Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering
Abstract
:1. Introduction
2. Numerical Model
2.1. Problem Setup
- (1)
- Obstruct groundwater seepage from outside to inside pit during dewatering;
- (2)
- Modify hydraulic gradients and pore pressure distribution patterns;
- (3)
- Alter deformation mechanisms of both surrounding soil and enclosure wall.
2.2. Model Setup
- (1)
- Displacement boundary: three-directional constraints were set on the bottom surface and asymmetrical sides of the model, and only normal-direction constraints were applied to the symmetrical surface;
- (2)
- Hydraulic boundary: the bottom and symmetrical surfaces of the model were set as impervious boundaries, the asymmetrical sides were set as constant water head boundaries, and the soil contact surface around the dewatering wells was defined by fixed water head boundaries.
2.3. Model Validation
3. Results and Discussion
3.1. Water Level Drawdown
3.2. Ground Surface Settlement
3.3. Enclosure Wall Deflection
3.4. Effect of HB Layers (L)
3.5. Maximum Surface Settlement and Wall Deflection
4. Conclusions
- (1)
- Control effects groundwater drawdown and ground settlement: HB significantly suppresses water level decline and associated soil settlement. Notably, increasing the number of barrier layers does not yield substantial additional control benefits, indicating that a single-layer HB is sufficient to achieve optimal water-blocking and settlement-reducing effects. Further increasing the barrier layers exhibits diminishing marginal utility.
- (2)
- Deformation characteristics of the enclosure wall: HB can enhance the overall stiffness of the foundation pit structure, and its influence on enclosure deflection shows an obvious depth effect. In shallow soil layers, the barrier alters the soil and water pressure distribution outside the pit, leading to increased wall deflection. In the deep soil layers, the synergy interaction between HB and the enclosure wall dominates, effectively controlling wall deformation.
- (3)
- Applicability analysis: while multi-layer HB improve the overall water-blocking capacity and structural stiffness, their higher construction complexity and cost must be considered. It is more suitable for large-scale foundation pit engineering or projects with high stringent groundwater control demands due to its construction demand index.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forth, R.A. Groundwater and Geotechnical Aspects of Deep Excavations in Hong Kong. Eng. Geol. 2004, 72, 253–260. [Google Scholar] [CrossRef]
- Ou, C.-Y. Deep Excavation: Theory and Practice; Taylor & Francis: London, UK; Balkema: New York, NY, USA, 2006; ISBN 978-0-415-40330-6. [Google Scholar]
- Shen, L.; Xue, Z.; Tang, L.; Ge, H. Research on Resilience Evaluation and Enhancement of Deep Foundation Pit Construction Safety System. Buildings 2022, 12, 1922. [Google Scholar] [CrossRef]
- Chen, S.; Cui, J.; Liang, F. Case Study on the Deformation Coupling Effect of a Deep Foundation Pit Group in a Coastal Soft Soil Area. Appl. Sci. 2022, 12, 6205. [Google Scholar] [CrossRef]
- Ding, Z.; Jin, J.; Han, T.-C. Analysis of the Zoning Excavation Monitoring Data of a Narrow and Deep Foundation Pit in a Soft Soil Area. J. Geophys. Eng. 2018, 15, 1231–1241. [Google Scholar] [CrossRef]
- Wang, J.; Feng, B.; Yu, H.; Guo, T.; Yang, G.; Tang, J. Numerical Study of Dewatering in a Large Deep Foundation Pit. Environ. Earth Sci. 2013, 69, 863–872. [Google Scholar] [CrossRef]
- Wang, W.; Han, Z.; Deng, J.; Zhang, X.; Zhang, Y. Study on Soil Reinforcement Param in Deep Foundation Pit of Marshland Metro Station. Heliyon 2019, 5, e02836. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Z.; Zhang, J.; Zhang, R.; Ma, S. Multifactor Uncertainty Analysis of Construction Risk for Deep Foundation Pits. Appl. Sci. 2022, 12, 8122. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, S.; Xia, C.; Dou, H. Design and Practice of Deep Foundation Pits for Large Storage Ponds in Complex Environments. Sustainability 2022, 14, 14046. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Zeng, C.; Zhu, L.; Xue, X.; Han, L. Analysis of Recharge Efficiency Under Barrier Effects Incurred by Adjacent Underground Structures. Water 2025, 17, 257. [Google Scholar] [CrossRef]
- He, D.; Zeng, C.; Xu, C.; Xue, X.; Zhao, Y.; Han, L.; Sun, H. Barrier Effect of Existing Building Pile on the Responses of Groundwater and Soil During Foundation Pit Dewatering. Water 2024, 16, 2977. [Google Scholar] [CrossRef]
- Xue, X.-L.; Sun, H.-Y.; Zeng, C.-F.; Chen, H.-B.; Zheng, G.; Xu, C.-J.; Han, L. Why Pile-Supported Building Settled Continuously after Water Level Was Stabilized during Dewatering: Clues from Interaction between Pile and Multi Aquifers. J. Hydrol. 2024, 638, 131539. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, Y. A Case Study on Field Monitoring Analysis of Deep Foundation Pit in Soft Soils. Adv. Civil Eng. 2019, 2019, 9342341. [Google Scholar] [CrossRef]
- Zhu, C.; Yan, Z.; Lin, Y.; Xiong, F.; Tao, Z. Design and Application of a Monitoring System for a Deep Railway Foundation Pit Project. IEEE Access 2019, 7, 107591–107601. [Google Scholar] [CrossRef]
- Pujades, E.; Jurado, A.; Carrera, J.; Vázquez-Suñé, E.; Dassargues, A. Hydrogeological Assessment of Non-Linear Underground Enclosures. Eng. Geol. 2016, 207, 91–102. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, F.; Zhang, X. Numerical Simulation and Deformation Prediction of Deep Pit Based on PSO-BP Neural Network Inversion of Soil Parameters. Sensors 2024, 24, 2959. [Google Scholar] [CrossRef]
- Attard, G.; Winiarski, T.; Rossier, Y.; Eisenlohr, L. Review: Impact of Underground Structures on the Flow of Urban Groundwater. Hydrogeol. J. 2016, 24, 5–19. [Google Scholar] [CrossRef]
- Cui, J.; Yang, Z.; Azzam, R. Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on Ultra-Deep Foundation Pit in Coastal Area. J. Mar. Sci. Eng. 2023, 11, 219. [Google Scholar] [CrossRef]
- Wu, B.; Ge, C.; Li, P.; Yang, M.; Li, L. Influence of Deep Foundation Pit Excavation on Adjacent Pipelines: A Case Study in Nanjing, China. Appl. Sci. 2024, 14, 572. [Google Scholar] [CrossRef]
- Zhang, D. Influences of Deep Foundation Pit Excavation on the Stability of Adjacent Ancient Buildings. Buildings 2023, 13, 2004. [Google Scholar] [CrossRef]
- Li, D.; Liao, F.; Wang, L.; Lin, J.; Wang, J. Multi-Stage and Multi-Parameter Influence Analysis of Deep Foundation Pit Excavation on Surrounding Environment. Buildings 2024, 14, 297. [Google Scholar] [CrossRef]
- Zeng, F.-Y.; Zhang, Z.-J.; Wang, J.-H.; Li, M.-G. Observed Performance of Two Adjacent and Concurrently Excavated Deep Foundation Pits in Soft Clay. J. Perform. Constr. Facil. 2018, 32, 04018040. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Zhang, S.; Huang, F.; Xiao, H.; Ma, H.; Luo, L.; Bao, H. Response Monitoring and Analysis in Deep Foundation Pit Excavation: A Case Study in Soft Soil at Subway Tunnel Intersections. Buildings 2023, 13, 1286. [Google Scholar] [CrossRef]
- Hu, B.; Li, X.; Huang, D. Safety Risk Analysis and Protective Control of Existing Pipelines Affected by Deep Pit Excavation in Metro Construction. Model. Simul. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Chen, Y. The Influence of Different Excavation Methods on Deep Foundation Pit and Surrounding Environment. In Proceedings of the 8th International Conference on Civil Engineering; Feng, G., Ed.; Lecture Notes in Civil Engineering. Springer Singapore: Singapore, 2022; Volume 213, pp. 109–129, ISBN 978-981-19125-9-7. [Google Scholar]
- Zeng, C.-F.; Song, W.-W.; Xue, X.-L.; Li, M.-K.; Bai, N.; Mei, G.-X. Construction Dewatering in a Metro Station Incorporating Buttress Retaining Wall to Limit Ground Settlement: Insights from Experimental Modelling. Tunn. Undergr. Space Technol. 2021, 116, 104124. [Google Scholar] [CrossRef]
- Xue, T.; Xue, X.; Long, S.; Chen, Q.; Lu, S.; Zeng, C. Effect of Pre-Existing Underground Structures on Groundwater Flow and Strata Movement Induced by Dewatering and Excavation. Water 2023, 15, 814. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Chen, H.-B.; Wang, S.; Diao, Y.; Xue, X.-L. Ground Behavior Due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow. J. Geotech. Geoenviron. Eng. 2024, 150, 05024004. [Google Scholar] [CrossRef]
- Xue, X.-L.; Zhu, L.; Wang, S.; Chen, H.-B.; Zeng, C.-F. Groundwater Response to Pumping Considering Barrier Effect of Existing Underground Structure. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022); Wang, L., Zhang, J.-M., Wang, R., Eds.; Geotechnical, Geological and Earthquake Engineering. Springer International Publishing: Cham, Switzerland, 2022; Volume 52, pp. 2381–2390, ISBN 978-3-031-11897-5. [Google Scholar]
- Zeng, C.-F.; Liao, H.; Xue, X.-L.; Long, S.-C.; Luo, G.-J.; Diao, Y.; Li, M.-G. Responses of Groundwater and Soil to Dewatering Considering the Barrier Effect of Adjacent Metro Station on Multi-Aquifers. J. Hydrol. 2022, 612, 128117. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Lyu, H.-M.; Zhou, A. Analyses of Leakage Effect of Waterproof Curtain during Excavation Dewatering. J. Hydrol. 2020, 583, 124582. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhang, N.; Shen, Q. Calculation of Foundation Pit Deformation Caused by Deep Excavation Considering Influence of Loading and Unloading. J. Cent. South Univ. 2017, 24, 2164–2171. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, D. Characteristics of a Large-Scale Deep Foundation Pit Excavated by the Central-Island Technique in Shanghai Soft Clay. II: Top-Down Construction of the Peripheral Rectangular Pit. J. Geotech. Geoenviron. Eng. 2013, 139, 1894–1910. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Dong, J.; Wang, J.; Wang, M. Comparative Investigation on Deformation Monitoring and Numerical Simulation of the Deepest Excavation in Beijing. Bull. Eng. Geol. Environ. 2021, 80, 1233–1247. [Google Scholar] [CrossRef]
- Shi, H.; Jia, Z.; Wang, T.; Cheng, Z.; Zhang, D.; Bai, M.; Yu, K. Deformation Characteristics and Optimization Design for Large-Scale Deep and Circular Foundation Pit Partitioned Excavation in a Complex Environment. Buildings 2022, 12, 1292. [Google Scholar] [CrossRef]
- El-Nimr, M.T.; Basha, A.; Abo-Raya, M.M.; Zakaria, M.H. General Deformation Behavior of Deep Excavation Support Systems: A Review. Global J. Eng. Tech. Adv. 2022, 10, 039–057. [Google Scholar] [CrossRef]
- Li, G.; Qin, F.; Yan, N.; Qiao, X.; Si, L.; Zhao, S. Surface Deformation Characteristics and Influencing Factors in Deep Foundation Pit Excavations for Subway Projects in Ningbo’s Soft Soil Area. Buildings 2025, 15, 1229. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Chen, H.-B.; Liao, H.; Xue, X.-L.; Chen, Q.-N.; Diao, Y. Behaviours of Groundwater and Strata during Dewatering of Large-Scale Excavations with a Nearby Underground Barrier. J. Hydrol. 2023, 620, 129400. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, C.; Yang, K.; Xue, X.; Zeng, C. Experimental Study on the Influence of Rising Water Levels on the Buoyancy of Building Structure. Water 2025, 17, 1377. [Google Scholar] [CrossRef]
- Pujades, E.; Jurado, A. Groundwater-Related Aspects during the Development of Deep Excavations below the Water Table: A Short Review. Undergr. Space 2021, 6, 35–45. [Google Scholar] [CrossRef]
- Roy, D.; Robinson, K.E. Surface Settlements at a Soft Soil Site Due to Bedrock Dewatering. Eng. Geol. 2009, 107, 109–117. [Google Scholar] [CrossRef]
- Shen, S.-L.; Lyu, H.-M.; Zhou, A.; Lu, L.-H.; Li, G.; Hu, B.-B. Automatic Control of Groundwater Balance to Combat Dewatering during Construction of a Metro System. Autom. Constr. 2021, 123, 103536. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Shen, S.-L.; Wu, Y.-X.; Zhou, A.-N. Calculation of Groundwater Head Distribution with a Close Barrier during Excavation Dewatering in Confined Aquifer. Geosci. Front. 2021, 12, 791–803. [Google Scholar] [CrossRef]
- Sterling, S.N. Groundwater Lowering in Construction: A Practical Guide to Dewatering. Environ. Eng. Geosci. 2014, 20, 406–407. [Google Scholar] [CrossRef]
- Bevan, M.A.; Powrie, W.; Roberts, T.O.L. Influence of Large-Scale Inhomogeneities on a Construction Dewatering System in Chalk. Géotechnique 2010, 60, 635–649. [Google Scholar] [CrossRef]
- Yang, S.; Yao, R.; Junping, Y.; Liqing, Z.; Haibin, D.; Lihong, T. Theoretical Study on Longitudinal Deformation of Adjacent Tunnel Subjected to Pre-Dewatering Based on Pasternak-Timoshenko Beam Model. Front. Earth Sci. 2023, 10, 1114987. [Google Scholar] [CrossRef]
- Goh, A.T.C.; Zhang, R.H.; Wang, W.; Wang, L.; Liu, H.L.; Zhang, W.G. Numerical Study of the Effects of Groundwater Drawdown on Ground Settlement for Excavation in Residual Soils. Acta Geotech. 2020, 15, 1259–1272. [Google Scholar] [CrossRef]
- Ha, D.; Zheng, G.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of Hydraulic Parameters from Pumping Tests in a Multiaquifer System. Undergr. Space 2020, 5, 210–222. [Google Scholar] [CrossRef]
- Zheng, G.; Ha, D.; Zeng, C.; Cheng, X.; Zhou, H.; Cao, J. Influence of the Opening Timing of Recharge Wells on Settlement Caused by Dewatering in Excavations. J. Hydrol. 2019, 573, 534–545. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Zhang, W.; Liu, S.; Han, L. Determination of Groundwater Buoyancy Reduction Coefficient in Clay: Model Tests, Numerical Simulations and Machine Learning Methods. Undergr. Space 2023, 13, 228–240. [Google Scholar] [CrossRef]
- Guo, P.; Liu, F.; Lei, G.; Li, X.; Zhu, C.; Wang, Y.; Lu, M.; Cheng, K.; Gong, X. Predicting Response of Constructed Tunnel to Adjacent Excavation with Dewatering. Geofluids 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Xu, C.-J.; Xue, X.-L. Wall Movement during Dewatering inside a Diaphragm Wall before Soil Excavation. Undergr. Space 2025, 22, 355–368. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Zhou, X.-F.; Xue, X.-L.; Zhou, H.-Z. Behaviours of Wall and Soil during Pre-Excavation Dewatering under Different Foundation Pit Widths. Comput. Geotech. 2019, 115, 103169. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Characteristics of Ground Settlement Due to Combined Actions of Groundwater Drawdown and Enclosure Wall Movement. Acta Geotech. 2022, 17, 4095–4112. [Google Scholar] [CrossRef]
- Yang, T.; Liu, S.; Wang, X.; Zhao, H.; Liu, Y.; Li, Y. Analysis of the Deformation Law of Deep and Large Foundation Pits in Soft Soil Areas. Front. Earth Sci. 2022, 10, 828354. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Xue, X.-L.; Zheng, G.; Xue, T.-Y.; Mei, G.-X. Responses of Retaining Wall and Surrounding Ground to Pre-Excavation Dewatering in an Alternated Multi-Aquifer-Aquitard System. J. Hydrol. 2018, 559, 609–626. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, Z.; Yu, R.; Li, Z.; Zhang, X.; Zhu, P. Deformation Responses of the Foundation Pit Construction of the Urban Metro Station: A Case Study in Xiamen. Tunn. Undergr. Space Technol. 2022, 128, 104662. [Google Scholar] [CrossRef]
- Zheng, G.; Zeng, C.-F.; Diao, Y.; Xue, X.-L. Test and Numerical Research on Wall Deflections Induced by Pre-Excavation Dewatering. Comput. Geotech. 2014, 62, 244–256. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Xue, X.-L.; Li, M.-K.; Mei, G.-X. Effectiveness of a Buttress Wall in Reducing Retaining Wall Movement during Dewatering before Bulk Excavation. Acta Geotech. 2021, 16, 3253–3267. [Google Scholar] [CrossRef]
- Wang, Z. Numerical Analysis of Deformation Control of Deep Foundation Pit in Ulanqab City. Geotech. Geol. Eng. 2021, 39, 5325–5337. [Google Scholar] [CrossRef]
- Wang, X.; Song, Q.; Gong, H. Research on Deformation Law of Deep Foundation Pit of Station in Core Region of Saturated Soft Loess Based on Monitoring. Adv. Civil Eng. 2022, 2022, 7848152. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Evolution of Deep Ground Settlement Subject to Groundwater Drawdown during Dewatering in a Multi-Layered Aquifer-Aquitard System: Insights from Numerical Modelling. J. Hydrol. 2021, 603, 127078. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Xue, X.-L. Responses of Deep Soil Layers to Combined Recharge in a Leaky Aquifer. Eng. Geol. 2019, 260, 105263. [Google Scholar] [CrossRef]
- Mei, Y.; Li, Y.-L.; Wang, X.-Y.; Wang, J.; Hu, C.-M. Statistical Analysis of Deformation Laws of Deep Foundation Pits in Collapsible Loess. Arab. J. Sci. Eng. 2019, 44, 8347–8360. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Yuan, Z.-C.; Xue, X.-L.; Hu, W. Responses of Retaining Wall to Pre-Excavation Dewatering Under Staggered Layout of Dewatering Wells. In Proceedings of the China-Europe Conference on Geotechnical Engineering; Wu, W., Yu, H.-S., Eds.; Springer Series in Geomechanics and Geoengineering. Springer International Publishing: Cham, Switzerland, 2018; pp. 1085–1089, ISBN 978-3-319-97114-8. [Google Scholar]
- Zhou, N.; Vermeer, P.A.; Lou, R.; Tang, Y.; Jiang, S. Numerical Simulation of Deep Foundation Pit Dewatering and Optimization of Controlling Land Subsidence. Eng. Geol. 2010, 114, 251–260. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Xue, X.-L.; Li, M.-K. Use of Cross Wall to Restrict Enclosure Movement during Dewatering inside a Metro Pit before Soil Excavation. Tunn. Undergr. Space Technol. 2021, 112, 103909. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Xue, X.-L.; Mei, G.-X. Combined Recharge: A Method to Prevent Ground Settlement Induced by Redevelopment of Recharge Wells. J. Hydrol. 2019, 568, 1–11. [Google Scholar] [CrossRef]
- Robins, N.S.; Davies, J.; Cheney, C.; Tribe, E.L. Groundwater in a Water-Rich Environment: Wales, a Land of Plenty. Water Environ. J. 2005, 19, 62–67. [Google Scholar] [CrossRef]
- Luczaj, J.; Masarik, K. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA. Resources 2015, 4, 323–357. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Z.; Liang, X.; Wang, G.; Han, J. Multiple Factors Control Groundwater Chemistry and Quality of Multi-Layer Groundwater System in Northwest China Coalfield—Using Self-Organizing Maps (SOM). J. Geochem. Explor. 2021, 227, 106795. [Google Scholar] [CrossRef]
- Li, D.; Cheng, S.; Liu, N.; Liu, Z.; Sun, Y. Numerical Simulation Study on the Distribution Characteristics of Precipitation Seepage Field in Water-Rich Ultra-Thick Sand and Gravel Layer. Water 2023, 15, 3720. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, K.; Meng, G.; Suo, X. Optimization of Recharge Schemes for Deep Excavation in the Confined Water-Rich Stratum. Sustainability 2023, 15, 5432. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, P.; Lin, H.; Zhao, Y. Risk Management Technologies for Deep Excavations in Water-Rich Areas. Water 2024, 16, 323. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, Y. Seepage in Water-Rich Loess Tunnel Excavating Process and Grouting Control Effect. Geofluids 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Luo, X.; Yu, C.; Wang, Y. Water Control of Water-Rich Deeply Buried Tunnel: An Analytical Model of a Combined Scheme. Geotech. Geol. Eng. 2023, 41, 3909–3922. [Google Scholar] [CrossRef]
- Chang, Y.; Lv, L.; Wang, X.; Xu, J. A Semi-Analytical Solution of Two-Dimensional Unsteady Groundwater Flow Outside a Long-Strip Excavation Pit with a Cut-Off Wall. Appl. Sci. 2024, 14, 7367. [Google Scholar] [CrossRef]
- Shen, S.-L.; Wu, Y.-X.; Misra, A. Calculation of Head Difference at Two Sides of a Cut-off Barrier during Excavation Dewatering. Comput. Geotech. 2017, 91, 192–202. [Google Scholar] [CrossRef]
- Wang, J.; Feng, B.; Liu, Y.; Wu, L.; Zhu, Y.; Zhang, X.; Tang, Y.; Yang, P. Controlling Subsidence Caused by De-Watering in a Deep Foundation Pit. Bull. Eng. Geol. Environ. 2012, 71, 545–555. [Google Scholar] [CrossRef]
- Guan, Z.; Sun, X.; Zhang, G.; Li, G.; Huang, P.; Zhang, B.; Wang, J.; Zhou, X. Deformation and Damage Behavior of the Deep Concrete Cut-off Wall in Core Earth-Rock Dam Foundation Based on Plastic Damage Model-A Case Study. Structures 2022, 46, 1480–1494. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Shen, S.-L.; Ma, L.; Sun, W.-J.; Yin, Z.-Y. Evaluation of the Blocking Effect of Retaining Walls on Groundwater Seepage in Aquifers with Different Insertion Depths. Eng. Geol. 2014, 183, 254–264. [Google Scholar] [CrossRef]
- Wang, J.; Hu, L.; Wu, L.; Tang, Y.; Zhu, Y.; Yang, P. Hydraulic Barrier Function of the Underground Continuous Concrete Wall in the Pit of Subway Station and Its Optimization. Environ. Geol. 2009, 57, 447–453. [Google Scholar] [CrossRef]
- Wang, Z.-F.; Shen, S.-L.; Ho, C.-E.; Kim, Y.-H. Investigation of Field-Installation Effects of Horizontal Twin-Jet Grouting in Shanghai Soft Soil Deposits. Can. Geotech. J. 2013, 50, 288–297. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Yuan, D.-J. Characteristics of Dewatering Induced Drawdown Curve under Blocking Effect of Retaining Wall in Aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Yan, X.-X.; Shen, S.-L.; Zhou, A.-N. Experimental Investigation on the Blocking of Groundwater Seepage from a Waterproof Curtain during Pumped Dewatering in an Excavation. Hydrogeol. J. 2019, 27, 2659–2672. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Ma, R.; Liu, X.; Guo, Q.; Liu, S.; Shao, Y.; Wu, L.; Zhou, J.; Yang, T.; et al. Model Test on Partial Expansion in Stratified Subsidence during Foundation Pit Dewatering. J. Hydrol. 2018, 557, 489–508. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, J.S.; Cheng, W.-C.; Hino, T. Semi-Analytical Solution to Pumping Test Data with Barrier, Wellbore Storage, and Partial Penetration Effects. Eng. Geol. 2017, 226, 44–51. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Chi, M.; Wang, P. Analytical Analysis of the Groundwater Drawdown Difference Induced by Foundation Pit Dewatering with a Suspended Waterproof Curtain. Appl. Sci. 2022, 12, 10301. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W.; Li, D. Analytical Solution for Steady-State Seepage Field of Foundation Pit During Water Curtain Leakage. Mathematics 2025, 13, 203. [Google Scholar] [CrossRef]
- Yang, T.L.; Yan, X.X.; Wang, H.M.; Huang, X.L.; Zhan, G.H. Comprehensive Experimental Study on Prevention of Land Subsidence Caused by Dewatering in Deep Foundation Pit with Hanging Waterproof Curtain. Proc. IAHS 2015, 372, 1–5. [Google Scholar] [CrossRef]
- Xu, W.; Liu, B.; Wu, J. Construction Technology and Service Performance of Waterproof Curtain for Foundation Pit in Large-Particle Pebble Gravel Layer of Yangtze River Floodplain. Appl. Sci. 2024, 14, 5962. [Google Scholar] [CrossRef]
- Chu, Y.; Shi, J.; Ye, Z.; Liu, D. Dewatering Characteristics and Drawdown Prediction of Suspended Waterproof Curtain Foundation Pit in Soft Soil Areas. Buildings 2024, 14, 119. [Google Scholar] [CrossRef]
- Liu, L.; Lei, M.; Cao, C.; Shi, C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water 2019, 11, 2182. [Google Scholar] [CrossRef]
- Wang, X.-W.; Yang, T.-L.; Xu, Y.-S.; Shen, S.-L. Evaluation of Optimized Depth of Waterproof Curtain to Mitigate Negative Impacts during Dewatering. J. Hydrol. 2019, 577, 123969. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wu, Y.; Liu, S.; Wu, L.; Lou, R.; Lu, J.; Yin, Y. Field Experiment and Numerical Simulation of Coupling Non-Darcy Flow Caused by Curtain and Pumping Well in Foundation Pit Dewatering. J. Hydrol. 2017, 549, 277–293. [Google Scholar] [CrossRef]
- Zhenfang, L.; Dongming, G.; Yanbing, W.; Zenglin, Z. Technology Research of Large Underwater Ultra-Deep Curtain Grouting in Zhong-Guan Iron Ore. Procedia Eng. 2011, 26, 731–737. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y.; Zhao, Y.; Liu, X.; Pan, W.; Qu, J.; Wang, H.; Shi, Y. Numerical Simulation of Foundation Pit Dewatering Using Horizontal Seepage Reducing Body. Sci. Rep. 2022, 12, 1397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Transparent Soil Test Evaluation of Vertical–Horizontal Mixed Curtain during Dewatering. Acta Geotech. 2022, 17, 3293–3313. [Google Scholar] [CrossRef]
- Cao, C.; Shi, C.; Lei, M. A Simplified Approach to Design Jet-Grouted Bottom Sealing Barriers for Deep Excavations in Deep Aquifers. Appl. Sci. 2019, 9, 2307. [Google Scholar] [CrossRef]
- Shi, C.; Sun, X.; Liu, S.; Cao, C.; Liu, L.; Lei, M. Analysis of Seepage Characteristics of a Foundation Pit with Horizontal Waterproof Curtain in Highly Permeable Strata. Water 2021, 13, 1303. [Google Scholar] [CrossRef]
- Cao, C.; Shi, C. Analytical Procedure for Massive Water-Sealing Barriers Used in Deep Excavations Considering Seepage Effect and Its Application. J. Cent. South Univ. 2022, 29, 2033–2048. [Google Scholar] [CrossRef]
- GB 50010—2010; China Academy of Building Research. Code for Concrete Structure Design. China Architecture and Building Press: Beijing, China, 2010.
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; Courier Corporation: Mineola, NY, USA, 2012. [Google Scholar]
- Lu, D.; Zhou, X.; Du, X.; Wang, G.S. 3D Dynamic Elastoplastic Constitutive Model of Concrete within the Framework of Rate-Dependent Consistency Condition. J. Eng. Mech. 2020, 146, 04020124. [Google Scholar] [CrossRef]
- Lu, D.; Zhou, X.; Du, X.; Wang, G. A 3D Fractional Elastoplastic Constitutive Model for Concrete Material. Int. J. Solids Struct. 2019, 165, 160–175. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, D.; Du, X.; Wang, G.S.; Meng, F. A 3D Non-Orthogonal Plastic Damage Model for Concrete. Comput. Methods Appl. Mech. Eng. 2020, 360, 112716. [Google Scholar] [CrossRef]
- Lu, D.; Meng, F.; Zhou, X.; Zhuo, Y.; Gao, Z.; Du, X. A Dynamic Elastoplastic Model of Concrete Based on a Modeling Method with Environmental Factors as Constitutive Variables. J. Eng. Mech. 2023, 149, 04023102. [Google Scholar] [CrossRef]
- Lu, D.; Wang, G.; Du, X.; Wang, Y. A Nonlinear Dynamic Uniaxial Strength Criterion That Considers the Ultimate Dynamic Strength of Concrete. Int. J. Impact Eng. 2017, 103, 124–137. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, D.H.; Zhang, Y.N.; Du, X.L. An Open-Source Unconstrained Stress Updating Algorithm for the modified Cam-clay model. Comput. Methods Appl. Mech. Eng. 2022, 390, 114356. [Google Scholar] [CrossRef]
- Yu, J.; Ren, C.H.; Cai, Y.Y.; Yao, W.; Liu, X.Y. Analytical approach for evaluating the dynamic self-bearing capacity of tunnels. Int. J. Geomech. 2021, 21, 04021133. [Google Scholar] [CrossRef]
- Lu, D.; Meng, F.; Zhou, X.; Wang, G.; Du, X. Double Scalar Variables Plastic-Damage Model for Concrete. J. Eng. Mech. 2022, 148, 04021143. [Google Scholar] [CrossRef]
- Yu, J.; Yao, W.; Duan, K.; Liu, X.Y.; Zhu, Y.L. Experimental Study and Discrete Element Method Modeling of Compression. Int. J. Rock Mech. Min. Sci. 2020, 134, 104437. [Google Scholar] [CrossRef]
- Lu, D.; Liang, J.; Du, X.; Ma, C.; Gao, Z. Fractional Elastoplastic Constitutive Model for Soils Based on a Novel 3D. Comput. Geotech. 2019, 105, 277–290. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Yao, Y.; Liu, X.; Ren, C.; Cai, Y.; Tang, X. Stress Relaxation Behaviour of Marble under Cyclic Weak Disturbance and confining pressures. Measurement 2021, 182, 109777. [Google Scholar] [CrossRef]
- Li, M.-G.; Chen, J.-J.; Xia, X.-H.; Zhang, Y.-Q.; Wang, D.-F. Statistical and Hydro-Mechanical Coupling Analyses on Groundwater Drawdown and Soil Deformation Caused by Dewatering in a Multi-Aquifer-Aquitard System. J. Hydrol. 2020, 589, 125365. [Google Scholar] [CrossRef]
- Zheng, G.; Ha, D.; Loaiciga, H.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of the Hydraulic Parameters of Leaky Aquifers Based on Pumping Tests and Coupled Simulation/Optimization: Verification Using a Layered Aquifer in Tianjin, China. Hydrogeol. J. 2019, 27, 3081–3095. [Google Scholar] [CrossRef]
- Bekesi, B.J.; Antali, M.; Csernak, G. Phase Portraits and Bifurcations Induced by Static and Dynamic Friction Models. Nonlinear Dyn. 2025, 113, 15863–15899. [Google Scholar] [CrossRef]
- Diao, Y.; Zheng, G. Numerical Analysis of Effect of Friction between Diaphragm Wall and Soil on Braced Excavation. J. Cent. South Univ. Technol. 2008, 15, 81–86. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
tHB | 0, 1, 0.5, 0.3 m |
L | 0, 1, 2, 3 layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, R.; Xu, C.; Zeng, C.; Xue, X.; Zhao, Y.; Li, B.; Yi, L. Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering. Water 2025, 17, 1763. https://doi.org/10.3390/w17121763
Kuang R, Xu C, Zeng C, Xue X, Zhao Y, Li B, Yi L. Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering. Water. 2025; 17(12):1763. https://doi.org/10.3390/w17121763
Chicago/Turabian StyleKuang, Ruonan, Changjie Xu, Chaofeng Zeng, Xiuli Xue, Youwu Zhao, Bin Li, and Lijuan Yi. 2025. "Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering" Water 17, no. 12: 1763. https://doi.org/10.3390/w17121763
APA StyleKuang, R., Xu, C., Zeng, C., Xue, X., Zhao, Y., Li, B., & Yi, L. (2025). Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering. Water, 17(12), 1763. https://doi.org/10.3390/w17121763