Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification
Abstract
1. Introduction
2. Microbial Community Structure and Diversity
2.1. Taxonomic Composition and Dominant Phyla
2.2. Spatial Distribution and Environmental Gradients
3. Biogeochemical Processes and Microbial Functions
3.1. Nitrogen Transformation Pathways
3.2. Phosphorus Cycling and Removal Mechanisms
3.3. Carbon Cycling and Organic Matter Processing
4. Pollutant Removal Mechanisms and Efficiency
4.1. Comprehensive Pollutant Removal Performance
4.2. Heavy Metals, Sulfate and Iron Reduction
4.2.1. Heavy Metal Detoxification
4.2.2. Sulfate and Iron Reduction
4.3. Emerging Contaminants and Micropollutants
4.4. Microplastics and Microbial Interactions in Constructed Wetlands
4.5. Regulation of Methane and Greenhouse Gases in Constructed Wetlands
5. Environmental Factors Influencing Microbial Communities
5.1. Temperature Effects and Seasonal Dynamics
5.2. pH and Chemical Environment
5.3. Hydraulic Conditions and Retention Time
6. Molecular Techniques and Community Analysis
6.1. Advanced Molecular Approaches
6.2. Omics Technologies and Systems Biology
7. Climate Change Impacts and Future Challenges
7.1. Temperature and Precipitation Changes
7.2. Emerging Contaminants and Resistance Genes
8. Technological Innovations and Future Directions
8.1. Advanced System Configurations
8.2. Circular Economy Integration
8.3. Limitations of Constructed Wetlands
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswal, B.K.; Balasubramanian, R. Constructed wetlands for reclamation and reuse of wastewater and urban stormwater: A review. Front. Environ. Sci. 2022, 10, 836289. [Google Scholar] [CrossRef]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and solutions for global water scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef]
- Kathi, S.; El Din Mahmoud, A. Trends in effective removal of emerging contaminants from wastewater: A comprehensive review. Desalination Water Treat. 2023, 317, 100258. [Google Scholar] [CrossRef]
- Gebru, S.B.; Werkneh, A.A. Applications of constructed wetlands in removing emerging micropollutants from wastewater: Occurrence, public health concerns, and removal performances—A review. South Afr. J. Chem. Eng. 2024, 48, 395–416. [Google Scholar] [CrossRef]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater treatment using constructed wetland: Current trends and future potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Li, M.; Li, W.; Wang, J. Editorial: Microbial diversity and ecosystem functioning in wetlands. Front. Microbiol. 2024, 15, 1414288. [Google Scholar] [CrossRef]
- Biswas Roy, M.; Saha, S.; Roy, P.K. Constructed wetlands for wastewater treatment: A review of research development. Ecol. Econ. Soc.–INSEE J. 2021, 8, 1281. [Google Scholar] [CrossRef]
- Nanjani, S.; Keharia, H.K. Alterations in microbial community structure and function in response to azo dyes. In Microbiome-Host Interactions; CRC Press: Boca Raton, FL, USA, 2021; pp. 367–395. [Google Scholar]
- Zhang, M.; Peng, Y.; Yan, P.; Huang, J.C.; He, S.; Sun, S.; Bai, X.; Tian, Y. Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients. Environ. Res. 2022, 215, 114235. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y.; Yu, G.; Wang, G.; Zhou, Z.; Li, P.; Zhang, Y.; Yang, K.; Wang, S. A review on microorganisms in constructed wetlands for typical pollutant removal: Species, function, and diversity. Front. Microbiol. 2022, 13, 845725. [Google Scholar] [CrossRef]
- Nuamah, L.A.; Li, Y.; Pu, Y.; Nwankwegu, A.S.; Haikuo, Z.; Norgbey, E.; Banahene, P.; Bofah-Buoh, R. Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. J. Clean. Prod. 2020, 269, 122340. [Google Scholar] [CrossRef]
- Kumari, A.; Dash, M.; Singh, S.K.; Jagadesh, M.; Mathpal, B.; Mishra, P.K.; Pandey, S.K.; Verma, K.K. Soil microbes: A natural solution for mitigating the impact of climate change. Environ. Monit. Assess. 2023, 195, 1436. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Chauhan, M.; Sharma, P.K.; Kumari, M.; Mitra, D.; Joshi, S. Microbiological dimensions and functions in constructed wetlands: A review. Curr. Res. Microb. Sci. 2024, 7, 100311. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Ren, B.; Wu, B.; Deng, X. Spatiotemporal dynamics and optimization of water quality assessment in the Nantong section of the Yangtze River Basin: A WQImin approach. J. Hydrol. Reg. Stud. 2025, 57, 102106. [Google Scholar] [CrossRef]
- Lang, X.L.; Chen, X.; Xu, A.L.; Song, Z.W.; Wang, X.; Wang, H.B. Variation of bacterial and archaeal community structures in a full-scale constructed wetlands for wastewater treatment. Archaea 2018, 2018, 9319345. [Google Scholar] [CrossRef]
- Ali, H.; Min, Y.; Yu, X.; Kooch, Y.; Marnn, P.; Ahmed, S. Composition of the microbial community in surface flow-constructed wetlands for wastewater treatment. Front. Microbiol. 2024, 15, 1421094. [Google Scholar] [CrossRef] [PubMed]
- Yunda, E.; Gutensohn, M.; Ramstedt, M.; Björn, E. Methylmercury formation in biofilms of Geobacter sulfurreducens. Front. Microbiol. 2023, 14, 1079000. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Yang, X.; Niu, B.; Jiao, H.; Yang, Y.; Huang, G.; Hou, W.; Zhang, G. Seasonality and vertical structure of microbial communities in Alpine wetlands. Microorganisms 2025, 13, 962. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Balachandar, D. N Fertilization dependent bacterial and archaeal changes in paddy soil. In Soil Recycling Management Anthropocene Era; Springer International Publishing: Cham, Switzerland, 2021; Volume 63. [Google Scholar]
- Khajah, M.; Bydalek, F.; Babatunde, A.O.; Al-Matouq, A.; Wenk, J.; Webster, G. Nitrogen removal performance and bacterial community analysis of a multistage step-feeding tidal flow constructed wetland. Front. Water 2023, 5, 1128901. [Google Scholar] [CrossRef]
- Zheng, C.; He, T.; Wang, C.; Zhang, M.; Yang, L.; Yang, L. Key enzymes, functional genes, and metabolic pathways of the nitrogen removal-related microorganisms. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1672–1691. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, M.; Li, X.; Li, Y.; Wu, J. Effect of high-strength wastewater on formation process and characteristics of hydrophyte periphytic biofilms. Sustainability 2025, 17, 2654. [Google Scholar] [CrossRef]
- Reichardt, W.; Inubushi, K.; Tiedje, J. Microbial processes in C and N dynamics. In Carbon and Nitrogen Dynamics in Flooded Soils; Kirk, G.J.D., Olk, D.C., Eds.; International Rice Research Institute: Manila, Philippines, 2000; pp. 101–146. [Google Scholar]
- Kristensen, E.; Ahmed, S.I.; Devol, A.H. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnol. Oceanogr. 1995, 40, 1430–1437. [Google Scholar] [CrossRef]
- Gao, D.; Xu, A.; Zhou, Q.; Gong, X.; Liang, H. New insights into biofilm formation and microbial communities in hybrid constructed wetlands with functional substrates for treating contaminated surface water. Bioresour. Technol. 2025, 416, 131741. [Google Scholar] [CrossRef]
- Preena, P.G.; Rejish Kumar, V.J.; Singh, I.S.B. Nitrification and denitrification in recirculating aquaculture systems: The processes and players. Rev. Aquacult. 2021, 13, 2053–2075. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, W.; Wang, H.; Zhao, D.; Ding, H. Nitrogen and phosphorus removal efficiency and denitrification kinetics of different substrates in constructed wetland. Water 2022, 14, 1757. [Google Scholar] [CrossRef]
- Fenchel, T.; King, G.M.; Blackburn, T.H. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm-mediated wastewater treatment: A comprehensive review. Mat. Adv. 2023, 4, 1415–1443. [Google Scholar] [CrossRef]
- Throbäck, I. Exploring Denitrifying Communities in the Environment; Acta Universitatis Agriculturae Sueciae: Uppsala, Sweden, 2006; No. 2006; Volume 33. [Google Scholar]
- Choi, H.J.; Tahmid, M.; Barrera, L.; Pugliese, C.A.; Chipoco, D.H.; Weber, D.; Velez, W.C.; Mete, B.; Donneys, D.; Zhang, Z.; et al. Nutrient separations systems: Current progress and future opportunities. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Environmental Research Group. Wetland biogeochemical cycles: Fundamentals and applications. Sustain. Dir. Tech. Rep. 2025, SR-2025-01, 1–45. Available online: https://www.researchgate.net/publication/364158488_Biogeochemistry_of_Wetlands_Science_and_Applications (accessed on 6 August 2025).
- Wu, H.; Fan, J.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresour. Technol. 2015, 176, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Nat. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef]
- Fisher, J.; Acreman, M.C. Wetland nutrient removal: A review of the evidence. Hydrol. Earth Syst. Sci. 2004, 8, 673–685. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Barca, C.; Troesch, S.; Meyer, D.; Drissen, P.; Andres, Y.; Chazarenc, F. Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments. Environ. Sci. Technol. 2013, 47, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Srivastava, A.; Kumar, A. Constructed wetlands as a solution for sustainable sanitation: A comprehensive review on integrating climate change resilience and circular economy. Water 2022, 14, 3232. [Google Scholar] [CrossRef]
- Mathanmohun, M.; Elango, B.; Okram, G.S.; Shah, M.P. Potentials of microbes in wastewater treatment and management. In Recalcitrant Pollutants Removal from Wastewater; CRC Press: Boca Raton, FL, USA, 2024; pp. 153–179. [Google Scholar]
- Guo, M.; Yang, G.; Meng, X.; Zhang, T.; Li, C.; Bai, S.; Zhao, X. Illuminating plant–microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? Environ. Int. 2023, 179, 108144. [Google Scholar] [CrossRef]
- Sikora, A.; Detman, A.; Chojnacka, A.; Błaszczyk, M. Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. In Fermentation Processes; IntechOpen: London, UK, 2017. [Google Scholar]
- Sánchez, M.; Ruiz, I.; Soto, M. The potential of constructed wetland systems and photodegradation processes for the removal of emerging contaminants—A review. Environments 2022, 9, 116. [Google Scholar] [CrossRef]
- Pearson, C.S. Economics and the Global Environment; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Mohamed, A.M.O.; Paleologos, E.K.; Mohamed, D.; Fayad, A.; Al Nahyan, M.T. Critical minerals mining: A path toward sustainable resource extraction and aquatic conservation. Preprints 2025. [Google Scholar] [CrossRef]
- Porras-Socias, P.; Tomasino, M.P.; Fernandes, J.P.; De Menezes, A.B.; Fernández, B.; Collins, G.; Alves, M.J.; Castro, R.; Gomes, C.R.; Almeida, C.M.R.; et al. Removal of metals and emergent contaminants from liquid digestates in constructed wetlands for agricultural reuse. Front. Microbiol. 2024, 15, 1388895. [Google Scholar] [CrossRef]
- Arjoon, K.K.; Speight, J.G. Bioremediation as a sustainable solution for environmental contamination by petroleum hydrocarbons. In Sustainable Solutions for Environmental Pollution: Air, Water and Soil Reclamation; Wiley Online Library: Hoboken, NJ, USA, 2022; pp. 147–187. [Google Scholar]
- Papadopoulos, C. A Novel Experimental Platform for Monitoring and Imaging Bacterial Biofilm Growth in Porous Media Flows. Doctoral Dissertation, Institut National Polytechnique de Toulouse-INPT, Toulouse cedex, France, 2023. [Google Scholar]
- Van Groenigen, J.W.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.; Groffman, P.M. The soil N cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Alimahmoodi, M.; Yerushalmi, L.; Mulligan, C.N. Simultaneous removal of carbon, nitrogen and phosphorus in a multi-zone wastewater treatment system. J. Chem. Technol. Biotechnol. 2013, 88, 1136–1143. [Google Scholar] [CrossRef]
- Dorofeev, A.G.; Nikolaev, Y.A.; Mardanov, A.V.; Pimenov, N.V. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl. Biochem. Microbiol. 2020, 56, 1–14. [Google Scholar] [CrossRef]
- Janssen, P.M.J.; Meinema, K.; Van der Roest, H.F. Biological Phosphorus Removal; IWA Publishing: London, UK, 2002. [Google Scholar]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The use of constructed wetland for mitigating nitrogen and phosphorus from agricultural runoff: A review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Valls, M.; de Lorenzo, V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 2002, 26, 327–338. [Google Scholar] [CrossRef]
- Sun, W.; Cheng, K.; Sun, K.Y.; Ma, X. Microbially mediated remediation of contaminated sediments by heavy metals: A critical review. Curr. Poll. Rep. 2021, 7, 201–212. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R.; Phillips, E.J.; Lonergan, D.J. Enzymic versus nonenzymic mechanisms for iron (III) reduction in aquatic sediments. Environ. Sci. Technol. 1991, 25, 1062–1067. [Google Scholar] [CrossRef]
- Shah, M.P.; Rodriguez-Couto, S. (Eds.) Development in Wastewater Treatment Research and Processes: Microbial Degradation of Xenobiotics Through Bacterial and Fungal Approach; Elsevier: Amsterdam, Netherlands, 2022. [Google Scholar]
- Monsalves, N.; Leiva, A.M.; Gómez, G.; Vidal, G. Antibiotic-resistant gene behavior in constructed wetlands treating sewage: A critical review. Sustainability 2022, 14, 8524. [Google Scholar] [CrossRef]
- Ravikumar, Y.; Yun, J.; Zhang, G.; Zabed, H.M.; Qi, X. A review on constructed wetlands-based removal of pharmaceutical contaminants derived from non-point source pollution. Environ. Technol. Innov. 2022, 26, 102504. [Google Scholar] [CrossRef]
- Gray, M.J.; Wholey, W.Y.; Jakob, U. Bacterial responses to reactive chlorine species. Ann. Rev. Microbiol. 2013, 67, 141–160. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Chen, Y.; He, Q.; Liu, T.; Zhang, G.; Yuan, L.; Peng, H.; Wang, H.; Ju, F. Micro (nano) plastic size and concentration co-differentiate nitrogen transformation, microbiota dynamics, and assembly patterns in constructed wetlands. Water Res. 2022, 220, 118636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shen, C.; Zhang, F.; Wei, K.; Shan, S.; Zhao, Y.; Man, Y.B.; Wong, M.H.; Zhang, J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. Sci. Total Environ. 2024, 918, 170654. [Google Scholar] [CrossRef]
- Li, N.Y.; Zhong, B.; Guo, Y.; Li, X.X.; Yang, Z.; He, Y.X. Non-negligible impact of microplastics on wetland ecosystems. Sci. Total Environ. 2024, 924, 171252. [Google Scholar] [CrossRef]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef]
- Qin, Y.; Tu, Y.; Chen, C.; Wang, F.; Yang, Y.; Hu, Y. Biofilms on microplastic surfaces and their effect on pollutant adsorption in the aquatic environment. J. Mater. Cycles Waste Manage. 2024, 26, 3303–3323. [Google Scholar] [CrossRef]
- Qin, P.; Cui, H.; Li, P.; Wang, S.; Fan, S.; Lu, J.; Sun, M.; Zhang, H.; Wang, S.; Su, X. Early stage of biofilm assembly on microplastics is structured by substrate size and bacterial motility. Imeta 2023, 2, e121. [Google Scholar] [CrossRef]
- Bydalek, F.; Webster, G.; Barden, R.; Weightman, A.J.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. Water Res. 2023, 235, 119936. [Google Scholar] [CrossRef]
- da Silva, M.R.F.; Souza, K.S.; Motteran, F.; de Araújo, L.C.A.; Singh, R.; Bhadouria, R.; de Oliveira, M.B.M. Exploring biodegradative efficiency: A systematic review on the main microplastic-degrading bacteria. Front. Microbiol. 2024, 15, 1360844. [Google Scholar] [CrossRef] [PubMed]
- Dhali, S.L.; Parida, D.; Kumar, B.; Bala, K. Recent trends in microbial and enzymatic plastic degradation: A solution for plastic pollution predicaments. Biotechnol. Sust. Mat. 2024, 1, 11. [Google Scholar] [CrossRef]
- Conrad, R. Complexity of temperature dependence in methanogenic microbial environments. Front. Microbiol. 2023, 14, 1232946. [Google Scholar] [CrossRef]
- Cadier, C.; Waltham, N.J.; Canning, A.; Fry, S.; Adame, M.F. Tidal restoration to reduce greenhouse gas emissions from freshwater impounded coastal wetlands. Restor. Ecol. 2023, 31, e13829. [Google Scholar] [CrossRef]
- Iqbal, S.; Begum, F.; Nguchu, B.A.; Claver, U.P.; Shaw, P. The invisible architects: Microbial communities and their transformative role in soil health and global climate changes. Environ. Microbiome 2025, 20, 36. [Google Scholar] [CrossRef]
- Chao, C.; Gong, S.; Xie, Y. The performance of a multi-stage surface flow constructed wetland for the treatment of aquaculture wastewater and changes in epiphytic biofilm formation. Microorganisms 2025, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Gao, Z.; Hu, T.; He, S.; Liu, Y.; Jiang, J.; Zhao, Q.; Wei, L. Performance and mechanisms of biochar-based materials additive in constructed wetlands for enhancing wastewater treatment efficiency: A review. Chem. Engg. J. 2023, 471, 144772. [Google Scholar] [CrossRef]
- Kumar, R.; Banerji, T.; Sharma, N. Advancements in constructed wetland technology: A state-of-the-art review on bio-electrochemical processes, tidal flow dynamics, and resilience to shock loads. Environ. Sci. Poll. Res. 2025, 32, 10749–10785. [Google Scholar] [CrossRef]
- Degerman, R.; Dinasquet, J.; Riemann, L.; de Luna, S.S.; Andersson, A. Effect of resource availability on bacterial community responses to increased temperature. Aquat. Microb. Ecol. 2013, 68, 131–142. [Google Scholar] [CrossRef]
- Ferguson, L.V.; Dhakal, P.; Lebenzon, J.E.; Heinrichs, D.E.; Bucking, C.; Sinclair, B.J. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 2018, 32, 2357–2368. [Google Scholar] [CrossRef]
- Rizvi, A.; Ahmed, B.; Khan, M.S.; Umar, S.; Lee, J. Psychrophilic bacterial phosphate-biofertilizers: A novel extremophile for sustainable crop production under cold environment. Microorganisms 2021, 9, 2451. [Google Scholar] [CrossRef]
- Lynch, M.; Gabriel, W.; Wood, A.M. Adaptive and demographic responses of plankton populations to environmental change. Limnol. Oceanogr. 1991, 36, 1301–1312. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Tarre, S.; Green, M. High-rate nitrification at low pH in suspended-and attached-biomass reactors. Appl. Environ. Microbiol. 2004, 70, 6481–6487. [Google Scholar] [CrossRef]
- Ni, G.; Leung, P.M.; Daebeler, A.; Guo, J.; Hu, S.; Cook, P.; Nicol, G.W.; Daims, H.; Greening, C. Nitrification in acidic and alkaline environments. Essays Biochem. 2023, 67, 753–768. [Google Scholar] [CrossRef]
- Taylor, M.D.; Kreis, R.; Rejtö, L. Establishing growing substrate pH with compost and limestone and the impact on pH buffering capacity. Hort. Sci. 2016, 51, 1153–1158. [Google Scholar] [CrossRef]
- Fernández Ramírez, L.E.; Zamora-Castro, S.A.; Sandoval-Herazo, L.C.; Herrera-May, A.L.; Salgado-Estrada, R.; De La Cruz-Dessavre, D.A. Technological innovations in the application of constructed wetlands: A review. Processes 2023, 11, 3334. [Google Scholar] [CrossRef]
- Dong, J.; Kuang, S. Bibliometric analysis of nitrogen removal in constructed wetlands: Current trends and future research directions. Water 2024, 16, 1453. [Google Scholar] [CrossRef]
- Sánchez, O. Constructed wetlands revisited: Microbial diversity in the–omics era. Microb. Ecol. 2017, 73, 722–733. [Google Scholar] [CrossRef]
- Henderson, M.; Ergas, S.J.; Ghebremichael, K.; Gross, A.; Ronen, Z. Occurrence of antibiotic-resistant genes and bacteria in household greywater treated in constructed wetlands. Water 2022, 14, 758. [Google Scholar] [CrossRef]
- Jagadesh, M.; Dash, M.; Kumari, A.; Singh, S.K.; Verma, K.K.; Kumar, P.; Bhatt, R.; Sharma, S.K. Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration. Microbiol. Res. 2024, 285, 127764. [Google Scholar] [CrossRef] [PubMed]
- Ohore, O.E.; Qin, Z.; Sanganyado, E.; Wang, Y.; Jiao, X.; Liu, W.; Wang, Z. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots. J. Hazard. Mat. 2022, 424, 127495. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, X.; Zhang, Y.; Liu, F.; Shi, L.; Ding, Y.; Wang, M.; Lyu, T. Constructed wetlands as nature-based solutions for the removal of antibiotics: Performance, microbial response, and emergence of antimicrobial resistance (AMR). Sustainability 2022, 14, 14989. [Google Scholar] [CrossRef]
- Sundaravadivel, M.; Vigneswaran, S. Constructed wetlands for wastewater treatment. Crit. Rev. Environ. Sci. Technol. 2001, 31, 351–409. [Google Scholar] [CrossRef]
- Zivec, P.; Sheldon, F.; Capon, S.J. Natural regeneration of wetlands under climate change. Front. Environ. Sci. 2023, 11, 989214. [Google Scholar] [CrossRef]
- Dupar, M. Why ecosystem-based adaptation and gender justice go hand in hand. PLoS Clim. 2024, 3, e0000507. [Google Scholar] [CrossRef]
- Rezanezhad, F.; McCarter, C.P.; Lennartz, B. Wetland biogeochemistry: Response to environmental change. Front. Environ. Sci. 2020, 8, 55. [Google Scholar] [CrossRef]
- Elhaj Baddar, Z.; Bier, R.; Spencer, B.; Xu, X. Microbial community changes across time and space in a constructed wetland. ACS Environ. Au. 2024, 4, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Riva, V.; Vergani, L.; Rashed, A.A.; El Saadi, A.; Sabatino, R.; Di Cesare, A.; Crotti, E.; Mapelli, F.; Borin, S. Plant species influences the composition of root system microbiome and its antibiotic resistance profile in a constructed wetland receiving primary treated wastewater. Front. Microbiol. 2024, 15, 1436122. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
Phylum | Abundance (%) | Major Role | Representative Genera | Source |
---|---|---|---|---|
Proteobacteria | 25–48.7 | N cycling, P removal, S cycling, COD oxidation | Pseudomonas, Nitrosomonas, Acinetobacter | [10] |
Consists of diverse functional groups like ammonia-oxidising, denitrifying and sulfur-cycling bacteria. | Gamma-proteobacteria (Pseudomonas, Acinetobacter), Betaproteobacteria (Nitrosomonas, Nitrosospira) and Alpha-proteobacteria | [10] | ||
Bacteroidetes | 10–28.2 | Cellulose and protein hydrolysis | Flavobacterium, Cytophaga | [10] |
Crucial for the initial breakdown of complex organic matter and cellulose decomposition. | Specialised bacteria are involved in the breakdown of plant litter and other recalcitrant organic compounds. | [16] | ||
Actinobacteria | 5–15 | Degradation of complex organic compounds | Streptomyces, Mycobacterium | [9] |
Metabolise antibiotics and other emerging contaminants. | Specific genera enhanced capabilities for antibiotic metabolism. | [10] | ||
Firmicutes | 4.1–20 | Fermentation, volatile fatty acid production | Clostridium, Bacillus | [13] |
Contribute to the initial breakdown of complex organic matter through fermentation. | Includes important anaerobic bacteria involved in fermentation processes and organic acid production. | [10] | ||
Others | 1–8 | Nitrification, P storage, biofilm stability | Nitrospira, Gemmatimonas, Chloroflexi | [10] |
Process | Condition | Key Microbial Genera | Pathway Description | Source |
---|---|---|---|---|
Ammonification | Anaerobic | Bacillus, Clostridium | Organic N → NH4+ | [22] |
Heterotrophic bacteria convert organic nitrogen to ammonia through extracellular enzymes. | Optimal conditions occur in moderate anaerobic environments. | [23] | ||
Nitrification | Aerobic | Nitrosomonas, Nitrobacter | NH4+ → NO2− → NO3− | [25] |
Includes ammonia-oxidising archaea and comammox bacteria. | Two-step process: oxidation of ammonium to nitrite and then nitrite to nitrate. | [26] | ||
Denitrification | Anaerobic | Pseudomonas, Paracoccus | NO3− → NO2− → NO → N2O → N2 | [5] |
Also includes Thauera. | Stepwise reduction of nitrate to nitrogen gas under anaerobic conditions using organic carbon as an electron donor. | [29] | ||
Anammox | Anaerobic | Brocadia, Kuenenia | NH4+ + NO2− → N2 + H2O | [20] |
Mechanism | Description | Microbial Involvement | Source |
---|---|---|---|
Biological P removal | Polyphosphate accumulation via PAOs | Accumulibacter, Tetrasphaera | [32] |
Microbial-induced precipitation | Formation of iron-, aluminium- or calcium-bound P | Iron-reducing, sulfate-reducing bacteria | [37] |
Solubilisation/Remobilisation | Release of stored P under changing redox/pH | Bacillus, Aspergillus | [35] |
Contaminant Type | Removal Mechanism | Efficiency Range (%) | Responsible Microbial Groups | Source |
---|---|---|---|---|
Antibiotics | Biodegradation, Adsorption | 50–90 | Actinobacteria, Proteobacteria | [59] |
Hormones/EDCs | Biotransformation | 60–95 | Proteobacteria, Mycobacterium | [60] |
Industrial Solvents | Reductive dechlorination | 70–95 | Dehalococcoides, Clostridium | [42] |
Factor | Optimal Range | Impact on Microbial Activity | Source |
---|---|---|---|
Temperature | 20–35 °C | Affects metabolic rates, species dominance | [74] |
pH | 6.5–8.5 | Influences enzyme activity, nitrifier stability | [32] |
Hydraulic retention time | 3–10 days | Determines treatment contact and biofilm growth | [86] |
DO concentration | 1–5 mg/L | Aerobic vs. anaerobic zone distribution | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, A.; Raj, S.; Singh, S.K.; Verma, K.K.; Mishra, P.K. Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification. Water 2025, 17, 2947. https://doi.org/10.3390/w17202947
Kumari A, Raj S, Singh SK, Verma KK, Mishra PK. Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification. Water. 2025; 17(20):2947. https://doi.org/10.3390/w17202947
Chicago/Turabian StyleKumari, Aradhna, Saurav Raj, Santosh Kumar Singh, Krishan K. Verma, and Praveen Kumar Mishra. 2025. "Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification" Water 17, no. 20: 2947. https://doi.org/10.3390/w17202947
APA StyleKumari, A., Raj, S., Singh, S. K., Verma, K. K., & Mishra, P. K. (2025). Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification. Water, 17(20), 2947. https://doi.org/10.3390/w17202947