Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Plastic Debris Sampling Methods
2.3. Characterization of Plastic Mass Flows
3. Results
3.1. Plastic Mass Flows
3.2. Plastic Composition
3.2.1. Most Common Plastic Products
3.2.2. Polymer Composition
3.3. Economic Sectors
3.4. Fate and Transport of Plastic Debris
4. Discussion
4.1. Implications for Research and Practice
4.2. The Role of Pollution Monitoring in End-of-Life Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Lebreton, L.; Van Der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H. Where does the plastic in our oceans come from. Our World Data 2021, 1, 1325. Available online: https://oceanmaterial.com/where-does-the-plastic-in-our-oceans-come-from/ (accessed on 22 May 2025).
- Keep America Beautiful. National Litter Study. Summary Report: May 2021. Available online: https://kab.org/wp-content/uploads/2021/05/Litter-Study-Summary-Report-May-2021_final_05172021.pdf (accessed on 12 September 2023).
- Law, K.L.; Starr, N.; Siegler, T.R.; Jambeck, J.R.; Mallos, N.J.; Leonard, G.H. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 2020, 6, eabd0288. [Google Scholar] [CrossRef]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Reckoning with the U.S. Role in Global Ocean Plastic Waste; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Hardesty, B.D.; Wilcox, C.; Schuyler, Q.; Lawson, T.J.; Opie, K. Developing a Baseline Estimate of Amounts, Types, Sources and Distribution of Coastal Litter—An Analysis of US Marine Debris Data. Version 1.2; 2017. Available online: https://marinedebris.noaa.gov/sites/default/files/publications-files/An_analysis_of_marine_debris_in_the_US_FINAL_REP.pdf (accessed on 22 May 2025).
- Vito, D.; Fernandez, G.; Maione, C. A toolkit to monitor marine litter and plastic pollution on coastal tourism sites. Environ. Eng. Manag. J. 2022, 21, 1721–1731. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recycl. 2019, 151, 104459. [Google Scholar] [CrossRef]
- Pinheiro, L.M.; Agostini, V.O.; Lima, A.R.A.; Ward, R.D.; Pinho, G.L.L. The fate of plastic litter within estuarine compartments: An overview of current knowledge for the transboundary issue to guide future assessments. Environ. Pollut. 2021, 279, 116908. [Google Scholar] [CrossRef]
- Tramoy, R.; Gasperi, J.; Colasse, L.; Tassin, B. Transfer dynamic of macroplastics in estuaries—New insights from the Seine estuary: Part 1. Long term dynamic based on date-prints on stranded debris. Mar. Pollut. Bull. 2020, 152, 110894. [Google Scholar] [CrossRef]
- Tramoy, R.; Blin, E.; Poitou, I.; Noûs, C.; Tassin, B.; Gasperi, J. Riverine litter in a small urban river in Marseille, France: Plastic load and management challenges. Waste Manag. 2022, 140, 154–163. [Google Scholar] [CrossRef]
- He, B.; Smith, M.; Egodawatta, P.; Ayoko, G.A.; Rintoul, L.; Goonetilleke, A. Dispersal and transport of microplastics in river sediments. Environ. Pollut. 2021, 279, 116884. [Google Scholar] [CrossRef] [PubMed]
- Tramoy, R.; Gasperi, J.; Colasse, L.; Silvestre, M.; Dubois, P.; Noûs, C.; Tassin, B. Transfer dynamics of macroplastics in estuaries–New insights from the Seine estuary: Part 2. Short-term dynamics based on GPS-trackers. Mar. Pollut. Bull. 2020, 160, 111566. [Google Scholar] [CrossRef]
- Tramoy, R.; Gasperi, J.; Colasse, L.; Noûs, C.; Tassin, B. Transfer dynamics of macroplastics in estuaries–New insights from the Seine estuary: Part 3. What fate for macroplastics? Mar. Pollut. Bull. 2021, 169, 112513. [Google Scholar] [CrossRef] [PubMed]
- Van, A.; Rochman, C.M.; Flores, E.M.; Hill, K.L.; Vargas, E.; Vargas, S.A.; Hoh, E. Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere 2012, 86, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Fairey, R.; Roberts, C.; Jacobi, M.; Lamerdin, S.; Clark, R.; Downing, J.; Long, E.; Hunt, J.; Anderson, B.; Newman, J.; et al. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA. Environ. Toxicol. Chem. Int. J. 1998, 17, 1570–1581. [Google Scholar] [CrossRef]
- URS. Report of Trash, Waste Tire and Sediment Characterization Tijuana River Valley San Diego, California; URS Corporation: San Francisco, CA, USA, 2010. [Google Scholar]
- URS. Tijuana River Watershed Management Area Water Quality Improvement Plan; URS Corporation: San Francisco, CA, USA, 2015. Available online: https://www.sandiego.gov/sites/default/files/legacy/stormwater/pdf/TJR_WaterQualityImprovementPlan_021715.pdf (accessed on 12 September 2023).
- City of Imperial Beach. General Plan & Local Coastal Program Land Use Plan 2019. Available online: https://files.ceqanet.opr.ca.gov/250078-2/attachment/doJr0ADe3N3RN964rmBpN1FqyLOCIcIG2w-SDoWu0V2zvOEGFW4dFGkRANMurvWkdpMEGYfoJ1TAZPXx0 (accessed on 12 September 2023).
- Weston Solutions. Tijuana River Bacterial Source Identification Study. Final Report 2012. Available online: www.waterboards.ca.gov/sandiego/water_issues/programs/tijuana_river_valley_strategy/docs/previous_meetings/2012_Tijuana_River_Bacterial_Source_Identification_Study-Final_Report.pdf (accessed on 25 October 2023).
- San Diego County Parks and Recreation. Tijuana River Valley—Needs and Opportunities Assessment—Sediment Technical Memorandum. San Diego, California 2020. Available online: https://www.sdparks.org/content/dam/sdparks/en/pdf/Resource-Management/Appendix%20E%20-%20Sediment%20Technical%20Memorandum.pdf (accessed on 25 October 2023).
- Vaid, M.; Sarma, K.; Gupta, A. Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward. J. Environ. Manag. 2021, 293, 112860. [Google Scholar] [CrossRef]
- Toohey, G. Volcano? Climate change? Bad luck? Why California was hit with 31 atmospheric river storms. Los Angeles Times 2023. Available online: https://www.latimes.com/california/story/2023-04-11/californias-wild-winter-of-atmospheric-rivers (accessed on 10 November 2023).
- Salahieh, N.; Shackelford, R.; Yan, H. Another atmospheric river will thrash storm-ravaged California, threatening more flooding and hurricane-force wind gusts . CNN 2023. Available online: https://edition.cnn.com/2023/03/20/weather/california-atmospheric-river-monday/index.html (accessed on 3 January 2024).
- Stillman, D. Maps and charts show the awful impact of the California storms. The Washington Post 2023. Available online: https://www.washingtonpost.com/weather/2023/01/11/california-storms-maps-rainfall-floods/ (accessed on 3 January 2024).
- Lippiatt, S.; Opfer, S.; Arthur, C. Marine debris monitoring and assessment: Recommendations for monitoring debris trends in the marine environment 2013. Available online: https://repository.library.noaa.gov/view/noaa/2681 (accessed on 22 May 2025).
- Fleet, D.; Vlachogianni, T.; Hanke, G. A Joint List of Litter Categories for Marine Macrolitter Monitoring; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- UNEP. Marine Plastic Debris and Microplastics—Global Lessons and Research to Inspire Action and Guide Policy Change. United Nations Environment Programme, Nairobi 2016. Available online: https://wedocs.unep.org/handle/20.500.11822/7720 (accessed on 10 January 2024).
- Moore, C.J.; Moore, S.L.; Weisberg, S.B.; Lattin, G.L.; Zellers, A.F. A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters. Mar. Pollut. Bull. 2002, 44, 1035–1038. [Google Scholar] [CrossRef]
- Moore, C.J.; Lattin, G.L.; Zellers, A.F. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Rev. De Gestão Costeira Integr.-J. Integr. Coast. Zone Manag. 2011, 11, 65–73. Available online: http://www.redalyc.org/articulo.oa?id=388340132008. (accessed on 10 January 2024). [CrossRef]
- Lattin, G.L.; Moore, C.J.; Zellers, A.F.; Moore, S.L.; Weisberg, S.B. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 2004, 49, 291–294. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, D.; Cózar, A.; Hanke, G.; Viejo, J.; Morales-Caselles, C.; Bakiu, R.; Barceló, D.; Bessa, F.; Bruge, A.; Cabrera, M.; et al. Floating macrolitter leaked from Europe into the ocean. Nat. Sustain. 2021, 4, 474–483. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts 2022. 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 12 January 2024).
- Heller, M.C.; Mazor, M.H.; Keoleian, G.A. Plastics in the US: Toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 2020, 15, 094034. [Google Scholar] [CrossRef]
- Milbrandt, A.; Coney, K.; Badgett, A.; Beckham, G.T. Quantification and evaluation of plastic waste in the United States. Resour. Conserv. Recycl. 2022, 183, 106363. [Google Scholar] [CrossRef]
- Su, C.T.; Schneider, F.; Deshpande, P.C.; Xiao, H.Y.; Su, T.A.; Yen, N.; Lin, H.T. Material flow analysis of commercial fishing gears in Taiwan. Mar. Pollut. Bull. 2023, 190, 114822. [Google Scholar] [CrossRef]
- Deshpande, P.C.; Philis, G.; Brattebø, H.; Fet, A.M. Using Material Flow Analysis (MFA) to generate the evidence on plastic waste management from commercial fishing gears in Norway. Resour. Conserv. Recycl. X 2020, 5, 100024. [Google Scholar] [CrossRef]
- Maione, C. Unfolding the Systemic Role of Emerging End-of-Life Technologies Towards a Circular Economy of Plastics. PhD Dissertation, Politecnico di Milano, Milan, Italy, 2024. [Google Scholar]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring marine plastic debris from space: Initial assessment of observation requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Garello, R.; Plag, H.P.; SHAPIRO, A.; Martinez, S.; Pearlman, J.; Pendleton, L. Technologies for Observing and Monitoring Plastics in the Oceans. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- UNEP. Mapping of Global Plastic Value Chain and Plastic Losses to the Environment: With a Particular Focus on Marine Environment; UN Environment Programme: Paris, France, 2018. Available online: https://wedocs.unep.org/20.500.11822/26745 (accessed on 16 January 2024).
- Bank, M.S.; Swarzenski, P.W.; Duarte, C.M.; Rillig, M.C.; Koelmans, A.A.; Metian, M.; Wright, S.; Provencher, J.F.; Sanden, M.; Jordaan, A.; et al. Global plastic pollution observation system to aid policy. Environ. Sci. Technol. 2021, 55, 7770–7775. [Google Scholar] [CrossRef]
- UNEP. From Pollution to Solution. A Global Assessment of Marine Litter and Plastic Pollution; UN Environment Programme: Nairobi, Kenya, 2021. Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 24 January 2024).
- UNEP. Addressing marine plastics: A systemic approach. Stocktaking Report; UN Environment Programme: Nairobi, Kenya, 2018. Available online: https://www.unep.org/resources/report/addressing-marine-plastics-systemic-approach-stocktaking-report (accessed on 25 January 2024).
- The Pew Charitable Trusts; SYSTEMIQ. Breaking the Plastic Wave: A Comprehensive Assessment of Pathways Towards Stopping Ocean Plastic Pollution 2020. Available online: https://www.pewtrusts.org/-/media/assets/2020/10/breakingtheplasticwave_mainreport.pdf (accessed on 25 January 2024).
Date | Time | Period | Weather Conditions | Site Description | Transect # | Collected Plastic Items (#) | Amount of Plastic (kg) |
---|---|---|---|---|---|---|---|
26 February 2023 | 3–5 p.m. PT | Heavy rainfall | 54 °F, mostly sunny, wind 7 mph E, humidity 58% | Along shoreline, cleaner | T1 | 50 | 4.2 |
T2 | 127 | 5.9 | |||||
When estuary meets salt water | T3 | 213 | 10.5 | ||||
T4 | 316 | 17.4 | |||||
2 March 2023 | 2–4 p.m. PT | Heavy rainfall | 57 °F, sunny, wind 6 mph NE, humidity 58% | Near wildlife refuge, farther from shoreline | T5 | 422 | 19.3 |
T6 | 225 | 10.3 | |||||
At the estuary, more polluted | T7 | 419 | 16.5 | ||||
T8 | 451 | 20.4 | |||||
5 April 2023 | 4–6 p.m. PT | Dry | 61 °F, sunny, wind 7 mph NW, humidity 54% | Near wildlife refuge, farther from shoreline | T9 | 51 | 3.9 |
T10 | 16 | 3.0 | |||||
At the estuary | T11 | 65 | 5.9 | ||||
T12 | 33 | 0.7 | |||||
11 April 2023 | 10.30 a.m.–12.30 p.m. PT | Dry | 58 °F, partly cloudy, wind 4 mph W, humidity 84% | Along shoreline, waste washed up | T13 | 83 | 8.5 |
T14 | 123 | 12.6 | |||||
When estuary meets salt water | T15 | 132 | 13.9 | ||||
T16 | 78 | 5.9 |
Decisional Areas | Identification of Loopholes in the Plastic Cycle | Improving Data Collection on Mismanaged Plastic Flows | Definition of Needs and Priorities to Guide Policies | Providing Science-Based Industrial Recommendations for Managing Plastic Flows |
---|---|---|---|---|
Open challenges | -Presence of unidentified debris. -Uncertainty about geographical/economic sources. -Lack of understanding of pathways and means of release. | -Lack of plastic losses/mismanagement estimates. -Limited knowledge of spatio-temporal variability of plastic loads. | -Localized and fragmented policy response. -Limited focus and coverage of leakage reduction policies. -Uneven policy implementation. | -Industry fragmentation. -Lack of systemic coordination. -Lack of informed design. |
Opportunities from pollution monitoring | -Mapping loopholes in value chain and waste management systems. -Identification of problems and critical spatial areas. -Variability of waste streams and uncaptured flows. -Geo-spatial distribution of polluting actors/activities. | -Classification of debris’ physical–morphological characteristics. -Increasing technological capacity by overcoming the limits of single technologies. -Providing cross-national data collection. | -Definition of indicators and standards for comprehensive pollution assessment. -Informed leakage control interventions. -Informed industry-level measures. -Policy impact assessment. | -Identification of plastic leakages/loopholes, high-risk areas. -Enabling conditions for a system change and informed collaborations. |
Case study application | -Identification of land- and sea-based sources. -Losses during use and waste disposal phases. -Pollution release into waterways and coastal waters. | -Most abundant plastic items: packaging plastics, plastic components from construction sector, fishing gears, and tourism plastics. | -Issues with existing local response and cleanup interventions. -Need for upstream-to-downstream monitoring of the plastic’s value chain to support informed policies. | -Need for interventions to the waste management infrastructure. -Need for upstream measures to reduce plastic loss and abandonment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maione, C.; Vito, D.; Fernandez, G.; Trucco, P. Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border. Water 2025, 17, 1819. https://doi.org/10.3390/w17121819
Maione C, Vito D, Fernandez G, Trucco P. Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border. Water. 2025; 17(12):1819. https://doi.org/10.3390/w17121819
Chicago/Turabian StyleMaione, Carol, Domenico Vito, Gabriela Fernandez, and Paolo Trucco. 2025. "Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border" Water 17, no. 12: 1819. https://doi.org/10.3390/w17121819
APA StyleMaione, C., Vito, D., Fernandez, G., & Trucco, P. (2025). Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border. Water, 17(12), 1819. https://doi.org/10.3390/w17121819