Effects of Human Activities on Antibiotic Resistance Genes and Microbial Diversity in Lake Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Physicochemical Parameters and Microplastic Determination
2.3. Quantification of 16S rRNA and ARGs
2.4. High-Throughput Sequencing
2.5. Statistical Analysis
3. Results
3.1. Quantitative Analysis of 16S rRNA and ARGs
3.2. Correlation Analysis Between Sediment Parameters and ARGs
3.3. Variations in Microbial Diversity Related to Human Activities
3.4. Differences in Microbial Community Structure Among Areas
3.5. Network Analysis Involving Bacterial Taxa and ARGs
4. Discussion
4.1. Distribution of ARGs and MGEs in Nansi Lake
4.2. Microbial Diversity and Community Composition
4.3. Network Analysis at the Genus Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Y.; Chu, K.J.; Hua, Z.L.; Li, Q.M.; Lu, Y.; Ye, F.Z.; Dong, Y.Y.; Li, X.Q. Dynamics of antibiotic resistance genes in the sediments of a water-diversion lake and its human exposure risk behaviour. Sci. Total Environ. 2024, 929, 172563. [Google Scholar] [CrossRef]
- Truong, T.; Hoang, T.L.; Tran, L.T.; Pham, T.P.T.; Le, T.H. Prevalence of antibiotic resistance genes in the Saigon River impacted by anthropogenic activities. Water 2021, 13, 2234. [Google Scholar] [CrossRef]
- Zhang, L.L.; Chen, H.D.; Gao, S.; Song, Y.M.; Zhao, Y.; Tang, W.Z.; Cui, J.S. Antibiotic resistance genes and mobile genetic elements in different rivers: The link with antibiotics, microbial communities, and human activities. Sci. Total Environ. 2024, 919, 170788. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, T.; Fang, H. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef]
- Jia, L.; Liu, H.; Zhao, N.; Deng, Q.X.; Zhu, C.H.; Zhang, B. Distribution and transfer of antibiotic resistance genes in coastal aquatic ecosystems of Bohai Bay. Water 2022, 14, 938. [Google Scholar] [CrossRef]
- Ding, C.; Gong, Z.; Zhang, K.; Jiang, W.; Kang, M.; Tian, Z.; Zhang, Y.; Li, Y.; Ma, J.; Yang, Y.; et al. Distribution and model prediction of antibiotic resistance genes in Weishan Lake based on the indication of Chironomidae larvae. Water Res. 2022, 222, 118862. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.Q.; Ren, X.Y.; Zhang, Y.K.; Ju, H.Y.; Liu, J.; Xie, J.; Altaf, M.M.; Diao, X.P. Distribution characteristics of antibiotic resistance genes and microbial diversity in the inshore aquaculture area of Wenchang, Hainan, China. Sci. Total Environ. 2024, 914, 169695. [Google Scholar] [CrossRef]
- Xu, Z.X.; Jia, Y.; Huang, B.; Zhao, D.M.; Long, X.; Hu, S.Y.; Li, C.Q.; Dao, G.; Chen, B.; Pan, X.J. Spatial distribution, pollution characteristics, and health risks of antibiotic resistance genes in China: A review. Environ. Chem. Lett. 2023, 21, 2285–2309. [Google Scholar] [CrossRef]
- Zeng, Q.Z.; Xiang, J.X.; Yang, C.Y.; Wu, J.X.; Li, Y.X.; Sun, Y.A.; Liu, Q.W.; Shi, S.N.; Gong, Z. Microplastics affect nitrogen cycling and antibiotic resistance genes transfer of sediment. Chem. Eng. J. 2023, 454, 140193. [Google Scholar] [CrossRef]
- Ellabaan, M.M.H.; Munck, C.; Porse, A.; Imamovic, L.; Sommer, M.O.A. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 2021, 12, 2435. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.S.; Yin, G.Y.; Liu, M.; Chen, C.; Jiang, Y.H.; Hou, L.J.; Zheng, Y.L. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Li, S.N.; Zhang, C.F.; Li, F.X.; Hua, T.; Zhou, Q.X.; Ho, S.H. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. J. Hazard. Mater. 2021, 411, 125148. [Google Scholar] [CrossRef]
- Gomes, R.P.; Oliveira, T.R.; Rodrigues, A.B.; Ferreira, L.M.; Vieira, J.D.G.; Carneiro, L.C. Occurrence of antibiotic resistance genes, antibiotics-resistant and multi-resistant bacteria and their correlations in one river in Central-Western Brazil. Water 2023, 15, 747. [Google Scholar] [CrossRef]
- Xie, K.P.; Zeng, Q.Z.; Yu, S.H.; Luo, H.J.; Zhang, Y.S.; Ma, C.W.; Hu, H.Y.; Shi, S.N.; Gong, Z. Contrasting distribution of microbial communities, functional genes, and antibiotic resistance genes in produced water treatment plants with different treatment technologies. Water 2024, 16, 195. [Google Scholar] [CrossRef]
- Shen, M.N.; Hu, X.W.; Li, M.; Lyu, C.; Hu, Y.; Bu, X.D.; Chen, T.; Cai, H.; Li, C.Y.; Liu, J.H.; et al. Distribution of antibiotic resistance genes and their association with microbes in wastewater treatment plants: A metagenomics analysis. Water 2023, 15, 1587. [Google Scholar] [CrossRef]
- Stokes, H.W.; Gillings, M.R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Fems Microbiol. Rev. 2011, 35, 790–819. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Song, W.J.; Lin, H.; Wang, W.B.; Du, L.N.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef]
- Shi, X.M.; Shen, Z.Q.; Shao, B.; Shen, J.Z.; Wu, Y.N.; Wang, S.L. Antibiotic resistance genes profile in the surface sediments of typical aquaculture areas across 15 major lakes in China. Environ. Pollut. 2024, 347, 123709. [Google Scholar] [CrossRef]
- Curran, J.F.; Zaggia, L.; Quero, G.M. Metagenomic characterization of microbial pollutants and antibiotic- and metal-resistance genes in sediments from the canals of Venice. Water 2022, 14, 1161. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Lu, S.; Zhang, J.; Wang, W. Occurrence of typical antibiotics in Nansi Lake’s inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model. Chemosphere 2020, 242, 125269. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Shen, X.; Shen, D.; Wang, K.; Jiang, X.; Qadeer, A. Regional differences in lead (Pb) and tetracycline (TC) binding behavior of sediment dissolved organic matter (SDOM): Effects of DOM heterogeneity and microbial degradation. J. Hazard. Mater. 2024, 474, 134785. [Google Scholar] [CrossRef]
- Wang, R.; Xu, S.; Jiang, C.; Zhang, Y.; Bai, N.; Zhuang, G.; Bai, Z.; Zhuang, X. Impacts of human activities on the composition and abundance of sulfate-reducing and sulfur-oxidizing microorganisms in polluted river sediments. Front. Microbiol. 2019, 10, 231. [Google Scholar] [CrossRef]
- Ballent, A.; Corcoran, P.L.; Madden, O.; Helm, P.A.; Longstaffe, F.J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 2016, 110, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.L.; Djordjevic, S.P.; Donner, E.; Yin, H.B.; Nghiem, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ. 2021, 783, 146964. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Maslov, S.; Sneppen, K. Specificity and stability in topology of protein networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Nonaka, L.; Suzuki, S. Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol. Lett. 2004, 237, 147–156. [Google Scholar] [CrossRef]
- Laverock, B.; Gilbert, J.A.; Tait, K.; Osborn, A.M.; Widdicombe, S. Bioturbation: Impact on the marine nitrogen cycle. Biochem. Soc. Trans. 2011, 39, 315–320. [Google Scholar] [CrossRef]
- Li, J.; Dong, C.; Lai, Q.; Wang, G.; Shao, Z. Frequent occurrence and metabolic versatility of Marinifilaceae bacteria as key players in organic matter mineralization in global deep seas. mSystems 2022, 7, e00864-22. [Google Scholar] [CrossRef]
- Zhang, L.; Ju, Z.; Su, Z.; Fu, Y.; Zhao, B.; Song, Y.; Wen, D.; Zhao, Y.; Cui, J. The antibiotic resistance and risk heterogeneity between urban and rural rivers in a pharmaceutical industry dominated city in China: The importance of social-economic factors. Sci. Total Environ. 2022, 852, 158530. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Iqbal, M.; Zeng, Z.; Lian, Y.; Zheng, A.; Zhao, M.; Li, Z.; Wang, G.; Li, Z.; Xie, J. Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microb. Pathog. 2020, 142, 104101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, J.; Wang, N.; Wang, H.; Yu, L. Metagenomic analysis reveals microbiome and resistome in the seawater and sediments of Kongsfjorden (Svalbard, High Arctic). Sci. Total Environ. 2022, 809, 151937. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.S. Vibrio vulnificus infection. N. Engl. J. Med. 2018, 379, 375. [Google Scholar] [CrossRef]
- He, L.X.; He, L.Y.; Gao, F.Z.; Wu, D.L.; Ye, P.; Cheng, Y.X.; Chen, Z.Y.; Hu, L.X.; Liu, Y.S.; Chen, J.; et al. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Sci. Total Environ. 2022, 808, 152042. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Overview: Global and local impact of antibiotic resistance. Infect. Dis. Clin. North Am. 2016, 30, 313–322. [Google Scholar] [CrossRef]
- Labella, A.; Gennari, M.; Ghidini, V.; Trento, I.; Manfrin, A.; Borrego, J.J.; Lleo, M.M. High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar. Pollut. Bull. 2013, 70, 197–203. [Google Scholar] [CrossRef] [PubMed]
- He, L.X.; He, L.Y.; Gao, F.Z.; Zhang, M.; Chen, J.; Jia, W.L.; Ye, P.; Jia, Y.W.; Hong, B.; Liu, S.S.; et al. Mariculture affects antibiotic resistome and microbiome in the coastal environment. J. Hazard. Mater. 2023, 452, 131208. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lan, B.; Fei, H.; Wang, S.; Zhu, G. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. J. Hazard. Mater. 2021, 411, 124848. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, J.; Zhang, Y.X.; Wu, J.; Luo, Y.; Liu, H. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresour. Technol. 2018, 253, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Haldar, A.; Bhattacharyya, M.; Ghosh, A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci. Total Environ. 2019, 647, 1626–1639. [Google Scholar] [CrossRef]
- Su, H.C.; Liu, Y.S.; Pan, C.G.; Chen, J.; He, L.Y.; Ying, G.G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Sci. Total Environ. 2018, 616–617, 453–461. [Google Scholar] [CrossRef]
Variable | 16S rRNA | sulI/16S rRNA | tetX/16S rRNA | cmlA/16S rRNA | aac/16S rRNA | int1/16S rRNA |
---|---|---|---|---|---|---|
NH4+-N (mg/kg) | 0.701 ** | 0.604 ** | 0.012 | −0.210 | 0.467 * | 0.709 ** |
PE (items/kg) | 0.879 ** | 0.666 ** | 0.488 ** | −0.115 | 0.417 * | 0.872 ** |
TOC (mg/kg) | 0.827 ** | 0.717 ** | 0.432 * | −0.178 | 0.512 ** | 0.914 ** |
PVC (items/kg) | 0.853 ** | 0.751 ** | 0.444 * | −0.206 | 0.455 * | 0.921 ** |
PS (items/kg) | 0.406 * | 0.081 | 0.860 ** | −0.056 | 0.237 | 0.398 * |
Sulfate (g/kg) | −0.174 | 0.084 | −0.056 | 0.166 | −0.012 | 0.017 |
pH | 0.198 | 0.269 | 0.180 | −0.144 | 0.018 | 0.317 |
NO3−-N (mg/kg) | 0.175 | 0.278 | −0.032 | −0.031 | 0.333 | 0.212 |
Sampling Site | Simpson Index | Shannon Index | ACE Index | Chao Index | Coverage |
---|---|---|---|---|---|
AP | 0.061 ± 0.017 a | 5.13 ± 0.25 a | 1981.07 ± 270.98 a | 1950.16 ± 261.98 a | 0.97 ± 0.01 |
AA | 0.003 ± 0.000 b | 6.94 ± 0.08 b | 3525.28 ± 421.18 b | 3446.88 ± 394.41 b | 0.96 ± 0.01 |
AU | 0.004 ± 0.001 b | 6.75 ± 0.10 b | 2865.93 ± 352.05 ab | 2824.72 ± 333.96 ab | 0.97 ± 0.01 |
AP | 0.061 ± 0.017 a | 5.13 ± 0.25 a | 1981.07 ± 270.98 a | 1950.16 ± 261.98 a | 0.97 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Li, M.; Li, H.; Yin, X.; Zhang, H.; Wang, H.; Ding, C.; Chen, Q. Effects of Human Activities on Antibiotic Resistance Genes and Microbial Diversity in Lake Sediments. Water 2025, 17, 1523. https://doi.org/10.3390/w17101523
Wang R, Li M, Li H, Yin X, Zhang H, Wang H, Ding C, Chen Q. Effects of Human Activities on Antibiotic Resistance Genes and Microbial Diversity in Lake Sediments. Water. 2025; 17(10):1523. https://doi.org/10.3390/w17101523
Chicago/Turabian StyleWang, Rui, Min Li, Haiying Li, Xianyu Yin, Hanlu Zhang, Hongmei Wang, Chengshi Ding, and Qing Chen. 2025. "Effects of Human Activities on Antibiotic Resistance Genes and Microbial Diversity in Lake Sediments" Water 17, no. 10: 1523. https://doi.org/10.3390/w17101523
APA StyleWang, R., Li, M., Li, H., Yin, X., Zhang, H., Wang, H., Ding, C., & Chen, Q. (2025). Effects of Human Activities on Antibiotic Resistance Genes and Microbial Diversity in Lake Sediments. Water, 17(10), 1523. https://doi.org/10.3390/w17101523