Water Whiplash in Mediterranean Regions of the World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Chile, South Africa and Italy (Global Runoff Data Center)
2.1.2. United States (California) (USGS)
2.1.3. Italy
2.1.4. Australia (Hydrologic Reference Stations)
2.2. Analysis of Whiplash—Wet and Dry Periods
2.3. Testing of Differences in Populations
2.4. Analysis of ENSO Impacts
3. Results
3.1. Weather Whiplash Results
3.1.1. Wet and Dry Periods
3.1.2. Whiplash Results
3.1.3. Regional Analysis
3.2. ENSO Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Norris, J.; Thackeray, C.; Hall, A. Increasing Precipitation Whiplash in Climate Change Hotspots. Environ. Res. Lett. 2022, 17, 124011. [Google Scholar] [CrossRef]
- Swain, D.; Langenbrunner, B.; Neelin, J.; Hall, A. Increasing Precipitation Volatility in Twenty-First-Century California. Nat. Clim. Chang. 2018, 8, 427–433. [Google Scholar] [CrossRef]
- Spano, D.; Snyder, R.L.; Cesaraccio, C. Mediterranean Climates. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Tasks for Vegetation Science; Springer: Dordrecht, The Netherlands, 2003; pp. 139–156. ISBN 978-94-007-0632-3. [Google Scholar]
- Peel, M.; Finlayson, B.; Mcmahon, T. Updated World Map of the Koppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a Warming World: Assessing Projected Hydro-Climate Changes in California and Other Mediterranean Climate Regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef]
- De Luca, P.; Messori, G.; Faranda, D.; Ward, P.J.; Coumou, D. Compound Warm–Dry and Cold–Wet Events over the Mediterranean. Earth Syst. Dyn. 2020, 11, 793–805. [Google Scholar] [CrossRef]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The Key Role of Dry Days in Changing Regional Climate and Precipitation Regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-Term Climate Change in the Mediterranean Region in the Midst of Decadal Variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Null, S.E.; Abatzoglou, J.T.; Novick, K.A.; Myers, D.T. Hydrological Intensification Will Increase the Complexity of Water Resource Management. Earths Future 2022, 10, e2021EF002487. [Google Scholar] [CrossRef]
- Francis, J.A.; Skific, N.; Vavrus, S.J.; Cohen, J. Measuring “Weather Whiplash” Events in North America: A New Large-Scale Regime Approach. J. Geophys. Res. Atmos. 2022, 127, e2022JD036717. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Lazzeri, M.; Cacciamani, C. Precipitation Fluctuations during the Winter Season from 1960 to 1995 over Emilia-Romagna, Italy. Theor. Appl. Climatol. 2002, 72, 221–229. [Google Scholar] [CrossRef]
- Bérubé, S.; Brissette, F.; Arsenault, R. Optimal Hydrological Model Calibration Strategy for Climate Change Impact Studies. J. Hydrol. Eng. 2022, 27, 04021053. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Arkin, P.A. Chapter 40 Interannual Climate Variability Associated with the El Niño/ Southern Oscillation. In Elsevier Oceanography Series; Nihoul, J.C.J., Ed.; Coupled Ocean-Atmosphere Models; Elsevier: Amsterdam, The Netherlands, 1985; Volume 40, pp. 697–725. [Google Scholar]
- Ropelewski, C.F.; Jones, P.D. An Extension of the Tahiti–Darwin Southern Oscillation Index. Mon. Weather Rev. 1987, 115, 2161–2165. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Cook, E.; Lall, U.; Ray, B.K. Spatiotemporal Variability of ENSO and SST Teleconnections to Summer Drought over the United States during the Twentieth Century. J. Clim. 2000, 13, 4244–4255. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Piechota, T.C.; Dracup, J.A.; McMahon, T.A. El Nino/Southern Oscillation and Australian Rainfall, Streamflow and Drought: Links and Potential for Forecasting. J. Hydrol. 1998, 204, 138–149. [Google Scholar] [CrossRef]
- Lenssen, N.J.L.; Goddard, L.; Mason, S. Seasonal Forecast Skill of ENSO Teleconnection Maps. Weather Forecast. 2020, 35, 2387–2406. [Google Scholar] [CrossRef]
- Mason, S.; Goddard, L. Probabilistic Precipitation Anomalies Associated with ENSO. Bull. Am. Meteorol. Soc. 2001, 82, 619–638. [Google Scholar] [CrossRef]
- Müller-Plath, G.; Lüdecke, H.-J.; Lüning, S. Long-Distance Air Pressure Differences Correlate with European Rain. Sci. Rep. 2022, 12, 10191. [Google Scholar] [CrossRef] [PubMed]
- Lüdecke, H.-J.; Müller-Plath, G.; Wallace, M.G.; Lüning, S. Decadal and Multidecadal Natural Variability of African Rainfall. J. Hydrol. Reg. Stud. 2021, 34, 100795. [Google Scholar] [CrossRef]
- GRDC Data Portal. Available online: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser (accessed on 10 October 2023).
- USGS Water Data for the Nation. Available online: https://waterdata.usgs.gov/nwis (accessed on 1 February 2023).
- National Oceanic and Atmospheric Administration; National Weather Service; California Nevada River Forecast Center. Available online: https://www.cnrfc.noaa.gov/?product=espfcstWY&zoom=7&lat=40.506&lng=-121.896 (accessed on 1 April 2023).
- Morlot, M.; Rigon, R.; Formetta, G. Hydrological Digital Twin Model of a Large Anthropized Italian Alpine Catchment: The Adige River Basin. J. Hydrol. 2023, 629, 130587. [Google Scholar] [CrossRef]
- Formetta, G.; Antonello, A.; Franceschi, S.; David, O.; Rigon, R. Hydrological Modelling with Components: A GIS-Based Open-Source Framework. Environ. Model. Softw. 2014, 55, 190–200. [Google Scholar] [CrossRef]
- Formetta, G.; Rigon, R.; Chávez, J.L.; David, O. Modeling Shortwave Solar Radiation Using the JGrass-NewAge System. Geosci. Model Dev. 2013, 6, 915–928. [Google Scholar] [CrossRef]
- Tootle, G.; Oubeidillah, A.; Elliott, E.; Formetta, G.; Bezak, N. Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies for the Sava River Basin (Slovenia). Hydrology 2023, 10, 138. [Google Scholar] [CrossRef]
- Hydrologic Reference Stations. Water Information: Bureau of Meteorology. Available online: http://www.bom.gov.au/water/hrs/ (accessed on 25 September 2023).
- Amirthanathan, G.E.; Bari, M.A.; Woldemeskel, F.M.; Tuteja, N.K.; Feikema, P.M. Regional Significance of Historical Trends and Step Changes in Australian Streamflow. Hydrol. Earth Syst. Sci. 2023, 27, 229–254. [Google Scholar] [CrossRef]
- Climate Prediction Center Internet Team. NOAA’s Climate Prediction Center. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 1 October 2023).
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Zscheischler, J.; Moradkhani, H. Higher Exposure of Poorer People to Emerging Weather Whiplash in a Warmer World. Geophys. Res. Lett. 2023, 50, e2023GL105640. [Google Scholar] [CrossRef]
Station Name | ID | Location | Year Measured | Start Year | End Year | Latitude | Longitude | Units |
---|---|---|---|---|---|---|---|---|
Sacramento Delta at Sacramento River | US1 a | California, USA | Water Year | 1951 | 2023 | 40.94 | −122.42 | KAF |
Happy Isles Bridge near Yosemite at Merced River | US2 a | California, USA | Water Year | 1951 | 2023 | 37.73 | −119.56 | KAF |
Mill Creek Near Los Molinos at Mill River | US3 a | California, USA | Water Year | 1951 | 2023 | 40.05 | −122.02 | KAF |
Deer Creek Near Vina at Deer River | US4 a | California, USA | Water Year | 1951 | 2023 | 40.01 | −121.95 | KAF |
Spondigna at Adige River | IT1 b | Italy | Calendar Year | 1980 | 2018 | 46.63 | 10.60 | mm |
Sava Near Catez at Sava River | IT2 b | Slovenia | Calendar Year | 1926 | 2020 | 45.89 | 15.60 | MCM |
Montecastello at Fiume Tanaro River | IT3 c | Italy | Calendar Year | 1936 | 2008 | 44.94 | 8.68 | m3/s |
Farigliano at Fiume Tanaro River | IT4 c | Italy | Calendar Year | 1942 | 2008 | 44.51 | 7.90 | m3/s |
Yarragil Brook, Yarragil Formation at Murray River | AU1 d | Australia | Calendar Year | 1952 | 2022 | −32.80 | 116.12 | ML |
Donnelly Near Strickland at Donnelly River | AU2 d | Australia | Calendar Year | 1952 | 2022 | −34.33 | 115.77 | ML |
Big Brook Near O’Neil Rd ay Murray River | AU3 d | Australia | Calendar Year | 1983 | 2022 | −32.53 | 116.04 | ML |
Wungong Brook near Vardi Rd at Swan River | AU4 d | Australia | Calendar Year | 1981 | 2022 | −32.10 | 15.98 | ML |
Chacabuquito at Aconcagua River | CH1 c | Chile | Calendar Year | 1956 | 2019 | −32.85 | −70.51 | m3/s |
Algarrobal at Elqui River | CH2 c | Chile | Calendar Year | 1980 | 2019 | −29.99 | −70.58 | m3/s |
Desembocadura at Biobio River | CH3 c | Chile | Calendar Year | 1969 | 2019 | −36.83 | −73.07 | m3/s |
San Lorezo at Diguillin River | CH4 c | Chile | Calendar Year | 1960 | 2019 | −36.92 | −71.57 | m3/s |
Dassjes Klip at Duiwenhoksrivier | SA1 c | South Africa | Calendar Year | 1968 | 2022 | −34.25 | 20.99 | m3/s |
Grootrivierspoort at Grootrivier | SA2 c | South Africa | Calendar Year | 1965 | 2022 | −33.71 | 24.61 | m3/s |
Hagedisberg Outspan at Kleinrivier | SA3 c | South Africa | Calendar year | 1964 | 2021 | −34.40 | 19.59 | m3/s |
Melkboom at Doringrivier | SA4 c | South Africa | Calendar Year | 1928 | 2022 | −31.86 | 18.68 | m3/s |
Station ID | Total Wet Years | Percentage | Total Dry Years | Percentage |
---|---|---|---|---|
US1 * | 36 (13) | 49% (36%) | 37 (23) | 51% (64%) |
US2 * | 32 (14) | 44% (39%) | 41 (22) | 56% (61%) |
US3 * | 34 (14) | 47% (39%) | 39 (22) | 53% (61%) |
US4 * | 35 (14) | 48% (39%) | 38 (22) | 52% (61%) |
IT1 | 19 (18) | 49% (50%) | 20 (18) | 51% (50%) |
IT2 * | 35 (5) | 37% (14%) | 60 (31) | 63% (86%) |
IT3 | 31(N/A) | 43% (N/A) | 42 (N/A) | 58% (N/A) |
IT4 | 33 (N/A) | 50% (N/A) | 33 (N/A) | 50% (N/A) |
AU1 * | 20 (3) | 29% (8%) | 49 (33) | 71% (92%) |
AU2 * | 31 (10) | 45% (28%) | 38 (26) | 55% (72%) |
AU3 * | 14 (13) | 37% (36%) | 24 (23) | 63% (64%) |
AU4 | 18 (18) | 47% (50%) | 20 (18) | 53% (50%) |
CH1 | 33 (19) | 52% (53%) | 31 (17) | 48% (47%) |
CH2 | 15 (15) | 38% (42%) | 25 (21) | 63% (58%) |
CH3 | 25 (19) | 49% (50%) | 26 (18) | 51% (50%) |
CH4 | 31 (18) | 52% (50%) | 29 (18) | 48% (50%) |
SA1 | 25 (19) | 45% (53%) | 30 (17) | 55% (47%) |
SA2 * | 14 (8) | 24% (22%) | 44 (28) | 76% (36%) |
SA3 * | 31 (23) | 53% (64%) | 27 (13) | 47% (36%) |
SA4 | 38 (17) | 40% (47%) | 57 (19) | 60% (53%) |
Region | US-IT | US-AU | US-CH | US-SA | IT-AU | IT-CH | IT-SA | AU-CH | AU-SA | CH-SA |
---|---|---|---|---|---|---|---|---|---|---|
Wet Period Length | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 | |||||
Dry Period Length | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 | <0.01 | <0.01 | |||
Indicator Ratio | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 |
Station ID | Flow and JFM | Flow and AMJ | Flow and JAS | Flow and OND |
---|---|---|---|---|
US1 | 0.20 * | 0.17 | −0.11 | −0.14 |
US2 | 0.15 | 0.19 | −0.05 | −0.07 |
US3 | 0.11 | 0.14 | −0.04 | −0.05 |
US4 | 0.10 | 0.15 | −0.04 | −0.05 |
IT1 | −0.06 | 0.05 | 0.05 | 0.07 |
IT2 | 0.03 | 0.12 | 0.13 | 0.17 |
IT3 | −0.12 | 0.01 | 0.16 | 0.21 |
IT4 | −0.04 | 0.10 | 0.14 | 0.15 |
AU1 | −0.05 | −0.18 | −0.13 | −0.18 |
AU2 | −0.06 | −0.18 | −0.14 | −0.18 |
AU3 | −0.12 | −0.15 | −0.18 | −0.16 |
AU4 | 0.09 | 0.03 | −0.05 | −0.10 |
CH1 | 0.26 | 0.20 | 0.17 | 0.07 |
CH2 | 0.31 | 0.14 | 0.03 | −0.10 |
CH3 | −0.13 | 0.27 * | 0.46 | 0.46 |
CH4 | −0.12 | 0.20 | 0.27 | 0.30 |
SA1 | −0.26 * | −0.19 | 0.03 | 0.06 |
SA2 | −0.34 | −0.33 | −0.14 | −0.17 |
SA3 | −0.15 | 0.00 | 0.07 | 0.06 |
SA4 | −0.15 | −0.06 | 0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrigal, C.; Bedri, R.; Piechota, T.; Li, W.; Tootle, G.; El-Askary, H. Water Whiplash in Mediterranean Regions of the World. Water 2024, 16, 450. https://doi.org/10.3390/w16030450
Madrigal C, Bedri R, Piechota T, Li W, Tootle G, El-Askary H. Water Whiplash in Mediterranean Regions of the World. Water. 2024; 16(3):450. https://doi.org/10.3390/w16030450
Chicago/Turabian StyleMadrigal, Citlalli, Rama Bedri, Thomas Piechota, Wenzhao Li, Glenn Tootle, and Hesham El-Askary. 2024. "Water Whiplash in Mediterranean Regions of the World" Water 16, no. 3: 450. https://doi.org/10.3390/w16030450
APA StyleMadrigal, C., Bedri, R., Piechota, T., Li, W., Tootle, G., & El-Askary, H. (2024). Water Whiplash in Mediterranean Regions of the World. Water, 16(3), 450. https://doi.org/10.3390/w16030450