Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review
Abstract
1. Introduction
1.1. Overview of SMC (Soil Moisture Content)
1.2. Importance of Soil Moisture Measurement
2. Different Approaches for Soil Moisture Measurement
2.1. In Situ Method for Soil Moisture Analysis
2.1.1. Gravimetric Method
2.1.2. Time-Domain Reflectometry (TDR)
2.1.3. Capacitance and Frequency-Domain Reflectometry (FDR) Sensors
2.1.4. Gamma Ray
2.1.5. Tensiometer
2.2. Remote Sensing Approaches
2.3. UAV for Moisture Content Estimation
- RGB cameras: These types of sensors are mostly used for mapping vegetation and take pictures in the visible light spectrum. They are popular because they are inexpensive and simple to use, and they generate high-resolution color images with red, green, and blue bands [111].
- Multispectral and hyperspectral cameras: In order to calculate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation Index (SAVI), these sensors gather data over a variety of spectral bands. These indices are instrumental in evaluating vegetation health, physical soil attributes, and soil moisture levels. The data from these cameras often require radiometric and atmospheric corrections to ensure accuracy [43].
- Thermal cameras: These sensors detect infrared radiation to create temperature maps and identify thermal patterns. They are particularly valuable in estimating evapotranspiration and detecting variations in temperature in land surface, closely linked to soil moisture content [112]. In agriculture, thermal imaging is extensively applied for assessing crop water stress and improving irrigation efficiency [113].
- Shortwave near-infrared (SWIR) cameras: these instruments generate reflectance indices in the SWIR range that closely relate to the water content in plant tissues, enabling indirect assessment of soil moisture levels through vegetation analysis.
- LiDAR: This remote sensing technique is widely utilized for constructing high-resolution 3D terrain models and is essential for applications such as flood detection, snow depth measurement, and erosion analysis. Despite its effectiveness, LiDAR is relatively costly and often requires additional processing steps, including ground filtering, to ensure data accuracy [114]. Table 4 presents different sensors and their influence due to weather conditions and their calibration process.
2.4. Approach Using Machine Learning
3. Bibliometric Analysis of In Situ or Ground Truth Soil Moisture Applications and Machine Learning Techniques
3.1. Data Collection and Methodology
- ➢
- Gravimetric method;
- ➢
- Tensiometer;
- ➢
- Time-domain reflectometry (TDR);
- ➢
- Frequency-domain reflectometry (FDR);
- ➢
- Gamma-ray probe.
3.2. Network Construction and Cluster Analysis
3.3. Comparative Analysis of In Situ Methods
- The time-domain reflectometry (TDR) was associated with the highest number of clusters (10), indicating a wide range of application contexts and diverse keyword associations;
- As the most extensively linked and cited tool for in situ moisture content in soil monitoring, time-domain reflectometry (TDR) showed the most links (243) and the highest total link strength (268). Interestingly, TDR was commonly associated with phrases like vegetation, drought, electrical conductivity, and validation;
- With a total link strength of 183, the neutron probe came in second in terms of connectivity, demonstrating its adaptability despite some drawbacks and significance in soil moisture research;
- In contrast, the use of tensiometer method showed the lowest number of links (83) and the least total link strength (85), suggesting limited usage in contemporary field applications, possibly due to its narrow measurement range, high maintenance needs, and ineffectiveness in dry or deep soils.
- ➢
- Remote sensing;
- ➢
- Irrigation management;
- ➢
- Control systems;
- ➢
- Hydrological modeling;
- ➢
- Precision agriculture;
- ➢
- Geospatial sensor networks;
- ➢
- Data simulation techniques;
- ➢
- Flood risk monitoring;
- ➢
- Landscape irrigation.
3.4. Analysis of Machine Learning Techniques Applied to Soil Moisture Prediction
- ➢
- Random Forest (RF);
- ➢
- Artificial neural networks (ANNs);
- ➢
- Support vector machines (SVMs).
3.4.1. Random Forest Model for Soil Moisture Analysis
3.4.2. Artificial Neural Networks (ANNs)
3.4.3. Support Vector Machine
4. Limitations & Conclusions
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [Google Scholar] [CrossRef]
- Sabater, J.M.; Jarlan, L.; Calvet, J.-C.; Bouyssel, F.; De Rosnay, P. From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeorol. 2007, 8, 194–206. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K. Assessing the Potential of UAV-Based Multispectral and Thermal Data to Estimate Soil Water Content Using Geophysical Methods. Remote Sens. 2024, 16, 61. [Google Scholar] [CrossRef]
- Li, S.; Pezeshki, S.R.; Goodwin, S. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia). Acta Oecologica 2004, 25, 17–22. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, Á.; Piles, M.; Martínez-Fernández, J. A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: A case of study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt, R. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. Remote Sens. Environ. 2016, 183, 215–225. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. In Reviews of Geophysics; Blackwell Publishing Ltd.: Oxford, UK, 2019; Volume 57, pp. 530–616. [Google Scholar]
- Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E.A. Estimating root zone soil moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model. Remote Sens. 2019, 11, 2013. [Google Scholar] [CrossRef]
- Ahlmer, A.-K.; Cavalli, M.; Hansson, K.; Koutsouris, A.J.; Crema, S.; Kalantari, Z. Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environ. Earth Sci. 2018, 77, 533. [Google Scholar] [CrossRef]
- Li, Y.; Yan, S.; Chen, N.; Gong, J. Performance evaluation of a neural network model and two empirical models for estimating soil moisture based on sentinel-1 sar data. Prog. Electromagn. Res. C 2020, 105, 85–99. [Google Scholar] [CrossRef]
- Altese, E.; Bolognani, O.; Mancini, M.; Troch, P.A. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res. 1996, 32, 653–661. [Google Scholar] [CrossRef]
- Barrett, B.W.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [Google Scholar] [CrossRef]
- Oh, Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 596–601. [Google Scholar] [CrossRef]
- Dubois, P.C.; Engman, T. Measuring Soil Moisture with Imaging Radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Sahebi, M.R.; Angles, J. An inversion method based on multi-angular approaches for estimating bare soil surface parameters from RADARSAT-1. Hydrol. Earth Syst. Sci. 2010, 14, 2355–2366. [Google Scholar] [CrossRef]
- Kweon, S.K.; Oh, Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2802–2809. [Google Scholar] [CrossRef]
- Svoray, T.; Shoshany, M. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model. Int. J. Remote Sens. 2002, 23, 4089–4100. [Google Scholar] [CrossRef]
- Yadav, V.P.; Prasad, R.; Bala, R.; Vishwakarma, A.K. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C- band Sentinel-1A SAR data. Comput. Electron. Agric. 2020, 173, 105447. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M.; Ray, R.L.; Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence. In Landslides—Investigation and Monitoring [Internet]; 2020; Available online: https://www.intechopen.com/chapters/72592 (accessed on 29 July 2025).
- Han, Q.; Zeng, Y.; Zhang, L.; Wang, C.; Prikaziuk, E.; Niu, Z.; Su, B. Global long term daily 1 km surface soil moisture dataset with physics informed machine learning. Sci. Data 2023, 10, 101. [Google Scholar] [CrossRef]
- Sungmin, O.; Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 2021, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Yuan, H.; Liang, S.; Gao, Y.; Gao, Y.; Lian, X. Experimental study on estimating bare soil moisture content based on UAV multi-source remote sensing. Geocarto Int. 2025, 40, 2448985. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma 2013, 199, 64–79. [Google Scholar] [CrossRef]
- Landrum, C.; Castrignanò, A.; Mueller, T.; Zourarakis, D.; Zhu, J.; De Benedetto, D. An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agric. Water Manag. 2015, 147, 144–153. Available online: https://www.sciencedirect.com/science/article/pii/S0378377414002121 (accessed on 9 May 2025). [CrossRef]
- Balla, I.; Milics, G.; Deákvári, J.; Fenyvesi, L.; Smuk, N. Connection Between Soil Moisture Content and Electrical Conductivity in a Precision Farming Field. 2013. Available online: http://www.epa.hu/03100/03114/00015/pdf/EPA03114_acta_agronomica_ovariensis_2013_2_021-032.pdf (accessed on 9 May 2025).
- Lim, H.H.; Lee, S.R.; Cheon, E.; Nam, Y. Soil Water Content Regression Analysis of Measurement Data from Hyperspectral Camera in Weathered Granite Soils. In E3S Web of Conferences; EDP Science: Les Ulis, France, 2023. [Google Scholar]
- Bablet, A.; Viallefont-Robinet, F.; Jacquemoud, S.; Fabre, S.; Briottet, X. High-resolution mapping of in-depth soil moisture content through a laboratory experiment coupling a spectroradiometer and two hyperspectral cameras. Remote Sens. Environ. 2020, 236, 111533. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Yang, L.; Ma, Y.; Cui, T.; He, X.; Du, Z. Developing a generalized vis-NIR prediction model of soil moisture content using external parameter orthogonalization to reduce the effect of soil type. Geoderma 2022, 419, 115877. [Google Scholar] [CrossRef]
- Leone, M.; Consales, M.; Passeggio, G.; Buontempo, S.; Zaraket, H.; Youssef, A.; Persiano, G.; Cutolo, A.; Cusano, A. Fiber optic soil water content sensor for precision farming. Opt. Laser Technol. 2022, 149, 107816. [Google Scholar] [CrossRef]
- Keller, S.; Riese, F.M.; Stötzer, J.; Maier, P.M.; Hinz, S. Developing a Machine Learning Framework for Estimating Soil Moisture with Vnir Hyperspectral Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-1, 101–108. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J.D. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef]
- Wu, T.; Yu, J.; Lu, J.; Zou, X.; Zhang, W. Research on inversion model of cultivated soil moisture content based on hyperspectral imaging analysis. Agriculture 2020, 10, 292. [Google Scholar] [CrossRef]
- Tang, B.; Xie, W.; Meng, Q.; Moorhead, R.J.; Feng, G. Soil Moisture Estimation Using Hyperspectral Imagery Based on Metric Learning. In Proceedings of the 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022, The Bahamas, Caribbean, 12–14 December 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; pp. 1392–1396. [Google Scholar]
- Linets, G.; Bazhenov, A.; Malygin, S.; Grivennaya, N.; Chernysheva, T.; Melnikov, S. Algorithm for the Joint Flight of Two Uncrewed Aerial Vehicles Constituting a Bistatic Radar System for the Soil Remote Sensing. Pertanika J. Sci. Technol. 2023, 31, 2031–2045. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Ticlavilca, A.M.; Jensen, A.; McKee, M. Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, QC, Canada, 13–18 July 2014; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2014; pp. 3263–3266. [Google Scholar]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the Arid region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Lu, F.; Sun, Y.; Hou, F. Using UAV visible images to estimate the soil moisture of steppe. Water 2020, 12, 2334. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Allen, N.; Torres-Rua, A.F.; McKee, M.; Coopmans, C. Estimation of soil moisture at different soil levels using machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Proceeding of the SPIE Defense + Commercial Sensing, Baltimore, MD, USA, 2019; SPIE-International Society for Optical Engineering: Bellingham, WA, USA, 2019; p. 26. [Google Scholar]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Wang, J.; Li, H.; Wang, Z.; Zhang, F.; Yuan, H. A simple but effective evaluation criterion for parameters optimization of EPO and its application to moisture insensitive prediction of soil organic matter. Chemom. Intell. Lab. Syst. 2023, 236, 104794. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Yang, Y.; Awais, M.; Ying, P.; Ru, W.; Cheema, M.J.M. A UAV-aided prediction system of soil moisture content relying on thermal infrared remote sensing. Int. J. Environ. Sci. Technol. 2022, 19, 9587–9600. [Google Scholar] [CrossRef]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Döpper, V.; Rocha, A.D.; Berger, K.; Gränzig, T.; Verrelst, J.; Kleinschmit, B.; Förster, M. Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102817. [Google Scholar] [CrossRef]
- Quebrajo, L.; Perez-Ruiz, M.; Pérez-Urrestarazu, L.; Martínez, G.; Egea, G. Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosyst. Eng. 2018, 165, 77–87. [Google Scholar] [CrossRef]
- Luo, W.; Xu, X.; Liu, W.; Liu, M.; Li, Z.; Peng, T.; Xu, C.; Zhang, Y.; Zhang, R. UAV based soil moisture remote sensing in a karst mountainous catchment. CATENA 2019, 174, 478–489. [Google Scholar] [CrossRef]
- Bono Rossello, N.; Fabrizio Carpio, R.; Gasparri, A.; Garone, E. A novel Observer-based Architecture for Water Management in Large-Scale (Hazelnut) Orchards. In Proceedings of the IFAC-PapersOnLine, Sydney, Australia, 4–6 December 2019; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 62–69. [Google Scholar]
- Abebrese, D.K.; Biney, J.K.M.; Kara, R.S.; Báťková, K.; Houška, J.; Matula, S.; Badreldin, N.; Truneh, L.A.; Shawula, T.A. Estimating the spatial distribution of soil volumetric water content in an agricultural field employing remote sensing and other auxiliary data under different tillage management practices. Soil Use Manag. 2024, 40, e12981. [Google Scholar] [CrossRef]
- Imantho, H.; Seminar, K.B.; Hermawan, W.; Saptomo, S.K. A Spatial Distribution Empirical Model of Surface Soil Water Content and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications. Information 2022, 13, 493. [Google Scholar] [CrossRef]
- Sun, H.; Cui, Y. Evaluating downscaling factors of microwave satellite soil moisture based on machine learning method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
- Filintas, A. Soil Moisture Depletion Modelling Using a TDR Multi-Sensor System, GIS, Soil Analyzes, Precision Agriculture and Remote Sensing on Maize for Improved Irrigation-Fertilization Decisions. Eng. Proc. 2021, 9, 36. [Google Scholar]
- Ma, C.; Johansen, K.; McCabe, M.F. Combining Sentinel-2 data with an optical-trapezoid approach to infer within-field soil moisture variability and monitor agricultural production stages. Agric. Water Manag. 2022, 274, 107942. [Google Scholar] [CrossRef]
- Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernàndez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic Management Zones for Irrigation Scheduling. Agric. Water Manag. 2020, 238, 106207. [Google Scholar] [CrossRef]
- Placidi, P.; Vergini, C.V.D.; Papini, N.; Cecconi, M.; Mezzanotte, P.; Scorzoni, A. Low-Cost and Low-Frequency Impedance Meter for Soil Water Content Measurement in the Precision Agriculture Scenario. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Chinh Pham, X.; Thao Nguyen, T.P.; Le, M.T. Pathloss Modelling and Evaluation for A Wireless Underground Soil Moisture Sensor Network. In Lecture Notes in Networks and Systems; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2023; pp. 335–345. [Google Scholar]
- Syrový, T.; Vik, R.; Pretl, S.; Syrová, L.; Čengery, J.; Hamáček, A.; Kubáč, L.; Menšík, L. Fully printed disposable IoT soil moisture sensors for precision agriculture. Chemosensors 2020, 8, 125. [Google Scholar] [CrossRef]
- Yang, J.; Sharma, A.; Kumar, R. IoT-based framework for smart agriculture. Int. J. Agric. Environ. Inf. Syst. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- El-Magrous, A.A.; Sternhagen, J.D.; Hatfield, G.; Qiao, Q. Internet of things based weather-soil sensor station for precision agriculture. In Proceedings of the IEEE International Conference on Electro Information Technology, Brookings, SD, USA, 20–22 May 2019; IEEE Computer Society: Los Alamitos, CA, USA, 2019; pp. 092–097. [Google Scholar]
- Coelho, A.D.; Dias, B.G.; De Oliveira Assis, W.; De Almeida Martins, F.; Pires, R.C. Monitoring of soil moisture and atmospheric sensors with internet of things (IoT) applied in precision agriculture. In Proceedings of the 2020 14th Technologies Applied to Electronics Teaching Conference, TAEE 2020, Porto, Portugal, 8–10 July 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020. [Google Scholar]
- Thirisha, R.; Sugumar, D.; Sugitha, K.; Asha Sherin, J.; Dharshini, V.; Jose, A.V.; Tryphena, T.P. Precision Agriculture: IoT Based System for Real-Time Monitoring of Paddy Growth. In Proceedings of the 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology, ICSEIET 2023, Ghaziabad, India, 14–15 September 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023; pp. 247–251. [Google Scholar]
- Singh, D.N.; Kuriyan, S.J. Estimation of unsaturated hydraulic conductivity using soil suction measurements obtained by an insertion tensiometer. Can. Geotech. J. 2003, 40, 476–483. [Google Scholar] [CrossRef]
- Qi, H.J.; Jin, X.; Zhao, L.; Dedo, I.M.; Li, S.W. Predicting sandy soil moisture content with hyperspectral imaging. Int. J. Agric. Biol. Eng. 2017, 10, 175–183. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Si, B.; Hu, Y. Measuring Soil Water Content Using the Cosmic-ray Neutron Probe: A Review. J. Irrig. Drain. 2021, 40, 26–36. [Google Scholar]
- Ren, D.; Chen, F.; Pu, H.Y.; Zhang, Y.; Li, Y.P. Advances in Soil Moisture Monitoring Using Cosmic Ray Neutron Probe Method. J. Ecol. Rural. Environ. 2019, 35, 545–553. [Google Scholar]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Francesca, V.; Osvaldo, F.; Stefano, P.; Paola, R.P. Soil Moisture Measurements: Comparison of Instrumentation Performances. J. Irrig. Drain. Eng. 2010, 136, 81–89. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.R.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and Evaluation of a Frequency Domain Reflectometry Sensor for Real-Time Soil Moisture Monitoring. Vadose Zone J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- Veldkamp, E.; O’Brien, J.J. Calibration of a Frequency Domain Reflectometry Sensor for Humid Tropical Soils of Volcanic Origin. Soil Sci. Soc. Am. J. 2000, 64, 1549–1553. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Griffiths, H.M.; Dorigo, W.; Xaver, A.; Gruber, A. Surface Soil Moisture Estimation: Significance, Controls, and Conventional Measurement Techniques. In Remote Sensing of Energy Fluxes and Soil Moisture Content; CRC Press: Boca Raton, FL, USA, 2013; pp. 29–48. [Google Scholar]
- Tarantino, A.; Ridley, A.M.; Toll, D.G. Field measurement of suction, water content, and water permeability. Geotech. Geol. Eng. 2008, 26, 751–782. [Google Scholar] [CrossRef]
- Jones, S.B.; Wraith, J.M.; Or, D. Time domain reflectometry measurement principles and applications. Hydrol. Process 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wu, H.; Liang, X.; Xiao, C.; Zhao, Q.; Cao, Y.; Han, X. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model. Chemosphere 2022, 287, 131987. [Google Scholar] [CrossRef]
- Minet, J.; Lambot, S.; Delaide, G.; Huisman, J.A.; Vereecken, H.; Vanclooster, M. A Generalized Frequency Domain Reflectometry Modeling Technique for Soil Electrical Properties Determination. Vadose Zone J. 2010, 9, 1063–1072. [Google Scholar] [CrossRef]
- Pandey, J.; Chamoli, V.; Prakash, R. A review: Soil moisture estimation using different techniques. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–111. [Google Scholar]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Dutta, R. Remote Sensing of Energy Fluxes and Soil Moisture Content. J. Spat. Sci. 2015, 60, 196–197. [Google Scholar] [CrossRef]
- Anne, N.J.P.; Abd-Elrahman, A.H.; Lewis, D.B.; Hewitt, N.A. Modeling soil parameters using hyperspectral image reflectance insubtropical coastal wetlands. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 47–56. [Google Scholar]
- Wang, L.; Qu, J.J.; Hao, X.; Zhu, Q. Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. Int. J. Remote Sens. 2008, 29, 7065–7075. [Google Scholar] [CrossRef]
- Casamitjana, M.; Torres-Madroñero, M.C.; Bernal-Riobo, J.; Varga, D. Soil moisture analysis by means of multispectral images according to land use and spatial resolution on andosols in the colombian andes. Appl. Sci. 2020, 10, 5540. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Sousa, A.A.; Alves, M.C.; Nanni, M.R.; Fiorio, P.R.; Campos, R.C. Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma 2006, 135, 179–195. [Google Scholar] [CrossRef]
- Lesaignoux, A.; Fabre, S.; Briottet, X. Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain. Int. J. Remote Sens. 2013, 34, 2268–2285. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Ångström, A. The Albedo of Various Surfaces of Ground. Geogr. Ann. 1925, 7, 323–342. [Google Scholar]
- Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 μm domain. Sensors 2015, 15, 3262–3281. [Google Scholar] [CrossRef]
- Manfreda, S.; Mita, L.; Dal Sasso, S.F.; Samela, C.; Mancusi, L. Exploiting the use of physical information for the calibration of a lumped hydrological model. Hydrol. Process 2018, 32, 1420–1433. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Bowers, S.A.; Smith, S.J. Spectrophotometric Determination of Soil Water Content. Soil Sci. Soc. Am. J. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Lei, S.G.; Bian, Z.F.; Daniels, J.L.; Liu, D.L. Improved spatial resolution in soil moisture retrieval at arid mining area using apparent thermal inertia. Trans. Nonferrous Met. Soc. China 2014, 24, 1866–1873. [Google Scholar] [CrossRef]
- Kong, X.; Dorling, S.R. Near-surface soil moisture retrieval from ASAR Wide Swath imagery using a Principal Component Analysis. Int. J. Remote Sens. 2008, 29, 2925–2942. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermuller, L.; Herbst, M.; Martinez, G.; VanderBorght, J.; et al. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Holzman, M.; Srivastava, A.; Rivas, R.; Huete, A. Evaluating the Relationship Between Vegetation Status and Soil Moisture in Semi-Arid Woodlands, Central Australia, Using Daily Thermal, Vegetation Index, and Reflectance Data. Remote Sens. 2025, 17, 635. [Google Scholar] [CrossRef]
- Zhuang, X.; Shi, R.; Liu, C. Data fusion of satellite remotely sensed images and its application in agriculture. In PIAGENG 2010: Photonics and Imaging for Agricultural Engineering; SPIE: Bellingham, WA, USA, 2011; p. 77520T. [Google Scholar]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Khose, S.B.; Mailapalli, D.R.; Biswal, S.; Chatterjee, C. UAV-based multispectral image analytics for generating crop coefficient maps for rice. Arab. J. Geosci. 2022, 15, 1681. [Google Scholar] [CrossRef]
- Wang, S.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agric. For. Meteorol. 2018, 248, 479–493. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Awais, M.; Ji, L.; Li, H.; Song, R.; Cheema, M.J.M.; Agarwal, R. Research on Assimilation of Unmanned Aerial Vehicle Remote Sensing Data and AquaCrop Model. Sensors 2024, 24, 3255. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Q.; Xiao, J.; Ma, Y.; Wang, M.; Luan, R.; Liu, X.; Ping, Y.; Nie, Y.; Tao, Z.; et al. Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles. Remote. Sens. 2023, 15, 2988. [Google Scholar] [CrossRef]
- Wigmore, O.; Molotch, N.P. Weekly high-resolution multi-spectral and thermal uncrewed-aerial-system mapping of an alpine catchment during summer snowmelt, Niwot Ridge, Colorado. Earth Syst. Sci. Data 2023, 15, 1733–1747. [Google Scholar] [CrossRef]
- Paridad, P.; Sasso, S.D.; Pizarro, A.; Mita, L.; Fiorentino, M.; Margiotta, M.; Faridani, F.; Farid, A.; Manfreda, S. Estimation of soil moisture from UAS platforms using RGB and thermal imaging sensors in arid and semi-arid regions. Acta Horticulturae. Int. Soc. Hortic. Sci. 2022, 339–348. [Google Scholar] [CrossRef]
- Hsu, W.L.; Chang, K.T. Cross-estimation of soil moisture using thermal infrared images with different resolutions. Sensors Mater. 2019, 31, 387–398. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Marsal, J.; Girona, J.; González-Dugo, V.; Fereres, E. Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Aust. J. Grape Wine Res. 2016, 22, 307–315. [Google Scholar] [CrossRef]
- Acharya, B.S.; Bhandari, M.; Bandini, F.; Pizarro, A.; Perks, M.; Joshi, D.R.; Wang, S.; Dogwiler, T.; Ray, R.L.; Kharel, G.; et al. Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives. Water Resour. Res. 2021, 57, e2021WR029925. [Google Scholar] [CrossRef]
- Beyer, M.; Iraheta, A.; Gerchow, M.; Kuehnhammer, K.; Callau-Beyer, A.C.; Koeniger, P.; Dubbert, D.; Dubbert, M.; Sánchez-Murillo, R.; Birkel, C. UAV-Based Land Surface Temperatures and Vegetation Indices Explain and Predict Spatial Patterns of Soil Water Isotopes in a Tropical Dry Forest. Water Resour. Res. 2025, 61, e2024WR037294. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Yu, X.; Zhan, C.; Zhang, B.; Lu, L.; Liu, Z.; Li, B.; Sun, G.; Wang, Q. The Utility of Gordon’s Standard NIR Empirical Atmospheric Correction Algorithm for Unmanned Aerial Vehicle Imagery. J. Indian Soc. Remote Sens. 2021, 49, 2891–2901. Available online: https://link.springer.com/article/10.1007/s12524-021-01434-2 (accessed on 29 July 2025). [CrossRef]
- Gerchow, M.; Kühnhammer, K.; Iraheta, A.; Marshall, J.D.; Beyer, M. Enhanced flight planning and calibration for UAV based thermal imaging: Implications for canopy temperature and transpiration analysis. For. Glob. Change 2025, 8, 1457762. Available online: https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2025.1457762/full (accessed on 29 July 2025). [CrossRef]
- Dreissig, M.; Scheuble, D.; Piewak, F.; Boedecker, J. Survey on LiDAR Perception in Adverse Weather Conditions. In Proceedings of the IEEE Intelligent Vehicles Symposium, Anchorage, AK, USA, 4–7 June 2023. [Google Scholar]
- Sun, J.; Yuan, G.; Song, L.; Zhang, H. Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones 2024, 8, 30. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting soil moisture content over partially vegetation covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Yang MDer Hsu, Y.C.; Tseng, W.C.; Tseng, H.H.; Lai, M.H. Precision assessment of rice grain moisture content using UAV multispectral imagery and machine learning. Comput. Electron. Agric. 2025, 230, 109813. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K.; Sonkar, G.K.; Lee, C.C. Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions. IEEE Access 2023, 11, 13605–13635. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Srivastava, P.K.; Gupta, D.K.; Kumar, P.; Prasad, R.; Pandey, D.K.; Das, A.K.; Gupta, M. Machine learning algorithms for soil moisture estimation using Sentinel-1: Model development and implementation. Adv. Space Res. 2022, 69, 1799–1812. [Google Scholar] [CrossRef]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Yigrem, Y.; Mmelesse, A. Combined use of sentinel-1 sar and landsat sensors products for residual soil moisture retrieval over agricultural fields in the upper blue nile basin, ethiopia. Sensors 2020, 20, 3282. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine learning to estimate surface soil moisture from remote sensing data. Water 2020, 12, 1–28. [Google Scholar] [CrossRef]
- Araya, S.N.; Fryjoff-Hung, A.; Anderson, A.; Viers, J.H.; Ghezzehei, T.A. Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques. Hydrol. Earth Syst. Sci. 2021, 25, 2739–2758. [Google Scholar] [CrossRef]
- Hajdu, I.; Yule, I.; Dehghan-Shoar, M.H. Modelling of near-surface soil moisture using machine learning and multi-temporal sentinel 1 images in New Zealand. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 1422–1425. [Google Scholar]
- Afanaseva, O.V.; Tulyakov, T.F. Comparative Analysis of Image Segmentation Methods in Power Line Monitoring Systems. Int. J. Eng. Trans. A Basics 2026, 39, 1–11. [Google Scholar]
- Sarwar, A.; Peters, R.T.; Mohamed, A.Z. Linear mixed modeling and artificial neural network techniques for predicting wind drift and evaporation losses under moving sprinkler irrigation systems. Irrig. Sci. 2020, 38, 177–188. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Khan, M.I.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Yuan, S.; Quiring, S.M. Comparison of three methods of interpolating soil moisture in Oklahoma. Int. J. Clim. 2017, 37, 987–997. [Google Scholar] [CrossRef]
- Vergopolan, N.; Chaney, N.W.; Pan, M.; Sheffield, J.; Beck, H.E.; Ferguson, C.R.; Torres-Rojas, L.; Sadri, S.; Wood, E.F. SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US. Sci. Data 2021, 8, 264. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, N.; Kumar, J.; Sinha, N.K. Machine learning for soil moisture assessment. In Deep Learning for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 143–168. [Google Scholar]
- Duarte, E.; Hernandez, A. A Review on Soil Moisture Dynamics Monitoring in Semi-Arid Ecosystems: Methods, Techniques, and Tools Applied at Different Scales. Appl. Sci. 2024, 14, 7677. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef]
- Šimůnek, J.; Brunetti, G.; Jacques, D.; van Genuchten, M.T.; Šejna, M. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone J. 2024, 23, e20310. [Google Scholar] [CrossRef]
- Adamala, S.; Velmurugan, A.; Swarnam, T.P.; Palakuru, M.; Subramani, T.; Jaisankar, I.; Nanda, B.K.; Kumari, N.; Srivastava, A. Soil moisture mapping in Indian tropical islands with C-band SAR and artificial neural network models. Environ. Monit. Assess. 2025, 197, 758. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. In Computers and Electronics in Agriculture; Elsevier B.V.: Amsterdam, The Netherlands, 2022; Volume 198. [Google Scholar]
- Singh, A.; Gaurav, K. PIML-SM: Physics-Informed Machine Learning to Estimate Surface Soil Moisture From Multisensor Satellite Images by Leveraging Swarm Intelligence. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Huang, Y. Improved SVM-Based Soil-Moisture-Content Prediction Model for Tea Plantation. Plants 2023, 12, 2309. [Google Scholar] [CrossRef] [PubMed]
Reference | Technology Used | Calibration Method | Soil Depth | Key Findings | Model/Accuracy |
---|---|---|---|---|---|
[30] | Soil reflectance in VIS NIR, portable sensors equipped with DGPS | Gravimetric method | 15 cm | Accurate SM prediction using reflectance | R2 = 0.95 |
[31] | Veris-3100 + geostatistical modeling | Laboratory | 30 cm | Demonstrated utility of proximal sensing for SM in water-stressed conditions | Gaussian smoothing |
[32] | TDR 300 probe | Comparison with SM probes | 20 cm | Strong SM–EC correlation within 5 m computation rings | R2 = 0.79 |
[33] | Hyperspectral imagery | Gravimetric method | 30 cm | NIR bands correlated well with SM | PLSR: MAPE less than 11% |
[34] | FieldSpec ASD + TRIME-PICO/TDR-100 | Calibration via probe comparison | 3.7 & 5 cm | Consistent SM image in clay; variable in sand (surface more accurate) | SM range image accuracy of 5% (surface), 17% (deeper) |
[35] | VIS-NIR spectrometer | Not specified | Not specified | General model not reported | |
[36] | Optic fibers + Decagon FDR sensor | Not specified | 6 cm | Cost-effective for continuous SM in a 0 to 35% range | - |
[37] | Cubert sensor with TDR probes | Sensor comparison | 2.5–20 cm | Highlights error propagation from inhomogeneous SM | ET model: R2 = 73.1% |
[38] | ASD AgriSpec spectrometer | Lab | - | Good results when using mix soil texture | SMLR (R2) = 0.937 |
[39] | Gaia Sorter Hyperspectral System | Standard oven-dried at 105 °C | 0 to 10 cm | Selected wavelengths (695–796 nm) using CARS-SPA provided optimal band filtering | Multiple linear regression: R2 = 0.83 |
[40] | Cubert UHD 285 Snapshot Hyperspectral Camera | Various in situ TDR sensors | 2 to 20 cm | GPR-ML significantly enhanced prediction of SM versus PCA, DT, RF, and Bayesian models | GPR-ML: R2 = 0.97 |
[41] | Dual UAVs using bistatic radar for soil analysis | TDR-150 Sensor | Surface layer | Analyzed soil reflection using Brewster angle for groundwater and heterogeneity mapping | Not applicable |
[42] | UAV along RGB, NIR, and thermal cameras | Field truth data | Topsoil | UAV imagery yielded more actionable moisture insights than traditional remote sensing | Relevance vector machine: RMSE value 3.04% |
[43] | DJI Matrice along with a hyperspectral camera | Oven-dried at 105 °C | 0 to 10 cm | Feature optimization and XGBoost resulted in highly accurate moisture estimation | FOD-XGBoost model: R2 = 0.885 |
[44] | DJI Phantom | TZS-ECW-G Probe | 10 cm | Aimed to increase UAV adoption for SM monitoring in dry regions | MLR: R2 = 0.86 for stable moisture; R2 = 0.77 for higher readings |
[45] | Fixed-Wing AggieAir UAV (RGB, NIR, and thermal) | TDR sensors | 15, 45, and 76 cm | Gaussian process model outperformed ANN and SVM for deep-layer soil prediction | GP at 76 cm: R2 value 0.8 |
[46] | DJI Matrice with hyperspectral imagery | Gravimetric method | 0 to 10 cm | Random Forest outperformed ELM in predictive accuracy | PIR model (RF-based): R2 = 0.907 |
[47] | DJI S900 along High-res RGB, RedEdge multispectral, and TIR cameras | Gravimetric method | 10 and 20 cm | RFR was highly accurate across growth cycles irrespective of sensor types | RFR outperformed KNN (R2 = 0.78) |
[48] | Multispectral sensor MicaSense RedEdge-MX | Field Scout TDR-350 | 10 and 20 cm | Multispectral and multivariate models proved more effective, especially in deeper zones | RER > PLSR/KNN/BPNN: R2 value 0.8 |
[49] | Multispectral with thermal Camera | SMC probes | Topsoil | PCA helped dimensionality reduction; canny edge detection enhanced thermal image clarity | RBFNN/PCA-RBFNN: R2 ≈ 0.93 |
[50] | UAV + PulsOn440 radar | Hygrometer | Topsoil | CNNR integrating vegetation indices (NDVI, MSAVI, and DVI) exceeded SVR and GRNN in performance | CNNR: R2 = 0.92 |
[51] | Nano-Hyperspec + SoilNet (55 nodes) | Theta probe | 5 cm | Canopy complexity was a limiting factor; VHGPR model performed well in water-limited zones | VHGPR: R2 = 0.8 |
[52] | UAV + thermal camera | Profile probe | 0 to 100 cm | Water stress impacted root mass and sugar content; thermal imagery identified this accurately | ANOVA: R2 = 0.28 (roots), R2 = 0.94 (sugar) |
[53] | Landsat-8, Radarsat-2, ASTER DEM V002, DJI | Gravimetric method | 5 cm | Developed a regression model using Landsat-8 height index with band B5 in karst terrain | Partial least squares regression (PLSR): R2 = 0.36 |
[54] | UAV mounted with thermal and multispectral sensors | Smc probe | 15 and 40 cm | A new water dynamics model linking soil and plant water status was introduced for hazelnut orchards | Kalman filter for continuous tracking |
[55] | Sentinel-2B multispectral data | METER EC-5 sensors | 5–10 cm | Traditional tillage influenced SM readings more than land cover, with terrain properties aiding better SM prediction | XGBoost with terrain data: R2 value 0.8 |
[56] | Sentinel-1A satellite | DM8 Tensiometer + Penetrometer | 15 & 25 cm | Soil moisture and workability distributions were mapped, but higher sample diversity is required for soil type variability | Multi-polynomial regression: 83.6% (train), 81.2% (test) accuracy |
[57] | SMAP L3 with L-band radar & MODIS | Three ground station networks | 5 cm | Incorporating surface temperature, evaporation efficiency, and topographic data enhanced model outputs | SVR and FNN performed best with Z-score and tanh normalization |
[58] | Sentinel-2 remote sensing | TDR multisensory probes | 15, 30, etc. | Two-way ANOVA showed improved yield and biomass with irrigation & fertigation strategies | Yield increased by +116.10%, biomass +119.71%, drainage losses decreased by 41.0% |
[59] | Sentinel-2 imagery | Hydra probes | 5 and 10 cm | NDVI space enhanced the OPTRAM model, improving SM mapping at field scale | OPTRAM with improved parameter fitting: R2 between 0.60 and 0.66 |
[60] | Sentinel-2 with NDVI analysis | EC-5 capacitive sensor (METER) | 15, 35 and 50 cm | Combining NDVI with soil variables improved irrigation management in maize crop; real-time analysis reduced SM variance | Variance dropped from 85% to <25% across crop stages |
[61] | Digital impedance analyzer with modified commercial sensor | Lab-based LCR meter | Not Applicable | Introduced a low-cost FEM-based capacitive sensor system, not previously investigated in SM detection | Finite element modeling (FEM) used for sensor simulation |
[62] | Wireless underground sensor | Not applicable | Not Applicable | Wireless link between buried sensors demonstrated a communication range of up to 3 m | Not applicable |
[63] | Capacitive sensors insulated with varnish | Gravimetric method | Not specified | Cu and AGS materials were most responsive to SM changes; insulation improvements are necessary to ensure long-term use | Regression R2: 0.958 (Cu), 0.953 (AGS) |
[64] | SM sensor integrated with WSN and IoT | Not specified | Not specified | Real-time monitoring system that tracks SM, humidity, and air temperature, with image processing via ThingSpeak | Utilized ANN and image analysis |
[65] | Weather station with soil moisture sensor (W-SSS) using SHT-10 | Not mentioned | 10 & 28 cm | Created a budget-friendly W-SSS using accurate sensors and wireless/cloud infrastructure for environmental monitoring | Not available |
[66] | Capacitive sensors in IoT | Capacitive hygrometer | Not stated | Sensors interface with microcontrollers and transmit data through LoRaWAN communication | Regression modeling applied |
[67] | IoT sensors for paddy environments | Laboratory testing | Not reported | Designed a cost-efficient and easy-to-use system combining various sensors and communication methods | Not available |
Method | Accuracy | Major Advantages | Major Disadvantages | Cost | Soil Suitability | References |
---|---|---|---|---|---|---|
Gravimetric | High |
|
| Low | All | [72,73] |
TDR | High |
|
| Medium | All except saline soil | [74,75] |
FDR | High |
|
| Medium | All except clayey and silty soils | [28] |
Gamma ray | High |
|
| Costly | All | [28,76] |
Tensiometer | High |
|
| Cost-Effective | Not favorable for dry condition | [77,78] |
Capacitance sensor | High but depends on several factors |
|
| Costly | All | [77] |
Category | Technique | Pros | Cons | Reference |
---|---|---|---|---|
Optical Method | Reflectance-usage methods | Moderate spatial resolution; potential with upcoming hyperspectral missions. | Limited performance over dense vegetation; low temporal resolution; sensitive to cloud cover. | [85] |
Thermal Infrared | Thermal infrared-usage methods | Moderate resolution; strong correlation between soil moisture and thermal inertia. | Low revisit rates; atmospheric influence; limited in vegetated and cloudy conditions. | [96] |
Microwave Passive | Various methods | Reliable over bare soils; effective under cloudy skies with higher temporal frequency. | Coarse resolution; affected by vegetation and surface roughness. | [97] |
Microwave Active | Empirical, semi-empirical, and physical methods | High spatial resolution; capable in cloudy and daytime conditions. | Limited revisit frequency; prominently sensitive to surface roughness and vegetative cover. | [98] |
Synergistic Methods | Optical and thermal infrared | Enhanced moisture content retrieval using multiple sensor data. | Empirical limitations; poor performance under clouds; restricted sensing depth. | [99] |
Active and passive microwave | Improved temporal resolution and soil moisture detection. | Requires careful scaling and validation. | [100] | |
Optical and Thermal | Thermal sensor, vegetation index and spectral reflectance | Strong correlation between soil moisture and land-surface temperature (LST) indicates that LST can serve as an effective tool for early monitoring of vegetation status. | Coarse spatial resolution may miss small-scale variations. | [101] |
Sensor Type | Influence of Weather Conditions | Impact on Data Quality | Calibration | Reference |
---|---|---|---|---|
RGB Camera | Cloud cover, variable sunlight (solar angle), shadows, and haze reduce contrast and affect surface reflectance measurements. | Reflectance inconsistency, shadow artifacts, over/under-exposed regions. | Radiometric calibration using reflectance panels | [115] |
NIR Sensor | Atmospheric moisture and haze scatter NIR wavelengths, altering vegetation reflectance; sun angle changes spectral response. | Errors in vegetation indices (e.g., NDVI), spatial inconsistency in reflectance values. | Calibration with multi-level reflectance targets | [116] |
Thermal Camera | Ambient temperature fluctuations, wind cooling of surfaces, humidity, and solar heating drift thermal readings during flights. | Inaccurate surface temperature maps; thermal drift; variability in emissivity assumptions. | Blackbody calibration targets | [117] |
LiDAR Sensor | Fog, rain, dust, and humidity scatter and attenuate laser pulses, reducing return strength. | Reduced point density, increased noise, poorer vegetation penetration, and degraded elevation accuracy. | Boresight and range calibration | [118] |
Reference | Year | Methods Used | Key Findings |
---|---|---|---|
[120] | 2021 | UAV multispectral imaging; machine learning (Random Forest); multiple linear regression | Built models between vegetation indices and SMC at different crop stages; high accuracy and model stability. |
[47] | 2023 | UAV RGB, NIR, and thermal infrared sensors; NDVI analysis; patch trait quantification | Evaluated Green NDVI (GNDVI) and vegetation patch impacts on soil moisture; showed trait influence on SMC monitoring accuracy. |
[44] | 2020 | UAV visible-band imagery; brightness analysis; correlation with ground SMC; statistical modeling | Image brightness strongly correlated with SMC; combining brightness with vegetation cover improved estimation accuracy. |
[111] | 2022 | UAV-mounted RGB and thermal sensors; texture and temperature analysis; regression modeling | Discovered relationships between soil texture, surface temperature, and SMC in arid regions; useful for localized water management strategies. |
[69,121] | 2017, 2025 | UAV with hyperspectral bands | Helps in ground moisture content mapping, ultimately for risk management during extreme events |
Reference | Moisture Content Data | Remote Sensing Inputs | Satellite/ Platform | Machine Learning Models | Best-Performing Model | Performance Metrics | Study Area |
---|---|---|---|---|---|---|---|
[122] | TDR | NDVI, radar backscatter (VV, VH), incidence angle, DEM | Sentinel-1 & Sentinel-2 | ANN, GRNN, SVR, RF, RNN, AutoML Boosting, EL, BDT | ANN | RMSE = 0.04 m3/m3; R2 = 0.80 | India |
[10] | TDR | NDVI and NTR reflectance | UAV | Various ML models | Not specified | RMSE = 0.04 cm3/cm3; Nash–Sutcliffe efficiency > 0.90 | USA |
[123] | TDR | Radar backscatter (VV, VH) | Sentinel-1 | ANN, RF, SBC, WM, etc. | SBC | R2 = 0.64; bias = −0.01 m3/m3 | India |
[124] | TDR | NDWI, radar backscatter (VV, VH) | Sentinel-1, Landsat-7 & -8 | ANN, LRM | ANN | RMSE = 0.04 cm3/cm3; R2 = 0.73 | Ethiopia |
[125] | TDR | Optical reflectance | Landsat-8 | ANN, RF, SVM, Elastic Net (EN) | RF | NS = 0.73 | Iran |
[126] | Oven-dry method | Spectral reflectance | UAV | ANN, RF, SVM, Relevance Vector Regression (RVR), Boosted RT (BRT) | BRT | R2 = 0.91; RMSE = 1.48%; RPD = 3.396% | China |
[127] | TDR | Radar backscatter (VV, VH), incidence angle | Sentinel-1 | Random Forest (RF) | RF | R2 = 0.86; RMSE = 3% | New Zealand |
Method | Accuracy | Cost | Spatial Resolution | Temporal Resolution | Applicability |
---|---|---|---|---|---|
In Situ | High accuracy | High | Very fine | Continuous or scheduled (depends on instrumentation) | Highly reliable in all climatic conditions |
Satellite Remote Sensing | Moderate to low (depends on resolution) | Low to moderate | Coarse to moderate | Revisit cycle | Effective for large-scale monitoring |
UAV-Based Sensing | High accuracy | Moderate to high (equipment + field operation costs) | Very high (cm-level spatial resolution) | Flexible (on-demand flights, weather dependent) | Highly effective for field-to-farm scale; weather constraints (rain, wind); requires site-specific calibration procedures. |
Machine Learning Models | Variable | Moderate (computational resources, data availability) | Dependent on input data resolution | Can generate high-frequency estimates (model-based) | Scalable to different climates |
Year | Input/Data Used | Model/Algorithm | Key Findings/Outcomes | Reference |
---|---|---|---|---|
2017 | Oklahoma Mesonet data (65 stations) | ROI, IDW, Co-Kriging | ROI was more precise than traditional interpolation methods like IDW | [132] |
2020 | Landsat-8 thermal and optical data | Random Forest (RF) | RF achieved highest prediction accuracy in restoration areas of semi-arid Iran | [125] |
2020 | Soil/environmental variables | RF, SVM, MARS, CART | Growing preference for RF due to better performance and interpretability | [111] |
2021 | Coarse-resolution satellite SM products | Random Forest (RF) | Increased SM map resolution to 30 m, enhancing utility for fine-scale applications | [133] |
2022 | Review of ML in SM studies | ANN, SVM, CART, RF | Concluded RF and CART as more interpretable than SVM/ANN | [134] |
2023 | Satellite-derived surface variables (0–5 cm) | Random Forest (RF) | Provided daily SM estimates at 1 km spatial resolution incorporating machine learning | [26] |
2023 | Mixed remote sensing inputs | Ensemble: KNR + RF + XGBoost | Ensemble model outperformed others in SM estimation accuracy | [26,40] |
2024 | Remote sensing hydroclimatic data | Multiscale Extrapolative Learning Algorithm (MELA) | Predicted SM at multiple depths monthly in semi-arid regions | [135] |
2024 | Watershed data (climate, land use) | SWAT | Simulates the effect of land management on water, nutrients, and sediments | [136] |
2024 | Land surface, atmospheric data | CLM (Community Land Model) | Integrates biogeophysical processes to simulate SM accurately | [137] |
2024 | Regional-scale climate and topography | VIC (Variable Infiltration Capacity) | Balances water and energy fluxes; captures spatial SM variation | [138] |
2024 | Soil hydraulic and solute transport parameters | Hydrus-1D | Simulates vertical water and solute flow in variably saturated media | [139] |
2025 | C-band SAR data, Sentinel-2A, Landsat-8 | ANN, MLR, backscattering coefficients (σ°: VV and VH) | ANN models performs better than MLR models with high R2 and low RMSE | [140] |
Methods | Items | Clusters | Links | Total Links | Keywords |
---|---|---|---|---|---|
Gravimetric method | 22 | 5 | 94 | 183 | Soil moisture |
Tensiometer | 24 | 4 | 83 | 85 | Moisture content |
Time-domain reflectometry (TDR) | 63 | 10 | 243 | 268 | Soil moisture, TDR |
Frequency-domain reflectometry (FDR) | 11 | 5 | 123 | 125 | Soil moisture, FDR |
Gamma-ray probe | 24 | 4 | 91 | 98 | Gamma-ray attenuation |
Methods | Items | Cluster | Links | Total Links Strength |
---|---|---|---|---|
Random Forest (RF) | 52 | 10 | 257 | 513 |
Artificial Neural Networks (ANNs) | 22 | 4 | 96 | 249 |
Support Vector Machine | 89 | 14 | 355 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haokip, S.C.; Rajwade, Y.A.; Rao, K.V.R.; Kumar, S.P.; Marak, A.B.; Srivastava, A. Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review. Water 2025, 17, 2388. https://doi.org/10.3390/w17162388
Haokip SC, Rajwade YA, Rao KVR, Kumar SP, Marak AB, Srivastava A. Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review. Water. 2025; 17(16):2388. https://doi.org/10.3390/w17162388
Chicago/Turabian StyleHaokip, Songthet Chinnunnem, Yogesh A. Rajwade, K. V. Ramana Rao, Satya Prakash Kumar, Andyco B. Marak, and Ankur Srivastava. 2025. "Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review" Water 17, no. 16: 2388. https://doi.org/10.3390/w17162388
APA StyleHaokip, S. C., Rajwade, Y. A., Rao, K. V. R., Kumar, S. P., Marak, A. B., & Srivastava, A. (2025). Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review. Water, 17(16), 2388. https://doi.org/10.3390/w17162388