Adding to Our Knowledge on the Diatom and Green Algae Biodiversity of Egypt: Some New-to-Science, Poorly Known, and Newly Recorded Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Samples Processing and Taxa Identification
2.3. Hydrochemical Characterization
3. Results
3.1. Halamphora shaabanii A.A. Saber, El-Sheekh, Levkov, H. Saber et Cantonati sp. nov.
3.2. Pseudostaurosiropsis geocollegarum (Witkowski et Lange-Bertalot) E.A. Morales
3.3. Chlamydomonas proboscigera Korshikov
3.4. Gonium pectorale O.F. Müller
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foged, N. Diatoms in Egypt. Nova Hedwig. 1980, 33, 629–707. [Google Scholar]
- Shaaban, A.S. Freshwater Algae of Egypt. In Biological Diversity of Egypt; The United Nations Environmental Programme; The Egyptian Environmental Affairs Agency: Cairo, Egypt, 1994; 150p. [Google Scholar]
- Hamed, A.F. Biodiversity and distribution of blue-green algae/cyanobacteria and diatoms in some of the Egyptian water habitats in relation to conductivity. Aust. J. Basic Appl. Sci. 2008, 2, 1–21. [Google Scholar]
- El-Awamri, A.A.; Shaaban, A.M.; Saleh, A.I. Diatom flora from different aquatic habitats in the Greater Cairo (Egypt). Int. J. Agric. Biol. 2015, 7, 230–239. [Google Scholar]
- Abdelsalam, S.; Fawzy, M.F.; Hafez, W.A.; Fathi, A.A. Seasonal succession of biomass and microalgal communities in some agricultural drainage at Minia governorate, Egypt. Egypt. J. Phycol. 2020, 21, 19–53. [Google Scholar] [CrossRef]
- Abdelfattah Zalat, A.; Vildary, S.S. Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes. J. Paleolimnol. 2005, 34, 159–174. [Google Scholar] [CrossRef]
- Saber, A.A.; El-Belely, E.F.; El-Refaey, A.A.; El-Gamal, A.D.; Blanco, S.; Cantonati, M. Seminavis aegyptiaca sp. nov., a new amphoroid diatom species from estuary epilithon of the River-Nile Damietta Branch, Egypt. Fottea 2020, 20, 49–57. [Google Scholar] [CrossRef]
- Saber, A.A.; El-Sheekh, M.; Nikulin, A.Y.; Cantonati, M.; Saber, H. Taxonomic and ecological observations on some algal and cyanobacterial morphospecies new for or rarely recorded in either Egypt or Africa. Egypt. J. Bot. 2021, 61, 283–301. [Google Scholar] [CrossRef]
- Basha, O.R.; Fathi, A.A.; Zakaria, A.M.; Shoulkamy, M.A. Water Quality and phytoplankton communities in Orfaily Drain, Minia, Egypt. Egypt. J. Phycol. 2023, 24, 78–99. [Google Scholar]
- Edgar, R.K.; Saleh, A.I.; Edgar, S.M. A morphometric diagnosis using continuous characters of Pinnularia edkuensis, sp. nov. (Bacillariophyta: Bacillariophyceae), a brackish-marine species from Egypt. Phytotaxa 2015, 212, 1–56. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Levanets, A.; van Rensburg, L. Non-Marine Algae of Africa. A Bibliography (1799–2010); AndCork Publishers: Potchefstroom, South Africa, 2010. [Google Scholar]
- Levkov, Z. Amphora sensu lato. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag K.G.: Ruggell, Liechtenstein, 2009; Volume 5, pp. 5–916. [Google Scholar]
- Cleve, P.T. Synopsis of Naviculoid Diatoms. II. Kongliga Sven.-Vetensk. Akad. Handl. 1895, 27, 1–219. [Google Scholar]
- Stepanek, J.G.; Kociolek, J.P. Molecular phylogeny of Amphora sensu lato (Bacillariophyta): An investigation into the monophyly and classification of the amphoroid diatoms. Protist 2014, 165, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Stepanek, J.G.; Kociolek, P.J. Molecular phylogeny of the diatom genera Amphora and Halamphora (Bacillariophyta) with a focus on morphological and ecological evolution. J. Phycol. 2019, 55, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Hu, C.Q.; Yang, H.P.; Zhang, L.P.; Peng, P.F.; Luo, P.; Zhao, Z.; Xia, J.J. Morphology and phylogeny of Halamphora yongxingensis sp. nov. (Bacillariophyta), a new marine benthic diatom isolated from Yongxing Island, South China Sea. Phytotaxa 2015, 195, 53–64. [Google Scholar] [CrossRef]
- Ács, É.; Bíró, T.; Boros, E.; Dobosy, P.; Duleba, M.; Földi, A.; Kiss, K.T.; Levkov, Z.; Orgoványi, P.; Szén, O.P.; et al. Halamphora taxa in Hungarian soda pans and shallow soda lakes detected via metabarcoding and microscopic analyses. Metabarcoding Metagenomics 2023, 7, e111679. [Google Scholar] [CrossRef]
- Salama, A.M.; Kobbia, I.A. Studies on the soil algal flora of Egyptian soils. II. Different sites of a sector in the Libyan Desert. Egypt. J. Bot. 1982, 25, 139–158. [Google Scholar]
- Kobbia, I.A.; Shabana, E.F. Studies on the soil algal flora of Bahraiya Oasis. Egypt. J. Bot. 1988, 31, 23–43. [Google Scholar]
- Saber, A.A.; Fučíková, K.; McManus, H.A.; Guella, G.; Cantonati, M. Novel green algal isolates from the Egyptian hyper-arid desert oases: A polyphasic approach with a description of Pharao desertorum gen. et sp. nov. (Chlorophyceae, Chlorophyta). J. Phycol. 2018, 54, 342–357. [Google Scholar] [CrossRef] [PubMed]
- El-Otify, A.M.; Mahalel, U.A. Ecological studies on the soil algae of Wadi Allaqi biosphere reserve area in south Eastern Desert, Egypt. Egypt. J. Phycol. 2000, 1, 107–119. [Google Scholar] [CrossRef]
- Ibraheem, I.B.M. Preliminary survey of microalgal soil crusts in a xeric habitat (Wadi Araba, Eastern Desert, Egypt). Egypt. J. Phycol. 2003, 4, 17–33. [Google Scholar] [CrossRef]
- Elsheikh, A.E. Mitigation of groundwater level deterioration of the Nubian Sandstone aquifer in Farafra Oasis, Western Desert, Egypt. Environ. Earth Sci. 2015, 74, 2351–2367. [Google Scholar] [CrossRef]
- EN 15708:2009; Water Quality: Guidance Standard for the Surveying, Sampling and Laboratory Analysis of Phytobenthos in Shallow Running Water. European Committee for Standardization: Brussels, Belgium, 2009; 26p.
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff; New York Botanical Garden’s Virtual Herbarium. 2024. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 1 November 2024).
- Bold, H.C. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club 1949, 76, 101–108. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species; University of Texas: Austin, TX, USA, 1963; 95p. [Google Scholar]
- Ettl, H. Chlorophyta I. Phytomonadina. In Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Band 9; VEB Gustav Fischer Verlag: Jena, Germany, 1983; 807p. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plant and Water; Division of Agriculture Sciences, University of California: Berkeley, CA, USA, 1978; 309p. [Google Scholar]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 2000. [Google Scholar]
- Wachnicka, A.H.; Gaiser, E.E. Characterization of Amphora and Seminavis from South Florida, U.S.A. Diatom Res. 2007, 22, 387–455. [Google Scholar] [CrossRef]
- Stepanek, J.G.; Kociolek, J.P. Amphora and Halamphora from coastal and inland waters of United States and Japan. Biblioth. Diatomol. 2018, 66, 1–260. [Google Scholar]
- Levkov, Z.; Zaova, D. Halamphora ectorii sp. nov.—A new diatom species from saline spring Solenica in North Macedonia. Nova Hedwig. 2023, 117, 255–263. [Google Scholar] [CrossRef]
- Rimet, F.; Abarca, N.; Bouchez, A.; Kusber, W.-H.; Jahn, R.; Kahlert, M.; Keck, F.; Kelly, M.G.; Mann, D.G.; Piuz, A.; et al. The potential of high–throughput sequencing (HTS) of natural samples as a source of primary taxonomic information for reference libraries of diatom barcodes. Fottea 2018, 18, 37–54. [Google Scholar] [CrossRef]
- Cantonati, M.; Angeli, N.; Lange-Bertalot, H.; Levkov, Z. New Amphora and Halamphora (Bacillariophyta) species from springs in the northern Apennines (Emilia-Romagna, Italy). Plant Ecol. Evol. 2019, 152, 285–292. [Google Scholar] [CrossRef]
- Yilmaz, E.; Gastineau, R.; Solak, C.N.; Górecka, E.; Trobajo, R.; Turmel, M.; Lemieux, C.; Otis, C.; Witkowski, A.; Mann, D.G. Morphological and molecular characterization of Halamphora vantushpaensis (Bacillariophyceae, Amphipleuraceae), a new diatom species widely dispersed on the shores of the soda Lake Van (Türkiye). PhytoKeys 2024, 249, 95–114. [Google Scholar] [CrossRef]
- Morales, E.A. Morphological studies in selected fragilarioid diatoms (Bacillariophyceae) from Connecticut waters (U.S.A.). Proc. Acad. Nat. Sci. Phila. 2001, 151, 105–120. [Google Scholar] [CrossRef]
- Marquardt, G.C.; Bicudo, D.C.; Bicudo, C.E.M.; Ledru, M.-P.; Ector, L.; Wetzel, C.E. Pseudostaurosira crateri sp. nov. (Fragilariaceae, Bacillariophyta), a new small araphid, fossil diatom species from the Pleistocene (Atlantic Forest, Brazil). Phytotaxa 2021, 496, 105–120. [Google Scholar] [CrossRef]
- Morales, E.A. Studies in selected fragilarioid diatoms of potential indicator value from Florida (USA) with notes on the genus Opephora Petit (Bacillariophyceae). Limnologica 2002, 32, 102–113. [Google Scholar] [CrossRef]
- Ettl, H.; Gärtner, G. Syllabus der Boden-, Luft- und Flechtenalgen; Springer: Berlin/Heidelberg, Germany, 2014; 772p. [Google Scholar]
- Laubscher, M.; Janse van Vuuren, S.; Levanets, A.; Barnard, S. First record of Chlamydomonas proboscigera in the southern hemisphere. Afr. J. Aquat. Sci. 2021, 46, 236–240. [Google Scholar] [CrossRef]
- El-Awamri, A.A.; Shaaban, A.S.; Hamed, A.F. Algae in Saint Catherine region (South Sinai, Egypt). Egypt. J. Bot. 1996, 2, 145–168. [Google Scholar]
- Pentecost, A. Phylum Chlorophyta. Order Volvocales. In The freshwater algal flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae, 2nd ed.; John, D.M., Whitton, B.A., Brook, A.J., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 381–409. [Google Scholar]
Parameters | Unit | The Oasis Lake Abu Nuss (El-Farafra Oasis) | The River-Nile Damietta Branch |
---|---|---|---|
Water temperature | °C | 38.0 | 33.8 |
pH | 8.75 | 7.96 | |
Electrical conductivity (EC) | μS.cm−1 | 26,700 | 449 |
Total dissolved solids (TDS) | mg.L−1 | 22,160 | 227 |
Calcium (Ca2+) | mg.L−1 | 1244 | 37.2 |
Potassium (K+) | mg.L−1 | 865 | 8.0 |
Magnesium (Mg2+) | mg.L−1 | 310 | 10.6 |
Sodium (Na+) | mg.L−1 | 5930 | 34.1 |
Chloride (Cl−) | mg.L−1 | 11,780 | 22.0 |
Sulphate (SO42−) | mg.L−1 | 73.0 | 27.7 |
Bicarbonate (HCO3−) | mg.L−1 | 153 | 201 |
Carbonate (CO32−) | mg.L−1 | 0.0 | 0.0 |
Nitrite (NO2−) | µg.L−1 | 219 | 43.0 |
Nitrate (NO3−) | µg.L−1 | 2850 | 1567 |
Ammonium (NH4+) | µg.L−1 | ND | 87.0 |
Soluble reactive phosphorus (SRP) | µg.L−1 | 350 | 488 |
Silica (as SiO2) | mg.L−1 | 6.50 | 9.2 |
Copper (Cu) | µg.L−1 | 15.0 | 5.0 |
Iron (Fe) | µg.L−1 | 1120 | 14.0 |
Manganese (Mn) | µg.L−1 | 135 | 9.0 |
Zinc (Zn) | µg.L−1 | 280 | 1.5 |
Features /Species | Halamphora shaabanii sp. nov. | H. atacamana | H. caribaea | H. ectorii | H. gasseae | H. halophila | H. mosensis | H. poianensis | H. vantushpaensis |
---|---|---|---|---|---|---|---|---|---|
Valve outline | Semi-elliptical with strongly arched dorsal margin and almost straight ventral margin | Semi-lanceolate, arched dorsal margin, concave or straight to weakly tumid ventral margin | Semi-lanceolate with convex dorsal and straight ventral margins | Narrow semi-lanceolate with dorsally a strongly arched, convex margin and a concave ventral margin, slightly tumid in mid-valve | Semi-lanceolate, smoothly arched dorsal margin, straight to weakly concave ventral margin | Semi-elliptical, moderately dorsiventral, dorsal margin arched and ventral margin relatively straight | Narrowly semi-elliptical, weakly dorsiventral, with dorsal margin smoothly arched and ventral margin straight | Semi-lanceolate with a smoothly arched dorsal margin and a straight to very slightly convex ventral margin | Semi-lanceolate with arched dorsal margin, slightly tumid ventral margin |
Valve length (μm) | (23–) 25–29.0 | 29.0–45.0 | 34–39 | 16.0–41.0 | 19.0–35.0 | 29.0–33.0 | 21.0–37.0 | 18–25 | 24.0–42.0 |
Valve width (μm) | (3.5–) 4.0–4.5 | 4.5–8.0 | 6.0–8.0 | 3.0–3.5 | 3.5–4.5 | 4.5–5.0 | 4.0–4.5 | 3.2–4.1 | 4.0–5.0 |
Valve endings | Narrowly rounded, weakly protracted, both ventrally deflected | Slightly subprotracted, both ventrally bent | Rostrate and slightly ventrally deflected | Narrowly rounded, weakly to moderately protracted, ventrally deflected | Shortly protracted and capitate | Weakly protracted, rounded and ventrally deflected | Narrowly rounded, ventrally deflected | Protracted, rostrate to sub-capitate, bent ventrally | Subprotracted in smaller specimens, protracted capitate in larger specimens and ventrally bent |
Raphe ledge | Narrow, continuous along the whole valve, slightly dorsally expanded in the central area | Narrow, equal width throughout, dorsally elevated from the valve face | – | Distinct on dorsal valve side, moderately wide, continuous along whole valve length, slightly dorsally expanded and constricted in middle | – | Broad and continuous along the valve | Broad and continuous along the valve | Very broad across the dorsal striae | Narrow, arched with equal width throughout |
Axial area | Narrow, expanding into small irregularly rounded central area. | Narrow, widening ventrally | Narrow, centrally expanded ventrally | Very narrow, ventrally moderately wide | Narrow, widening ventrally | Narrow on the dorsal side, difficult to differentiate along the ventral side | Narrow dorsally and centrally expanded ventrally | Very narrow with a semi-elliptic central area | Narrow, widening ventrally |
Raphe | Near the dorsal margin, externally proximal ends slightly expanded and dorsally deflected, distal ends strongly dorsally deflected. | Near ventral margin of the valve | With straight branches, proximal and distal ends deflected dorsally | Near median line margin, almost straight with expanded and dorsally deflected central raphe ends | Arched with dorsally deflected ends | Slightly arched with dorsally deflected ends | Arched, centrally positioned on the valve face | Slightly arched, proximal and distal ends deflected dorsally | Almost straight, slightly arched, near the median line of the valve or slightly dorsal in valve view |
Striae | Hardly visible in LM, uniseriate, composed of transapically oriented, slit-like (and ovoid near the center internally) areolae | Uniseriate with elongated areolae of variable length | Delicate, parallel, shorter at the center | Uniseriate with small, round areolae | Dorsal striae with fine punctuation and radiate throughout, ventral striae indistinct and hard to be resolved with LM | Uniseriate with small round to ovoid areolae, but dorsal striae finely biseriate near the axial area | Dorsal striae biseriate near the raphe ledge, becoming irregularly uni- to biseriate towards the margin, ventral striae finely uniseriate | Dorsally slightly radiate throughout, very finely areolate with round to ovoid areolae which internally biseriate near the center, ventrally very dense | Uniseriate with small round or slightly elongate poroids |
Stria (density in 10 μm | Dorsally 30–36 (–38), ventrally (30–) 32–34 (–36) | 25–28 | Dorsally 11–17 at the center, 13–20 near the ends. Ventrally, 19–24 at the center, 20–29 near the ends | Dorsally 30–35, ventrally 40–50 | 20–24 | Dorsally 21–22, ventrally 35–36 | Dorsally 26–28, ventrally 28 | Dorsally 24–32, ventrally 32–40, areola density 66–86 in 10 μm | 27–32 |
References | This study | [13] | [35] | [34] | [13] | [33] | [33] | [36] | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, A.A.; El-Sheekh, M.M.; Salem, O.M.A.; Levkov, Z.; Cantonati, M.; Alotaibi, M.O.; Saber, H. Adding to Our Knowledge on the Diatom and Green Algae Biodiversity of Egypt: Some New-to-Science, Poorly Known, and Newly Recorded Species. Water 2025, 17, 446. https://doi.org/10.3390/w17030446
Saber AA, El-Sheekh MM, Salem OMA, Levkov Z, Cantonati M, Alotaibi MO, Saber H. Adding to Our Knowledge on the Diatom and Green Algae Biodiversity of Egypt: Some New-to-Science, Poorly Known, and Newly Recorded Species. Water. 2025; 17(3):446. https://doi.org/10.3390/w17030446
Chicago/Turabian StyleSaber, Abdullah A., Mostafa M. El-Sheekh, Olfat M. A. Salem, Zlatko Levkov, Marco Cantonati, Modhi O. Alotaibi, and Hani Saber. 2025. "Adding to Our Knowledge on the Diatom and Green Algae Biodiversity of Egypt: Some New-to-Science, Poorly Known, and Newly Recorded Species" Water 17, no. 3: 446. https://doi.org/10.3390/w17030446
APA StyleSaber, A. A., El-Sheekh, M. M., Salem, O. M. A., Levkov, Z., Cantonati, M., Alotaibi, M. O., & Saber, H. (2025). Adding to Our Knowledge on the Diatom and Green Algae Biodiversity of Egypt: Some New-to-Science, Poorly Known, and Newly Recorded Species. Water, 17(3), 446. https://doi.org/10.3390/w17030446