, in this case KED. It could potentially be applied to other merging techniques, where 

sensitivity to rainfall data quality is noticed, and an accumulation of the rainfall data would be 

advisable, but, for model applications, a sufficiently fine resolution is required. It is therefore subject 

to the benefits and limitations of the used merging techniques. 

Additionally, the ensemble generation is accomplished using an AR(2) model for the residuals 

auto-correlation; the AR(2) generates auto-correlated residuals, but cannot achieve the level of auto-

correlation observed in the time series. A different approach could be adopted to improve the 

ensembles in this direction. Finally, the use of a 2D variogram approach has the potential to use an 

anisotropic and directional variogram for the KED merging, which was not investigated in this work. 

6. Conclusions 

Rainfall is a phenomenon highly variable in space and time. For this reason, a lot of effort is often 

put in the identification of the optimal spatio-temporal resolution for its representation, especially 

when it is used as input in small-scale urban models [1,2,49,50]. Although a fine resolution allows 

representing small-scale phenomena and provides more details, available data fix a lower limit to the 

achievable resolution, and accumulation is recommended to reduce the impact of random errors. 

Merging radar and rain gauge rainfall information is recognised to improve the rainfall estimates and 

Kriging with External Drift is one of the most used merging methods thanks to its good performance 

and efficiency [12,14,17,18]. Nevertheless, KED is sensitive to low quality data using a fine temporal 

scale, and accumulation is recommended [19].  

This paper proposes an approach for using rainfall data accumulated to a coarser temporal 

resolution for KED merging, and then downscaling the results to a finer temporal scale, so it can be 

used in an urban hydrological model. The methodology allows to consider the uncertainty associated 

to the estimates as well and to propagate it in the studied model.  

A first case study, based on six months of data in the north of England, is used to validate the 

methodology. Twelve KED products obtained using different accumulation and downscaling 

resolutions are cross-validated against rain gauges. The results confirm that, in terms of rainfall 

product quality, larger accumulations reduce the uncertainty.  

Another case study in the municipality of Twenterand, in the Netherlands, is presented as an 

urban application example. In a first phase, 14 different rainfall products are tested, using different 

accumulation resolutions to perform the KED merging and different downscaling resolutions, in 

order to identify the optimal temporal accumulation and downscaling resolutions for the case study. 

Water level observations are compared to the InfoWorks results using the 14 different rainfall 

products as input, and the product accumulated at 3-h resolution for the KED application and then 

downscaled at 30-min resolution is identified as optimal in the specific application example.  

For this product, the uncertainty is then considered in a second evaluation stage, and propagated 

in the InfoWorks model. The kriging prediction (mean) and the kriging variance are used to produce 

a rainfall ensemble composed of 100 alternative rainfall time series. Each ensemble member is used 

in the model, obtaining an ensemble of 100 alternative water level estimates. 

The used InfoWorks model presents some additional sources of uncertainty, due mainly to the 

impossibility to model surface storage, calibration, other inputs uncertainty, model structure, or 

observation errors. The proposed methodology correctly estimates the uncertainty in the water level 

due to the rainfall uncertainty, and does not cover the whole observable mismatch between the model 

output and the observations. This also allows evaluating the relative importance of the rainfall 

uncertainty in the overall model output uncertainty.  
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Although some details can still be improved, the illustrated methodology is successful in 

generating robust and accurate rainfall estimates and associated uncertainty. The methodology can 

be applied to different case studies and different models and a more accurate identification of the 

optimal resolutions for accumulation and for downscaling is easily achievable. 
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