Sustainable Water Retention Strategy for Urban Resilience: A Valorization and Action Model for Cities
Abstract
1. Introduction
2. Materials and Methods
3. Results
- ➢
- Typology of water retention in reurbanized areas: a collection of examples and case study analysis;
- ➢
- Characteristics and indicators important for shaping the resilience of urban areas and sustainable development;
- ➢
- Characteristics and urban indicators in shaping the functional and spatial structure and landscape of the city and its infrastructure;
- ➢
- Characteristics and indicators important for water retention capacity and for social and ecosystem services.
- ➢
- Outdoor retention tanks, water garden, and riverbank;
- ➢
- Temporary outdoor retention: rain gardens, retention basins, channels, absorbent blinds, basins, channels, and absorbent silting;
- ➢
- Temporary outdoor retention: retention roofs and wet roofs;
- ➢
- Underground retention tanks;
- ➢
- Temporary underground retention seepage tanks and absorption wells;
- ➢
- Temporary underground retention of water, absorbing geocomposite and hydrobox.
- ➢
- The role of water retention in urban resilience and adaptive capacity in the face of climate change;
- ➢
- The role of water retention in urban planning: application in the urban landscape and urban factors directly related to water retention in urban planning;
- ➢
- Data and indicators are used to determine the retention capacity and demand for water for social and ecosystem services.
Models for Selecting Retention Types in Relation to Local Conditions
4. Discussion
5. Conclusions
- ➢
- Development of the typology of blue infrastructure elements in the structure of the city landscape is important for urban resilience and the mitigation of climate change;
- ➢
- Development of the multicriteria analysis and making the conclusions about the most important urban indicators and parametric data that should be determined for an effective water retention system and waterfront management in the re-urbanization process have been selected;
- ➢
- Draw attention to resilience related to adaptability to climate change and crisis situations, and the social and ecosystem needs of the modern city.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haase, A.; Kabisch, S.; Steinführer, A.; Bouzarovski, S.; Hall, R.; Ogden, P. Emergent spaces of reurbanisation: Exploring the demographic dimension of inner-cityresidential change in a European setting. Popul. Space Place 2010, 16, 443–463. [Google Scholar] [CrossRef]
- Zasina, J. Reurbanizacja w świetle dotychczasowych badań nad miastami europejskimi. Stud. Miej. 2015, 20, 155–166. Available online: https://www.researchgate.net/publication/312121617_Reurbanizacja_w_swietle_dotychczasowych_badan_nad_miastami_europejskimi (accessed on 1 September 2025).
- Berg, L. Urban Europe: A Study of Growth and Decline; Pergamon Press: Kronberg, Germany, 1982. [Google Scholar]
- Supreme Audit Office, Branch Office in Olsztyn. Management of rainwater and snowmelt in urban areas (Najwyższa Izba Kontroli, Delegatura w Olsztynie, Zagospodarowanie wód opadowych i roztopowych na terenach zurbanizowanych), LOL. 430.003.2020 Nr ewid. 178/2020/P/20/073/LOL. 2020. Available online: https://www.nik.gov.pl/plik/id,23434,vp,26160.pdf (accessed on 1 September 2025).
- European Commission. The European Green Deal: Striving to Be the First Climate-Neutral Continent. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 1 September 2025).
- European Commission. Annual Sustainable Growth Strategy (ASGS); European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52020DC0575 (accessed on 1 September 2025).
- EU Commission. Commission Welcomes the Political Agreement on the Transitional Rules for the Common Agricultural Policy (CAP). 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_20_2236 (accessed on 1 September 2025).
- EU Commission. European Climate Law. 2020. Available online: https://climate.ec.europa.eu/eu-action/european-climate-law_en (accessed on 1 September 2025).
- EU Commission. European Semester: Country Specific Recommendations/Commission Recommendations. 2020. Available online: https://ec.europa.eu/info/publications/2020-european-semester-country-specific-recommendations-commission-recommendations_en (accessed on 1 September 2025).
- European Commission. European Climate Pact. 2020. Available online: https://climate-pact.europa.eu/system/files/2020-12/20201209%20European%20Climate%20Pact%20Communication.pdf (accessed on 1 September 2025).
- Manganelli, B.; Tataranna, S.; Pontrandolfi, P. A model to support the decision-making in urban regeneration. Land Use Policy 2020, 99, 104865. [Google Scholar] [CrossRef]
- Pelikán, P.; Hubačíková, V.; Kaletová, T.; Fuska, J. Comparative Assessment of Different Modelling Schemes and Their Applicability to Inland Small Reservoirs: A Central Europe Case Study. Sustainability 2021, 12, 10692. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Francke, B. Modern waterproofing of buildings. In Book 1—Waterproofing of Underground Parts of Buildings; PWN Press: Warsaw, Poland, 2021. [Google Scholar]
- Godlewski, T.; Koda, E.; Mitew-Czajewska, M.; Łukasik, S.; Rabarijoely, S. Essential georisk factors in the assessment of the influence of underground structures on neighbouring facilities. Civ. Struct. Eng. 2023, 69, 113–128. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Water Cycle. Available online: https://www.britannica.com/science/water-cycle (accessed on 10 April 2025).
- Francke, B.; Koda, E.; Żołnierczuk, M. Durability of Underground Parts of Buildings in Unfavourable Ground and Water Conditions and Their Impact on the Water Environment Pollution—A Case Study. In International Conference on Environmental Geotechnology, Recycled Waste Materials and Sustainable Engineering; Springer Nature: Singapore, 2024; pp. 169–178. [Google Scholar] [CrossRef]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2000, 2, 115–122. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Xiong, Z.; Zhuang, J.; Wang, M. Integrating Grey–Green Infrastructure in Urban Stormwater Management: A Multi–Objective Optimization Framework for Enhanced Resilience and Cost Efficiency. Appl. Sci. 2025, 15, 3852. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Liu, M.; Kong, F.; Xu, J. Evaluating the Effectiveness of Environmental Sustainability Indicators in Optimizing Green-Grey Infrastructure for Sustainable Stormwater Management. Water Res. 2024, 272, 122932. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, A.; Berthier, E.; Sage, J.; Gromaire, M. Modelling Evapotranspiration in Urban Green Stormwater Infrastructures: Importance of Sensitivity Analysis and Calibration Strategies with a Hydrological Model. Environ. Model. Softw. 2025, 185, 106319. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Maes, J. Urban heat island mitigation by green infrastructure in European functional urban areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Januchta-Szostak, A. Błękitno-zielona infrastruktura jako narzędzie adaptacji miast do zmian klimatu i zagospodarowania wód opadowych. Zesz. Nauk. Politech. Poznańskiej. Archit. Urban. Archit. Wnętrz 2020, 3, 37–74. [Google Scholar] [CrossRef]
- European Commission. Green Paper on the Urban Environment. Communication from the Commission to the Council And Parliament, EC, Brussels. 1990. Available online: https://op.europa.eu/en/publication-detail/-/publication/0e4b169c-91b8-4de0-9fed-ead286a4efb7/language-en (accessed on 1 September 2025).
- Kimic, K.; Ostrysz, K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability 2021, 13, 11041. [Google Scholar] [CrossRef]
- United Nations. The 17 GOALS Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 28 August 2024).
- UNESCO. The United Nations World Water Development Report 2021: Valuing Water; UNESCO: Paris, France, 2021; ISBN 978-92-3-100434-6. Available online: http://www.unesco.org/reports/wwdr/2021/en/download-the-report (accessed on 28 August 2024).
- Nouri, H.; Chavoshi Borujeni, S.; Hoekstra, A.Y. The Blue Water Footprint of Urban Green Spaces: An Example for Adelaide, Australia. Landsc. Urban Plan. 2019, 190, 103613. [Google Scholar] [CrossRef]
- Januchta-Szostak, A. Usługi ekosystemów wodnych w miastach. In Zrównoważony Rozwój—Zastosowania, t. 3, Przyroda w Mieście, Red; Bergier, T., Kronenberg, J., Eds.; Wydawnictwo Fundacja Sendzimira: Kraków, Poland, 2012; pp. 91–110. [Google Scholar]
- Rybak-Niedziółka, K.; Grochulska-Salak, M.; Maciejewska, E. Resilience of riverside areas as an element of the green deal strategy—Evaluation of waterfront models in relation to re-urbanization and the city landscape of Warsaw. Desalination Water Treat. 2021, 232, 357–371. [Google Scholar] [CrossRef]
- Jacque, H.; Knox, J.W.; Gush, M.; Holman, I.P. Modelling the potential of rainwater harvesting to improve the sustainability of landscape and public garden irrigation. J. Environ. Manag. 2023, 348, 119167. [Google Scholar] [CrossRef]
- Starzyk, A.; Marchwiński, J.; Maciejewska, E.; Bujak, P.; Rybak-Niedziółka, K.; Grochulska-Salak, M.; Skutnik, Z. Resilience in Urban and Architectural Design—The Issue of Sustainable Development for Areas Associated with an Embankment. Sustainability 2023, 15, 9064. [Google Scholar] [CrossRef]
- Vignoli, F.; de Luca, C.; Tondelli, S. A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna. Sustainability 2021, 13, 2787. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Zeng, H. Assessment of Urban Ecosystem Condition and Ecosystem Services in Shenzhen Based on the MAES Analysis Framework. Ecol. Indic. 2023, 154, 110962. [Google Scholar] [CrossRef]
- Feltynowski, M. Investments in Small Retention as a Factor Influencing Land-Use Changes: A Case Study of Poland. J. Water Land Dev. 2023, 56, 71–77. [Google Scholar] [CrossRef]
- Sušnik, J.; Masia, S.; Kravčík, M.; Pokorny, J.; Hesslerová, P. Costs and Benefits of Landscape-Based Water Retention Measures as Nature-Based Solutions to Mitigating Climate Impacts in Eastern Germany, Czech Republic, and Slovakia. Land Degrad. Dev. 2022, 33, 3074–3087. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Lu, J.; Song, T.; Zhang, S. Urban Growth Simulation Guided by Ecosystem Service Trade-Offs in Wuhan Metropolitan Area: Methods and Implications for Spatial Planning. Ecol. Indic. 2024, 157, 112687. [Google Scholar] [CrossRef]
- Magnier, J.; Fribourg-Blanc, B.; Lemann, T.; Witing, F.; Critchley, W.; Volk, M. Natural/Small Water Retention Measures: Their Contribution to Ecosystem-Based Concepts. Sustainability 2024, 16, 1308. [Google Scholar] [CrossRef]
- Sadri-Shojaei, S.; Momeni, M.; Kerachian, R. A Novel Methodology for Assessing Resources and Environmental Carrying Capacity with Emphasis on Ecosystem Services: A Multi-Disciplinary Approach to Sustainable Urban Planning. J. Environ. Manag. 2024, 373, 123507. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, L.; Liu, J.; Zhong, Q.; Zhang, X. Optimizing Spatial Distribution of Urban Green Spaces by Balancing Supply and Demand for Ecosystem Services. J. Chem. 2020, 2020, 8474636. [Google Scholar] [CrossRef]
- Wu, H.; Song, F.; Li, H.; Bai, J.; Cui, L.; Su, F.; Kalantari, Z.; Ferreira, C.S. The Role of Nature Reserves in Ecosystem Services and Urban Ecological Sustainable Development. Land 2025, 14, 136. [Google Scholar] [CrossRef]
- Zewnętrzne Systemy Kanalizacyjne—Wymagania PN-EN 752-2; Polski Komitet Normalizacyjny (PKN): Warszawa, Poland, 2000; ISBN 8323642796.
- Bompan, E.; Fragapane, F.; Iannelli, M.; Pravettoni, R. (Eds.) Acqua Virtuale. In Atlante Geopolitico Dell’acqua: Water Grabbing, Diritti, Sicurezza Alimentare ed Energia; Editore Ulrico Hoepli: Milano, Italy, 2019; pp. 102–113. ISBN 8820390434. [Google Scholar]
- Fialkiewicz, W.; Burszta-Adamiak, E.; Kolonko-Wiercik, A.; Manzardo, A.; Loss, A.; Mikovits, C.; Scipioni, A. Simplified Direct Water Footprint Model to Support Urban Water Management. Water 2018, 10, 630. [Google Scholar] [CrossRef]
- Fialkiewicz, W.; Czaban, S.; Kolonko, A.; Konieczny, T.; Paweł, M.; Manzardo, A.; Loss, A.; Scipioni, A.; Leonhardt, G.; Rauch, W.; et al. Water Footprint as a New Approach to Water Management in the Urban Areas, Water Supply and Water Quality; PZITS: Warszawa, Poland, 2014; pp. 431–439. [Google Scholar]
- Polish Standard PN-B-01707:1992; Instalacje Kanalizacyjne—Wymagania w Projektowaniu. Polski Komitet Normalizacji Miar i Jakości, Wydawnictwa Normalizacyjne Alfa-Wero: Warsaw, Poland, 1992.
- Ministry of the Environment of the Czech Republic. Study of Rainwater Management in Urban Areas; CZWA: Heršpice, Czechia, 2019; p. 128.
- Haase, D. Reflections about blue ecosystem services in cities, Sustain. Water Qual. Ecol. 2015, 5, 77–83. [Google Scholar] [CrossRef]
- Grochulska-Salak, M. Re-urbanization in a model of sustainable development of an eco-city. Acta Sci. Pol. Archit. 2021, 20, 3–12. [Google Scholar] [CrossRef]
- Rybak-Niedziolka, K. Miasto Jako Krajobraz (The City as a Landscape); Studia KPZK PAN, tom CXC: Warsaw, Poland, 2018; ISBN 978-83-63563-62-2. [Google Scholar]
- Ibrahim, M.; El-Zaarta, A.; Adams, C. Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustain. Cities Soc. 2018, 37, 530–540. [Google Scholar] [CrossRef]
- Rezvani, S.M.; Falcão, M.J.; Komljenovic, D.; de Almeida, N.M. A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Appl. Sci. 2023, 13, 2223. [Google Scholar] [CrossRef]
- Eldesoky, A.H.; Abdeldayem, W.S. Disentangling the Relationship between Urban Form and Urban Resilience: A Systematic Literature Review. Urban Sci. 2023, 7, 93. [Google Scholar] [CrossRef]
- Caldarola, F.; Maiolo, M. Local indices within a mathematical framework for urban water distribution systems. Cogent Eng. 2019, 6, 1643057. [Google Scholar] [CrossRef]
- Caldarola, F.; Maiolo, M. A mathematical investigation on the invariance problem of some hydraulic indices. Appl. Math. Comput. 2021, 409, 125726. [Google Scholar] [CrossRef]
- Kukukaite, D.; Bartorila, M.Á.; Gutiérrez-Antonio, C. Improvement of the General Resilience of Social–Ecological Systems on an Urban Scale Through the Strategic Location of Urban Community Gardens. Urban Sci. 2025, 9, 229. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockstrom, J. Six Transformations to Achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Volpi-León, V.; Seck-Tuoh-Mora, J.C.; Bigurra-Alzati, C.A.; Juárez-Sedano, A.D.; Lizárraga-Mendiola, L. Design of Urban Indicators to Optimize the Implementation of Low-Impact Techniques in Semi-Arid Cities. Appl. Sci. 2025, 15, 294. [Google Scholar] [CrossRef]
- Maldonado Benitez, V.M.; Morales Matamoros, O.; Moreno Escobar, J.J. Towards Resilient Cities: Systematic Review of the Literature on the Use of AI to Optimize Water Harvesting and Mitigate Scarcity. Water 2025, 17, 1978. [Google Scholar] [CrossRef]
- Santos, E. Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next? Water 2025, 17, 2193. [Google Scholar] [CrossRef]
- Calliari, E.; Staccione, A.; Mysiak, J. An assessment framework for climate-proof nature-based solutions. Sci. Total Environ. 2019, 656, 691–700. [Google Scholar] [CrossRef]
- Sokolov, A.; Veselitskaya, N.; Carabias, V.; Yildirim, O. Scenario-based identification of key factors for smart cities development policies. Technol. Forecast. Soc. Change 2019, 148, 119729. [Google Scholar] [CrossRef]
- Jutrović, M.; Tomić Reljić, D.; Zovko, M.; Bubalo Kovačić, M.; Pereković, P.; Kamenečki, M. Potential for Applying Nature-Based Solutions to Urban Waterways: The Case Study of Medveščak and Črnomerec Streams in the City of Zagreb, Croatia. Sustainability 2023, 15, 9959. [Google Scholar] [CrossRef]
- Gašparović, S.; Sopina, A.; Zeneral, A. Impacts of Zagreb’s Urban Development on Dynamic Changes in Stream Landscapes from Mid-Twentieth Century. Land 2022, 11, 692. [Google Scholar] [CrossRef]
- Mátyás, C.; Berki, I.; Bidló, A.; Csóka, G.; Czimber, K.; Führer, E.; Gálos, B.; Gribovszki, Z.; Illés, G.; Hirka, A.; et al. Sustainability of Forest Cover under Climate Change on the Temperate-Continental Xeric Limits. Forests 2018, 9, 489. [Google Scholar] [CrossRef]
- Valánszki, I.; Kristensen, L.S.; Jombach, S.; Ladányi, M.; Filepné Kovács, K.; Fekete, A. Assessing Relations between Cultural Ecosystem Services, Physical Landscape Features and Accessibility in Central-Eastern Europe: A PPGIS Empirical Study from Hungary. Sustainability 2022, 14, 754. [Google Scholar] [CrossRef]
- Tanaka, L.C.; Shen, K. Residents’ Preferences on Green Infrastructure in Wuhan, China. Sustainability 2024, 16, 10303. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Y.; Huang, X.; Zhai, J. Climate resilience of urban water systems: A case study of sponge cities in China. J. Clean. Prod. 2024, 451, 141781. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Lu, X.; Li, L.; Lai, Y.; Luo, M.; Chen, Y.D.; Wang, D.; Li, N.; Chen, W.-Q.; Zhu, Y.-G.; et al. Compound flood effects, challenges and solutions: Lessons toward climate-resilient Chinese coastal cities. Ocean. Coast. Manag. 2024, 249, 107015. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, C.; Wu, M.; Zhu, R. Integrating Blue–Green Infrastructure with Gray Infrastructure for Climate-Resilient Surface Water Flood Management in the Plain River Networks. Land 2025, 14, 634. [Google Scholar] [CrossRef]
- Lee, H.; Song, K.; Kim, G.; Chon, J. Flood-Adaptive Green Infrastructure Planning for Urban Resilience. Landsc. Ecol. Eng. 2021, 17, 427–437. [Google Scholar] [CrossRef]
- Lee, S.-G.; Adelodun, B.; Ahmad, M.J.; Choi, K.S. Multi-Level Prioritization Analysis of Water Governance Components to Improve Agricultural Water-Saving Policy: A Case Study from Korea. Sustainability 2022, 14, 3248. [Google Scholar] [CrossRef]
- Van Buuren, A.; Van Meerkerk, I.; Tortajada, C. Understanding emergent participation practices in water governance. Int. J. Water Resour. Dev. 2019, 35, 367–382. [Google Scholar] [CrossRef]
- Liu, S.; Chan, F.; Chen, W.; Netusil, N.; Feng, M.; Xie, L.; Qi, Y.; Xu, S.; Cheshmehzangi, A. Home-Buying Decisions Influenced by the Implementation of Nature-Based Solutions: The Case of Sponge City, Guiyang SW China. Nat. Based Solut. 2024, 5, 100115. [Google Scholar] [CrossRef]
- Di Marino, M.; Tabrizi, H.A.; Chavoshi, S.H.; Sinitsyna, A. Hybrid cities and new working spaces—The case of Oslo. Prog. Plan. 2023, 170, 100712. [Google Scholar] [CrossRef]
- Ma, Y.; Xia, X.; Liang, Q.; Wan, H. Investigating the Impact of Spatial Distribution of Sustainable Drainage System (SuDS) Components on Their Flood Mitigation Performance in Communities with High Groundwater Levels. Water 2022, 14, 1367. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Alotaibi, B.A.; Najim, M.M.M.; Shah, A.A. Water Valuation in Urban Settings for Sustainable Water Management. Water 2023, 15, 3105. [Google Scholar] [CrossRef]
- Rehman, R.; Aslam, M.S.; Jasińska, E.; Javed, M.F.; Goňo, M. Guidelines for the Technical Sustainability Evaluation of the Urban Drinking Water Systems Based on Analytic Hierarchy Process. Resources 2023, 12, 8. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Rau, G.C.; Ekström, M.; O’Carroll, D.M.; Bates, A.J. Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nat. Commun. 2022, 13, 518. [Google Scholar] [CrossRef]
Role for Urban Resilience and Adaptability in View of Climatic Changes | Typology of Water Retention in Re-Urbanized Areas | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
The ability to absorb disturbances | + | + | + | + | + | + |
Adaptability to stress | + | +/− | +/− | + | +/− | +/− |
Absorption and neutralization of pollutants | + | + | +/− | +/− | − | − |
Temperature regulation—reduce temperature | + | +/− | + | − | +/− | +/− |
Improve environmental parameters | + | + | + | − | +/− | − |
Self-sufficient solution | + | +/− | +/− | − | − | − |
Social services—conditions for social activities | + | +/− | − | − | − | − |
Ecosystem services regulation | + | +/− | +/− | − | +/− | +/− |
Improve safety for ecosystem services | + | + | + | +/− | + | + |
Regulation for sustainable use of resources | + | +/− | +/− | + | +/− | +/− |
Preventing water runoff and flooding during flash floods | +/− | + | + | + | + | +/− |
Air flow regulation | + | +/− | +/− | − | +/− | − |
Role for Urban Planning: Application in the City Land- Scape and Urban Factors Directly Related to Water Retention in Urban Planning for Green Deal Strategy Implementation | Typology of Water Retention in Re-Urbanized Areas | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Important city landscape element | + | + | + | − | − | − |
Functional local attractor | + | + | +/− | − | − | − |
Important waterfront solutions | + | + | − | − | +/− | − |
Temporary waterfront | +/− | + | − | +/− | +/− | − |
Landform and slope parameters for the surface water runoff zone | + | + | − | +/− | + | +/− |
Special zone for blue infrastructure | + | + | +/− | + | + | +/− |
Special zone for green infrastructure | + | + | + | +/− | +/− | +/− |
Index biologically active area | + | + | + | − | +/− | − |
Watershed area site area | + | + | + | + | + | +/− |
Functional greenery system index | + | + | + | − | +/− | +/− |
Functional public space index | + | + | +/− | − | − | − |
Intensity index | + | + | +/− | + | + | +/− |
Underground intensity index and development area | +/− | − | − | + | +/− | − |
Distance required between the retention facility and buildings, and the project site boundary | + | + | − | +/− | + | +/− |
Parameters of the impact of development on water resources (depression funnels and the effect of lowering groundwater levels as a result of development) | +/− | +/− | − | + | +/− | − |
Field water absorption and infiltration capacity index | +/− | + | − | − | + | +/− |
Flood or waterlogging risk index | + | + | +/− | + | + | +/− |
Permeable surface index | +/− | + | − | − | + | +/− |
Green roof and green wall area index | +/− | + | + | − | +/− | − |
Drought-tolerant plant area index | +/− | + | +/− | +/− | +/− | +/− |
Area index of hydrophilic plants | + | + | + | +/− | +/− | − |
Greenery leaf area index (LAI) evapotranspiration plot index | + | + | + | − | +/− | +/− |
Index of shading areas: tree crowns, screens, and canopies | +/− | + | +/− | − | − | − |
Index of cooling surfaces or water areas | + | + | + | − | +/− | +/− |
Storage Tank Capacity Index | + | +/− | − | + | +/− | − |
Site function and purpose of the retention basin | + | + | − | + | +/− | − |
Ecological Footprint | + | + | + | + | + | + |
Data and Indicators for Determining the Retention Capacity and Water Demand for Social and Ecosystem Services for Adaptability | Typology of Water Retention in Re-Urbanized Areas | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Soil type (cohesiveness and permeability) | + | + | − | +/− | + | +/− |
Groundwater level | + | + | − | + | + | + |
Rainwater and stored water quality index | + | + | + | + | + | + |
Destination indicator for stored water | + | +/− | − | + | +/− | − |
Water consumption rate for production and distribution purposes | + | − | − | + | − | − |
Indicator of rainwater and snowmelt demand for ecosystem purposes and microclimate improvement | + | + | + | + | + | + |
Rainfall index (means and extremes) | + | + | + | + | + | + |
Index of daily temperature amplitudes | + | + | + | − | +/− | +/− |
Air quality index (averages and extremes) | + | + | + | − | − | − |
Index of areas absorbing or accumulating solar energy | + | + | + | − | − | − |
Surface runoff design rain value, the runoff coefficient, and the total surface | + | + | + | + | + | + |
1. | Plot area | 17,427 m2 |
Building area | 4150 m2 (24%) | |
Hardened surface | 4303 m2 (24%) | |
Biologically active surface on native soil | 8974 m2 (52%) | |
Green area over the garage | No underground garage | |
2A. | Favorable ratio of building area to plot area. Large area of undeveloped and unpaved land | |
2B. | High level of groundwater, very low soil absorption. Threat of local flooding if an appropriate rainwater retention system is not used. Planning guidelines specifying the need to cover the designed buildings with pitched roofs with an angle of inclination of the roof surface from 30 to 45 °, and cover with a tight material (sheet metal or ceramic roof tiles) | |
3. | Qr = 98.12 l·s−1, Capacity of designed tanks = 120 m3 | |
4. | Open evaporative tank with a capacity of 120 m3, reinforced concrete, partially recessed, fenced. Storm sewerage with inspection wells (it is necessary to filter rainwater collected from the surface of paved sidewalks and roads) | |
5. | 0–100% |
1. | Plot area | 4470.00 m2 |
Building area | 1765.28 m2 (39%) | |
Hardened surface | 696.50 m2 (16%) | |
Biologically active surface on native soil | 1112.58 m2 (25%) | |
Green area over the garage | 895.64 m2 (20%) | |
2A. | Absorbent soil, existing storm sewer system at the plot, enabling partial collection of storm water, the Surface of flat roofs of underground garages enables the use of green roofs | |
2B. | A relatively large development area, partly occupied by underground garages. | |
3. | Qr = 37.56 l·s−1, Capacity of designed tanks = 28 m3 | |
4. | Sealed retention tanks with a total capacity = 28 m3 | |
5. | 47–53% |
1. | Plot area | 708.00 m2 |
Building area | 256.38 m2 (37%) | |
Hardened surface | 40.96 m2 (6%) | |
Biologically active surface on native soil | 66.10 m2 (9%) | |
Green area over the garage | 344.56 m2 (48%) | |
2A. | The relatively large surface area of the slab above the garage and the need to ensure an appropriate biologically active surface coefficient favor the use of a green roof as an auxiliary solution for water retention. | |
2B. | The garage area is over 80% of the plot area. Limited area of land for development | |
3. | Qr = 4.06 l·s−1, Capacity of designed tanks = 16.85 m3 | |
4. | Green roof on the slab above the garage, Sealed rainwater tank located in the building under the access ramp to the garage, with a capacity of 16.85 m3. Water collection from the tank to the rainwater sewerage system in portions specified by the conditions of connection to the network. | |
5. | 47–53% |
1. | Plot area | 6627.7 m2 |
Building area | 2523.4 m2 (38%) | |
Hardened surface | 1124.8 m2 (17%) | |
Biologically active surface on native soil | 2578.11 m2 (39%) | |
Green area over the garage | 401.39 m2 (6%) | |
2A. | The characteristics of the subsoil allow for the use of underground devices that temporarily collect and drain rainwater. The large surface area of the slab above the garage (despite the impossibility of including a green roof in the balance of biologically active area, a limitation resulting from local planning guidelines) allows the use of a green roof as an auxiliary solution for water retention. | |
2B. | Local planning guidelines prevent the inclusion of the surface area occupied by surface water in the balance of biologically active surface area, which, given the relatively large surface area of the open reservoir in relation to the plot area, ruled out the use of such a retention method. The requirement to cover buildings with pitched roofs and cover them with sheet metal prevents local water retention and requires its drainage through the sewage system to reservoirs located below the ground surface (drainage boxes). | |
3. | Qr = 47.0 l·s−1, Capacity of designed tanks = 98 m3 | |
4. | Green roof on a slab above the garage, retention and drainage tank embedded in the ground | |
5. | 20–80% |
1. open-air retention tanks, water garden, river waterfront, 2. temporary open-air retention: retention roofs and wetland roofs, 3 underground retention tanks, 4. temporary underground retention infiltration boxes and absorption wells | 1 | 2 | 3 | 4 |
Multi-family housing complex, Berenson Str., Warsaw | + | |||
Multi-family housing complex, Lipowa Str., Pruszków | + | |||
Multi-family residential building, Ogińskiego Str., Warsaw | + | + | ||
Multi-family housing complex, Ostródzka Str., Warsaw | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujak, P.; Grochulska-Salak, M.; Maciejewska, E.; Rybak-Niedziółka, K.; Hubačíková, V.; Francke, B.; Starzyk, A. Sustainable Water Retention Strategy for Urban Resilience: A Valorization and Action Model for Cities. Water 2025, 17, 2663. https://doi.org/10.3390/w17182663
Bujak P, Grochulska-Salak M, Maciejewska E, Rybak-Niedziółka K, Hubačíková V, Francke B, Starzyk A. Sustainable Water Retention Strategy for Urban Resilience: A Valorization and Action Model for Cities. Water. 2025; 17(18):2663. https://doi.org/10.3390/w17182663
Chicago/Turabian StyleBujak, Piotr, Magdalena Grochulska-Salak, Eliza Maciejewska, Kinga Rybak-Niedziółka, Věra Hubačíková, Barbara Francke, and Agnieszka Starzyk. 2025. "Sustainable Water Retention Strategy for Urban Resilience: A Valorization and Action Model for Cities" Water 17, no. 18: 2663. https://doi.org/10.3390/w17182663
APA StyleBujak, P., Grochulska-Salak, M., Maciejewska, E., Rybak-Niedziółka, K., Hubačíková, V., Francke, B., & Starzyk, A. (2025). Sustainable Water Retention Strategy for Urban Resilience: A Valorization and Action Model for Cities. Water, 17(18), 2663. https://doi.org/10.3390/w17182663