A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning
Abstract
1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Source
3. Materials and Methods
3.1. Xinanjiang Model
3.2. Long Short-Term Memory Networks
3.3. XAJ-LSTM-TFM
3.4. Model Calibration and Validation
4. Results
4.1. XAJ Model Calibration Results
4.2. Model Comparison and Lagged Feature Analysis
4.3. Applicability of the Local XAJ-LSTM-TFM Model in Basin Simulations
4.4. Generalization Evaluation
5. Discussion
5.1. Applicability of the Model in the Poyang Lake Basin
5.2. Factors Affecting the Generalization Capability of the Model
5.3. Limitations of Neural Network-Based Construction
5.4. Future Improvements
6. Conclusions
- Performance Enhancement: The hybrid model demonstrates significant improvements over the conventional XAJ model across all five sub-basins. In the Ganjiang River Basin, validation results show a 0.053 increase in Nash–Sutcliffe Efficiency (NSE), with peak flow simulation errors reduced from to and a 2-day improvement in peak timing prediction.
- Lag Feature Optimization: Analysis of 1–3 day lagged rainfall and evaporation features reveals their critical importance, improving test set NSE from 0.785 to 0.812 in the Ganjiang Basin. A 2–3 day lag window was identified as optimal for balancing accuracy and computational efficiency.
- Regional Applicability: The model maintains stable performance (NSE: 0.701–0.878) across most sub-basins, except in the Xiushui Basin where reservoir operations present challenges. Nevertheless, it outperforms traditional methods in human-impacted watersheds.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XAJ | Xinanjiang |
LSTM | Long Short-Term Memory network |
TFM | Time-lagged Feature Modeling |
PGDL | Physics-Guided Deep Learning |
NSE | Nash–Sutcliffe Efficiency |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
References
- Li, B.; Yang, G.; Wan, R. Reassessment of the Declines in the Largest Freshwater Lake in China (Poyang Lake): Uneven Trends, Risks and Underlying Causes. J. Environ. Manag. 2023, 342, 118157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Molinos, J.G.; Shi, L.; Zhang, M.; Wu, Z.; Zhang, H.; Xu, J. Drivers and Changes of the Poyang Lake Wetland Ecosystem. Wetlands 2019, 39, 35–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Wang, Y.G.; Werner, A.D.; Xin, P.; Jiang, T.; Barry, D.A. Has the Three Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett. 2012, 39, 20. [Google Scholar] [CrossRef]
- Shankman, D.; Keim, B.D.; Song, J. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Climatol. 2006, 26, 1255–1266. [Google Scholar] [CrossRef]
- Gao, J.H.; Jia, J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.; et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Sci. Total Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Jiang, J.; Yang, G.; Lu, X. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrol. Processes 2014, 28, 150–160. [Google Scholar] [CrossRef]
- Wu, K.; Hu, M.; Zhang, Y.; Zhou, J.; Wu, H.; Wang, M.; Chen, D. Long-term riverine nitrogen dynamics reveal the efficacy of water pollution control strategies. J. Hydrol. 2022, 607, 127582. [Google Scholar] [CrossRef]
- Lu, J.; Cui, X.; Chen, X.; Sauvage, S.; Perez, J.M.S. Evaluation of hydrological response to extreme climate variability using SWAT model: Application to the Fuhe basin of Poyang Lake watershed. Hydrol. Res. 2016, 47, 215–230. [Google Scholar] [CrossRef]
- Guo, J.; Guo, S.; Li, T. Daily runoff simulation in Poyang Lake Intervening Basin based on remote sensing data. Procedia Environ. Sci. 2011, 10, 2740–2747. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Liang, K.; Liu, X.; Liu, C. A Comparison of Simple and Complex Versions of the Xinanjiang Hydrological Model in Predicting Runoff in Ungauged Basins. Hydrol. Res. 2017, 48, 1282–1295. [Google Scholar] [CrossRef]
- Tan, Y.; Dong, N.; Hou, A.; Yan, W. An Improved Xin’anjiang Hydrological Model for Flood Simulation Coupling Snowmelt Runoff Module in Northwestern China. Water 2023, 15, 3401. [Google Scholar] [CrossRef]
- Lei, X.; Gao, L.; Wei, J.; Ma, M.; Xu, L.; Fan, H.; Li, X.; Gao, J.; Dang, H.; Chen, X.; et al. Contributions of climate change and human activities to runoff variations in the Poyang Lake Basin of China. Phys. Chem. Earth 2021, 123, 103019. [Google Scholar] [CrossRef]
- Boughton, W. The Australian water balance model. Environ. Model. Softw. 2004, 19, 943–956. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. Discuss. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Fan, H.; Jiang, M.; Xu, L.; Zhu, H.; Cheng, J.; Jiang, J. Comparison of Long Short-Term Memory Networks and the Hydrological Model in Runoff Simulation. Water 2020, 12, 175. [Google Scholar] [CrossRef]
- Shen, C. A trans-disciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Shen, C.; Appling, A.P.; Gentine, P.; Bandai, T.; Gupta, H.V.; Tartakovsky, A.; Baity-Jesi, M.; Fenicia, F.; Kifer, D.; Li, L.; et al. Differentiable modeling to unify machine learning and physical models and advance Geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Xie, K.; Liu, P.; Zhang, J.; Han, D.; Wang, G.; Shen, C. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships. J. Hydrol. 2021, 603, 127043. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Z.; Lin, K.; Sheng, S.; Chen, H.; Guo, S.; Xu, C.Y. Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J. Hydrol. 2022, 604, 127255. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Zhao, G. A novel deep learning rainfall–runoff model based on Transformer combined with base flow separation. Hydrol. Res. 2024, 55, 576–594. [Google Scholar] [CrossRef]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef]
- Xue, H.; Wu, H.; Dong, G.; Gao, J. A Hybrid Forecasting Model to Simulate the Runoff of the Upper Heihe River. Sustainability 2023, 15, 7819. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Y.; Chen, J.; Chen, T.; Liu, J.; Ding, L.; Zhang, N.; Gao, Q. Comparisons of Retention and Lag Characteristics of Rainfall–Runoff under Different Rainfall Scenarios in Low-Impact Development Combination: A Case Study in Lingang New City, Shanghai. Water 2023, 15, 3106. [Google Scholar] [CrossRef]
- Zhao, L.; Nie, X.; Zheng, H.; Liao, K.; Zhang, J. The Lag Effect of Riverine Flow-Discharge and Sediment-Load Response to Antecedent Rainfall with Different Cumulative Durations in Red Hilly Area in China. Water 2023, 15, 4048. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S. Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine-Learning Applied to Large-Sample Datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Jiang, P.; Shuai, P.; Sun, A.; Mudunuru, M.K.; Chen, X. Knowledge-informed deep learning for hydrological model calibration: An application to Coal Creek Watershed in Colorado. Hydrol. Earth Syst. Sci. 2023, 27, 2621–2638. [Google Scholar] [CrossRef]
- Zhong, L.; Lei, H.; Yang, J. Development of a Distributed Physics-Informed Deep Learning Hydrological Model for Data-Scarce Regions. Water Resour. Res. 2024, 60, e2023WR036333. [Google Scholar] [CrossRef]
- Bai, J.; Alzubaidi, L.; Wang, Q.; Kuhl, E.; Bennamoun, M.; Gu, Y. Utilising physics-guided deep learning to overcome data scarcity. arXiv 2022, arXiv:2211.15664. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Xu, C.Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Jiang, T.; Shi, Y.F. Global warming and its consequences in Yangtze River floods and damages. Adv. Earth Sci. 2003, 18, 277–284. [Google Scholar]
- Hu, Q.; Feng, S.; Guo, H.; Jiang, T. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 2007, 347, 90–100. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Zhang, Q.; Feng, S. Effects of the Three Gorges Dam on Yangtze River Flow and River Interaction with Poyang Lake, China: 2003–2008. J. Hydrol. 2012, 416–417, 19–27. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Zhao, X. Recent declines in China’s largest freshwater lake: Trend or regime shift? Environ. Res. Lett. 2013, 8, 014010. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S. Southward migration of centennial-scale variations of drought/flood in eastern China and western United States. J. Clim. 2001, 14, 1323–1328. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Gleason, C.J.; Wada, Y. Downstream Yangtze River levels impacted by Three Gorges Dam. Environ. Res. Lett. 2013, 8, 044012. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dynamic simulation changes of China’s two largest freshwater lakes linked to the Three Gorges Dam. Environ. Sci. Technol. 2013, 47, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, Y.; Fang, L.; Liu, X.; Zhang, Q. The Xinanjiang model. In Proceedings of the Oxford Symposium; IAHS Publication: Wallingford, UK, 1980; Volume 129, pp. 351–356. [Google Scholar]
- Zhao, R. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–378. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. A survey on long short-term memory networks for time series prediction. Procedia CIRP 2021, 99, 650–655. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, Y.; Guo, S.; Wang, J.; Ba, H.; He, S. A novel hybrid XAJ-LSTM model for multi-step-ahead flood forecasting. Hydrol. Res. 2021, 52, 1436–1453. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Chang, F.J. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. J. Hydrol. 2019, 570, 343–355. [Google Scholar] [CrossRef]
- Lu, B.; Li, K.; Zhang, H.; Wang, W.; Gu, H. Study on the optimal hydropower generation of Zhelin reservoir. J. Hydro-Environ. Res. 2013, 7, 270–278. [Google Scholar] [CrossRef]
- Jiang, Y.; Andersson, L.; Arheimer, B.; Yang, W.; Liu, C. Modelling the impact of runoff generation on agricultural and urban phosphorus loading of the subtropical Poyang Lake (China). J. Hydrol. 2020, 590, 125490. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, P.; Cai, Y.; Chu, J.; Li, Y.; Wang, X.; Li, C.; Liu, Q. Spatial-temporal heterogeneity analysis of blue and green water resources for Poyang Lake Basin, China. J. Hydrol. 2023, 617, 128983. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Chu, W.; Shen, D.; Li, R. A process-driven deep learning hydrological model for daily rainfall-runoff simulation. J. Hydrol. 2024, 637, 131434. [Google Scholar] [CrossRef]
Station | River | Longitude (°E) | Latitude (°N) | Drainage Area (km2) |
---|---|---|---|---|
Waizhou | Ganjiang | 115.83 | 28.63 | 80,948 |
Lijiadu | Fuhe | 116.17 | 28.22 | 15,811 |
Meigang | Xinjiang | 116.82 | 28.43 | 15,535 |
Hushan | Raohe (Le’an) | 117.27 | 28.92 | 6374 |
Wanjiabu | Xiushui (Liaohe) | 115.65 | 28.85 | 3548 |
Abbreviation | Parameter Name | Range |
---|---|---|
WM | Average watershed water storage capacity | 100–300 |
WUM | Upper soil layer water holding capacity | 50–100 |
WLM | Lower soil layer water holding capacity | 30–50 |
X | Proportional coefficient of upper tension water capacity | 0–1 |
Y | Proportional coefficient of lower tension water capacity | 0–1 |
KC | Watershed evapotranspiration conversion coefficient | 0.8–2 |
C | Deep evapotranspiration diffusion coefficient | 0.1–0.9 |
B | Exponent of the soil moisture storage capacity curve | 0.5–2 |
IMP | Impervious area ratio | 0–1 |
SM | Surface free water storage capacity | 100–200 |
EX | Exponent of surface free water storage capacity curve | 0.1–1.6 |
KI | Outflow coefficient to groundwater | 0.1–0.3 |
KG | Groundwater recession coefficient | 0.6–0.99 |
CG | Outflow coefficient to interflow | 0.1–0.4 |
CI | Interflow recession coefficient | 0.1–0.9 |
Watershed | Nash–Sutcliffe | RMSE | MAE | |||
---|---|---|---|---|---|---|
Calib. (NSE) | Valid. (NSE) | Calib. (m3/s) | Valid. (m3/s) | Calib. (m3/s) | Valid. (m3/s) | |
Ganjiang | 0.785 | 0.758 | 1003.4 | 1127.6 | 652.6 | 708.7 |
Fuhe | 0.791 | 0.797 | 302.3 | 283.5 | 158.7 | 138.7 |
Xinjiang | 0.804 | 0.834 | 396.0 | 355.0 | 205.0 | 192.9 |
Raohe | 0.760 | 0.701 | 214.7 | 314.0 | 106.8 | 116.8 |
Xiushui | 0.615 | 0.539 | 94.6 | 123.1 | 47.2 | 52.7 |
Watershed | Date (YYYY-MM) | Observed (m3/s) | Simulated (m3/s) | Error (%) | Lag (d) | NSE |
---|---|---|---|---|---|---|
Ganjiang | 2010-06 | 21,100 | 11,744 | −44.3 | 3 | 0.309 |
2010-06 | 19,600 | 11,757 | −40.0 | −1 | −0.071 | |
2019-07 | 19,589 | 13,731 | −29.9 | −1 | 0.699 | |
Fuhe | 2010-06 | 9966 | 5689 | −42.9 | 3 | 0.716 |
2019-07 | 8356 | 5472 | −34.5 | 0 | 0.740 | |
2016-05 | 6332 | 4763 | −24.8 | 0 | 0.833 | |
Xinjiang | 2010-06 | 11,900 | 5957 | −49.9 | −1 | 0.466 |
2020-07 | 9450 | 7984 | −15.5 | 0 | 0.800 | |
2013-06 | 8417 | 6513 | −22.6 | 0 | 0.804 | |
Hushan | 2022-06 | 10,160 | 3768 | −62.9 | −1 | 0.515 |
2011-06 | 7410 | 6186 | −16.5 | 0 | 0.789 | |
2020-07 | 6420 | 4089 | −36.3 | 0 | 0.297 | |
Xiushui | 2020-07 | 3400 | 1031 | −69.7 | 0 | −0.133 |
2016-07 | 2789 | 1691 | −39.4 | −1 | 0.785 | |
2017-06 | 2365 | 2203 | −6.9 | 0 | 0.928 |
Watershed | NSE | RMSE (m3/s) | MAE (m3/s) | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
Ganjiang | 0.841 | 0.802 | 867.23 | 1032.1 | 520.1 | 620.94 |
Fuhe | 0.821 | 0.842 | 279.92 | 252.64 | 147.17 | 131.14 |
Xinjiang | 0.878 | 0.821 | 313.28 | 384.47 | 168.86 | 212.11 |
Hushan | 0.801 | 0.715 | 200.29 | 305.02 | 94.38 | 112.12 |
Xiushui | 0.638 | 0.553 | 92.15 | 122.53 | 46.21 | 51.43 |
Watershed | Date | Observed (m3/s) | Simulated (m3/s) | Error (%) | Lag (h) | NSE |
---|---|---|---|---|---|---|
Ganjiang | 2010-05-13 | 21,100 | 17,175.7 | −18.6 | 1 | 0.821 |
2010-05-17 | 19,600 | 16,449.7 | −16.1 | −3 | 0.729 | |
2019-04-22 | 19,589 | 18,214.2 | −7.0 | 0 | 0.938 | |
Fuhe | 2010-05-17 | 9966 | 5997.4 | −39.8 | 1 | 0.759 |
2019-05-01 | 8356 | 6444.6 | −22.9 | 0 | 0.846 | |
2016-04-05 | 6332 | 4718.0 | −25.5 | 1 | 0.844 | |
Xinjiang | 2010-05-17 | 11,900 | 9903.3 | −16.8 | 0 | 0.855 |
2020-05-01 | 9450 | 10,239.4 | 8.9 | 0 | 0.795 | |
2013-05-26 | 8417 | 7776.6 | −7.6 | 0 | 0.947 | |
Hushan | 2022-06-21 | 10,160 | 3756.0 | −63.0 | −1 | 0.513 |
2011-06-16 | 7410 | 6052.1 | −18.3 | 0 | 0.788 | |
2020-07-09 | 6420 | 3985.7 | −37.9 | 0 | 0.298 | |
Xiushui | 2020-04-10 | 3400 | 1309.0 | −61.5 | 0 | −0.140 |
2016-05-21 | 2789 | 1067.2 | −61.7 | −1 | 0.516 | |
2017-03-27 | 2365 | 1834.6 | −22.4 | 0 | 0.905 |
Watershed Name | NSE (Training) | NSE (Testing) | RMSE (Training) | RMSE (Testing) |
---|---|---|---|---|
Ganjiang | 0.846 | 0.821 | 852.788 | 1020.678 |
Fuhe | 0.870 | 0.833 | 239.167 | 259.467 |
Xinjiang | 0.870 | 0.835 | 323.687 | 362.763 |
Raohe | 0.813 | 0.701 | 194.001 | 307.297 |
Xiushui | 0.663 | 0.558 | 75.327 | 114.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, C. A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning. Water 2025, 17, 2146. https://doi.org/10.3390/w17142146
Jiang H, Zhang C. A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning. Water. 2025; 17(14):2146. https://doi.org/10.3390/w17142146
Chicago/Turabian StyleJiang, Haoyu, and Chunxiao Zhang. 2025. "A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning" Water 17, no. 14: 2146. https://doi.org/10.3390/w17142146
APA StyleJiang, H., & Zhang, C. (2025). A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning. Water, 17(14), 2146. https://doi.org/10.3390/w17142146