Prokaryotic Microbial Diversity Analysis and Preliminary Prediction of Metabolic Function in Salt Lakes on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Physicochemical Analysis
2.2. Metagenomic DNA Extraction and Sequencing
2.3. Bioinformatic Analysis
2.4. Statistical Analysis
3. Results
3.1. Environmental Factors in XT and DT
3.2. DNA Sequencing
3.3. Statistical Analysis in Diversity
3.4. Overview of Microbial Communities
3.5. Taxonomic Composition of Bacterial Communities
3.6. Taxonomic Composition of Archaeal Communities
3.7. Functional Annotation of Clusters of Orthologous Groups
3.8. Functional Annotation of the KEGG Metabolic Network
3.9. Major Metabolic Pathways and Halophilic Mechanisms
3.10. Association Analysis of Dominant Genera and Environmental Factors
4. Discussion
4.1. The Salinity Vary in XT and DT Lakes
4.2. The Microbial Community and Dominant Groups in XT and DT
4.3. Microbial Adaptation Strategy and Metabolism in XT and DT
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charles, H.; Dukes, J.S. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol. Appl. 2009, 19, 1758–1773. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.K.; Qi, H.P.; Wang, Y.H.; Jin, L. Lithium isotopic compositions of brine, sediments and source water in Qaidam Lake, Qinghai, China. Geochim. Cosmochim. Acta 1994, 4, 329–338. [Google Scholar]
- Wei, H.Z.; Jiang, S.Y.; Tan, H.B.; Zhang, W.J.; Li, B.K.; Yang, T.L. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources. Chem. Geol. 2014, 10, 74–83. [Google Scholar] [CrossRef]
- Zheng, M.P.; Liu, X.F. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Tibet Plateau, China. Acta Geol. Sin. 2010, 84, 1585–1600. [Google Scholar]
- Liang, Q.S.; Han, F.Q. Geological Characteristics and Lithium Distribution of East Taijinar Salt Lake in Qaidam Basin. J. Salt Lake Res. 2013, 3, 1–9. [Google Scholar]
- Wang, L.; Yu, D.; Fu, Y.; Yan, M. Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin. Pet. Geol. Exp. 2020, 7, 186–192. [Google Scholar]
- Han, J.; Xu, J.; Yi, L.; Chang, Z.; Wang, J.; Ma, H.; Zhang, B.; Jiang, H. Seasonal Interaction of River Water-Groundwater-Salt Lake Brine and Its Influence on Water-Salt Balance in the Nalenggele River Catchment in Qaidam Basin, NW China. J. Earth Sci. 2022, 33, 11. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J. The hydrological features of Caidam Basin. Arid Zone Res. 1996, 13, 7–13. [Google Scholar]
- Zhu, G.; Zhang, X.; Li, Y.; Tang, Q.; Miao, W.; Li, W.; Xue, Y.; Li, Y. Hydrochemical Charateristics of Oilfield Waters in Lenghu No. 3 Structure Area of North Edge of Qaidam Basin. J. Salt Lake Res. 2016, 2, 12–18. [Google Scholar]
- Hui, Z. Preliminary studies on deposition characters and ages of the salt sediments of Dong Taijineier Salt Lake in Qinghai province. Geol. Chem. Miner. 2001, 83, 3. [Google Scholar]
- Kushner, D.J. Life in high salt and solute concentrations: Halophilic bacteria. Microb. Life Extrem. Environ. 1978, 317–368. [Google Scholar]
- Huang, J.; Yang, J.; Jiang, H.; Wu, G.; Liu, W.; Wang, B.; Xiao, H.; Han, J. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Front. Microbiol. 2020, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, B.; Bhattacharjee, A.S.; Coutinho, F.H.; Goel, R.K. Viruses and Their Interactions with Bacteria and Archaea of Hypersaline Great Salt Lake. Front. Microbiol. 2021, 12, 701414. [Google Scholar] [CrossRef] [PubMed]
- Čačković, A.; Kajan, K.; Selak, L.; Marković, T.; Brozičević, A.; Pjevac, P.; Orlić, S. Hydrochemical and Seasonally Conditioned Changes of Microbial Communities in the Tufa-Forming Freshwater Network Ecosystem. mSphere 2023, 8, e0060222. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Handelsman, J. Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biol. 2005, 6, 229. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Gu, S.; Fang, L.; Xu, X. Using SOAPaligner for Short Reads Alignment. Curr. Protoc. Bioinform. 2013, 44, 11.11.1–11.11.17. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Julien, P.; Kuhn, M.; von Mering, C.; Muller, J.; Doerks, T.; Bork, P. eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 2008, 36, D250–D254. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Duan, H.; He, P.; Zhang, H.; Shao, L.; Lü, F. Metabolic Regulation of Mesophilic Methanosarcina barkeri to Ammonium Inhibition. Env. Sci. Technol. 2022, 56, 8897–8907. [Google Scholar] [CrossRef]
- Piubeli, F.; Salvador, M.; Argandoña, M.; Nieto, J.J.; Bernal, V.; Pastor, J.M.; Cánovas, M.; Vargas, C. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb. Cell Fact. 2018, 17, 2. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Yang, N.; Liu, J. The Osmoprotectant Switch of Potassium to Compatible Solutes in an Extremely Halophilic Archaea Halorubrum kocurii 2020YC7. Genes 2022, 13, 939. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Wang, J.; Chen, L.; Lu, B.; Ling, Z. Remote Sensing Analysis on the Landscape Pattern Variation Influenced by Resources Exploitation in Taijinar Salt Lake Area from 1990 to 2015. J. Salt Lake Res. 2020, 1, 105–111. [Google Scholar]
- Han, G.; Han, J.B.; Liu, J.B. Variation characteristics of LiCl deposit under condition of mining in East Taijnar Salt Lake, Qaidam Basin. Inorg. Chem. Ind. 2020, 12, 17–22. [Google Scholar]
- Qin, Z.J.; Li, Q.K.; Li, W.X.; Fan, Q.S.; Chen, T.Y.; Wu, C.; Wang, J.P.; Shan, F.S. Elemental Variations and Mechanisms of Brines in the Context of Large-Scale Exploitation: A Case Study of Xitaijnar Salt Lake, Qaidam Basin. Aquat. Geochem. 2023, 1–21. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, J.; Yang, J.; Wu, G.; Hua, Z.; Dong, H.; Hedlund, B.P.; Baker, B.J.; Jiang, H. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems 2022, 7, e0033522. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Xie, A.; Zhang, S.; Li, C. Research on development status and countermeasure of brine resources in East-West Ginair and Yiliping Salt Lake. Arch. Microbiol. 2020, 2, 48–51+56. [Google Scholar] [CrossRef]
- Tazi, L.; Breakwell, D.P.; Harker, A.R.; Crandall, K.A. Life in extreme environments: Microbial diversity in Great Salt Lake, Utah. Extremophiles 2014, 18, 525–535. [Google Scholar] [CrossRef]
- Xie, L.; Yu, S.; Lu, X.; Liu, S.; Tang, Y.; Lu, H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jiang, H.; Dong, H.; Liu, Y. A comprehensive census of lake microbial diversity on a global scale. Sci. China Life Sci. 2019, 62, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Medina, M.; Bowles, M.W.; Samarkin, V.A.; Hunter, K.S.; Joye, S.B. Microbial diversity and activity in seafloor brine lake sediments (Alaminos Canyon block 601, Gulf of Mexico). Geobiology 2016, 14, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Zhang, X.; Liu, J.; Long, Q.; Chen, L.; Liu, D.; Zhu, D. Microbial community structure and diversity within hypersaline Keke Salt Lake environments. Can. J. Microbiol. 2017, 63, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Murcia, A.; Acinas, S.G.; Rodríguez-Valera, F. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol. Ecol. 1995, 17, 247–255. [Google Scholar] [CrossRef]
- Bird, L.J.; Mickol, R.L.; Eddie, B.J.; Thakur, M.; Yates, M.D.; Glaven, S.M. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb. Biotechnol. 2022, 16, 494–506. [Google Scholar] [CrossRef]
- Bird, L.J.; Wang, Z.; Malanoski, A.P.; Onderko, E.L.; Johnson, B.J.; Moore, M.H.; Phillips, D.A.; Chu, B.J.; Doyle, J.F.; Eddie, B.J.; et al. Development of a Genetic System for Marinobacter atlanticus CP1 (sp. nov.), a Wax Ester Producing Strain Isolated from an Autotrophic Biocathode. Front. Microbiol. 2018, 9, 3176. [Google Scholar] [CrossRef]
- Trigui, H.; Masmoudi, S.; Brochier-Armanet, C.; Maalej, S.; Dukan, S. Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Can. J. Microbiol. 2011, 57, 923–933. [Google Scholar] [CrossRef]
- Moreno Mde, L.; García, M.T.; Ventosa, A.; Iglesias-Guerra, F.; Mellado, E. The extremely halophilic bacterium Salicola marasensis IC10 accumulates the compatible solute betaine. Syst. Appl. Microbiol. 2010, 33, 308–310. [Google Scholar] [CrossRef]
- Lee, S.M.; Cho, D.H.; Jung, H.J.; Kim, B.; Kim, S.H.; Bhatia, S.K.; Gurav, R.; Jeon, J.M.; Yoon, J.J.; Kim, W.; et al. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Int. J. Biol. Macromol. 2022, 208, 809–818. [Google Scholar] [CrossRef]
- Podell, S.; Blanton, J.M.; Neu, A.; Agarwal, V.; Biggs, J.S.; Moore, B.S.; Allen, E.E. Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME J. 2019, 13, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.T.; Tague, E.D.; Zinke, L.; Schmidt, J.M.; Steen, A.D.; Reese, B.; Marshall, I.P.G.; Webster, G.; Weightman, A.; Castro, H.F.; et al. Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year Subsistence in Baltic Sea Sediments. mBio 2019, 10, e02376-18. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.M.; Chew, T.H.; Tay, Y.L.; Lye, S.F.; Yahya, A. Genome sequence of Hydrogenophaga sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium. J. Bacteriol. 2012, 194, 4759–4760. [Google Scholar] [CrossRef] [PubMed]
- Grenz, S.; Baumann, P.T.; Rückert, C.; Nebel, B.A.; Siebert, D.; Schwentner, A.; Eikmanns, B.J.; Hauer, B.; Kalinowski, J.; Takors, R.; et al. Exploiting Hydrogenophaga pseudoflava for aerobic syngas-based production of chemicals. Metab. Eng. 2019, 55, 220–230. [Google Scholar] [CrossRef]
- Banda, J.F.; Zhang, Q.; Ma, L.; Pei, L.; Du, Z.; Hao, C.; Dong, H. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. Sci. Total Env. 2021, 791, 148108. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Biswas, R.; Misra, A.; Sar, A.; Banerjee, S.; Mukherjee, P.; Dam, B. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India. Extremophiles 2020, 24, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Banciu, H.L.; Muntyan, M.S. Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes. Curr. Opin. Microbiol. 2015, 25, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Ventosa, A. International Committee on Systematics of Prokaryotes subcommittee on the taxonomy of Halobacteria and subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 26 June 2019, Cluj-Napoca, Romania. Int. J. Syst. Evol. Microbiol. 2019, 69, 3657–3661. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Messina, E.; La Cono, V.; Ferrer, M.; Ciordia, S.; Mena, M.C.; Toshchakov, S.V.; Golyshin, P.N.; Yakimov, M.M. Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes. Front. Microbiol. 2018, 9, 2359. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef]
- Zhang, C.J.; Chen, Y.L.; Sun, Y.H.; Pan, J.; Cai, M.W.; Li, M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar. Life Sci. Technol. 2021, 3, 252–262. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, Y.; Wang, Z.; Zhao, M.; Su, N.; Zhang, T.; Chen, L.; Wei, W.; Luo, J.; et al. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis. J. Proteome Res. 2016, 15, 68–85. [Google Scholar] [CrossRef]
- Cai, L.; Zhao, D.; Hou, J.; Wu, J.; Cai, S.; Dassarma, P.; Xiang, H. Cellular and organellar membrane-associated proteins in haloarchaea: Perspectives on the physiological significance and biotechnological applications. Sci. China Life Sci. 2012, 55, 404–414. [Google Scholar] [CrossRef]
- Han, J.; Gao, Q.X.; Zhang, Y.G.; Li, L.; Mohamad, O.A.A.; Rao, M.P.N.; Xiao, M.; Hozzein, W.N.; Alkhalifah, D.H.M.; Tao, Y.; et al. Transcriptomic and Ectoine Analysis of Halotolerant Nocardiopsis gilva YIM 90087(T) Under Salt Stress. Front. Microbiol. 2018, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Czech, L.; Hermann, L.; Stöveken, N.; Richter, A.A.; Höppner, A.; Smits, S.H.J.; Heider, J.; Bremer, E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes 2018, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Krämer, R. Responses of Microorganisms to Osmotic Stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.F. Osmoadaptation and osmoregulation in archaea. Front. Biosci. 2000, 5, D796–D812. [Google Scholar] [CrossRef] [PubMed]
- Shporer, M.; Civan, M.M. Pulsed nuclear magnetic resonance study of 39K within halobacteria. J. Membr. Biol. 1977, 33, 385–400. [Google Scholar] [CrossRef] [PubMed]
Sample Name | N | E | H | T | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | TS | TN | TP | TOC | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT1 | 37°28′3″ | 93°55′19″ | 2617 | 14.5 | 0.28 | 3.67 | 112.85 | 5.94 | 177.20 | 17.80 | 0.71 | 332.18 | 24.6 | 0.2 | 146.0 | 7.88 |
DT2&DT3 b | 37°31′3″ | 93°53′19″ | 2617 | 14.5 | 103.51 | 6.57 | 0.23 | 13.18 | 180.97 | 22.14 | 0.27 | 358.30 | 137.0 | 0.1 | 8.30 | 7.94 |
XT1&XT3 b | 37°47′23″ | 93°21′5″ | 2576 | 13.0 | 10.73 | 0.30 | 0.14 | 0.60 | 17.87 | 1.75 | 0.17 | 36.83 | 37.3 | 0.5 | 4.60 | 7.02 |
XT2 | 37°44′27″ | 93°22′5″ | 2576 | 15.0 | 0.11 | 0.09 | 2.74 | 0.30 | 0.44 | 0.80 | 0.16 | 20.09 | 0.7 | 0.1 | 52.00 | 7.00 |
XT4 | 37°41′35″ | 93°28′5″ | 2576 | 15.0 | 0.12 | 0.10 | 3.17 | 0.36 | 0.51 | 0.83 | 0.18 | 28.46 | 0.5 | 0.2 | 47.00 | 7.01 |
Sample | Ace Index | Shannon Index | Shannoneven |
---|---|---|---|
Bacteria | |||
DT1 | 1651 | 4.75 | 0.641 |
DT2 | 1660 | 5.28 | 0.712 |
DT3 | 1572 | 5.41 | 0.735 |
XT1 | 1853 | 5.65 | 0.751 |
XT2 | 1878 | 6.17 | 0.819 |
XT3 | 1866 | 5.56 | 0.738 |
XT4 | 1855 | 4.06 | 0.539 |
Archaea | |||
DT1 | 151 | 2.74 | 0.546 |
DT2 | 150 | 2.82 | 0.564 |
DT3 | 149 | 2.57 | 0.513 |
XT1 | 141 | 3.69 | 0.745 |
XT2 | 144 | 3.66 | 0.737 |
XT3 | 141 | 3.13 | 0.633 |
XT4 | 136 | 3.47 | 0.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xing, J.; Long, Q.; Shen, G.; Zhu, D.; Li, Y. Prokaryotic Microbial Diversity Analysis and Preliminary Prediction of Metabolic Function in Salt Lakes on the Qinghai–Tibet Plateau. Water 2024, 16, 451. https://doi.org/10.3390/w16030451
Zhang M, Xing J, Long Q, Shen G, Zhu D, Li Y. Prokaryotic Microbial Diversity Analysis and Preliminary Prediction of Metabolic Function in Salt Lakes on the Qinghai–Tibet Plateau. Water. 2024; 16(3):451. https://doi.org/10.3390/w16030451
Chicago/Turabian StyleZhang, Man, Jiangwa Xing, Qifu Long, Guoping Shen, Derui Zhu, and Yongzhen Li. 2024. "Prokaryotic Microbial Diversity Analysis and Preliminary Prediction of Metabolic Function in Salt Lakes on the Qinghai–Tibet Plateau" Water 16, no. 3: 451. https://doi.org/10.3390/w16030451
APA StyleZhang, M., Xing, J., Long, Q., Shen, G., Zhu, D., & Li, Y. (2024). Prokaryotic Microbial Diversity Analysis and Preliminary Prediction of Metabolic Function in Salt Lakes on the Qinghai–Tibet Plateau. Water, 16(3), 451. https://doi.org/10.3390/w16030451