A Probabilistic Model for Predicting the Performance of a Stormwater Overflow Structure as Part of a Stormwater Treatment Plant
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Event and Antecedent Period
2.3. Precipitation Data
2.4. Hydrodynamic Model
2.5. Calibration of the Hydrodynamic Model
- -
- The ratio of the maximum measured to simulated filling:where hKR(m) is the maximum measured filling of the separation chamber (m), and hKR(sim) is the maximum calculated filling of the separation chamber in the SWMM program (m);
- -
- The correlation coefficient (R):where ho(i) is the rainwater distribution chamber fill values observed with a one-minute time step (m); hs(i) is the distribution of the chamber fill values obtained from simulations with a one-minute time step (m); hsr,o is the average measured distribution chamber fill (m); hsr,s is the average distribution chamber fill calculated by numerical simulations (m); n is the total number of observations.
2.6. Analysis of the Effect of the Precipitation Characteristics on the Overflow Performance
2.7. Prediction of the Annual Number and Volume of Discharge Events
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Q.; Guerra, H.B.; Kim, Y. An investigation of the relationships between rainfall conditions and pollutant wash-off from the paved road. Water 2017, 9, 232. [Google Scholar] [CrossRef]
- Szeląg, B.; Górski, J.; Bąk, Ł.; Górska, K. Modelling of stormwater quantity and quality on the example of urbanised catchment in Kielce. Ecol. Chem. Eng. A 2013, 20, 1305–1316. [Google Scholar]
- Llopart-Mascaró, A.; Farreny, R.; Gabarrell, X.; Rieradevall, J.; Gil, A.; Martínez, M.; Puertas, J.; Suárez, J.; Del Río, H.; Paraira, M. Storm tank against combined sewer overflow: Operation strategies to minimise discharges impact to receiving waters. Urban Water J. 2015, 12, 219–228. [Google Scholar] [CrossRef]
- Sałata, A.; Bąk, Ł.; Dąbek, L.; Ozimina, E. Assessment of the degree of pollution of sediments from the rainstorm sewer system in the urbanized catchment. Desalin. Water Treat. 2016, 57, 1478–1489. [Google Scholar] [CrossRef]
- Rauch, W.; Krejci, V.; Gujer, W. REBEKA—A software tool for planning urban drainage on the basis of predicted impacts on receiving waters. Urban Water 2002, 4, 355–361. [Google Scholar] [CrossRef]
- Lek, S.; Scardi, M.; Verdonschot, P.F.M.; Descy, J.P.; Park, Y.S. Modelling Community Structure in Freshwater Ecosystems; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Bąk, Ł.; Michalik, A.; Tekielak, T. Appraise of consequences of erosive processes occurring in the Skawa river sector. Environ. Prot. Eng. 2011, 37, 83–92. [Google Scholar]
- Bąk, Ł.; Michalik, A.; Tekielak, T. The relationship between bank erosion, local aggradation and sediment transport in a small Carpathian stream. Geomorphology 2013, 191, 51–63. [Google Scholar] [CrossRef]
- Vaes, G.; Berlamont, J. Emission predictions with a multi–linear reservoir model. Water Sci. Technol. 1999, 39, 9–16. [Google Scholar] [CrossRef]
- US EPA. Combined Sewer Overflows. Guidance for Nine Minimum Controls; EPA 832-B-95-003; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1995.
- Gamerith, V.; Bertrand-Krajewski, J.L.; Mourad, M.; Rauch, W. Implications of long-term stormwater quality modelling for design of combined sewer infrastructure. Urban Water J. 2011, 8, 155–166. [Google Scholar] [CrossRef]
- Mantegazza, S.A.; Gallina, A.; Mambretti, S.; Camylyn, L. Designing CSO storage tanks in Italy: A comparison between normative criteria and dynamic modelling methods. Urban Water J. 2010, 7, 211–216. [Google Scholar] [CrossRef]
- Zabel, T.; Milne, I.; Mckay, G. Approaches adopted by the European Union and selected Member States for the control of urban pollution. Urban Water 2001, 3, 25–32. [Google Scholar] [CrossRef]
- Rauch, W.; Henze, M.; Koncsos, L.; Reichert, P.; Shanahan, P.; SomlyóDy, L.; Vanrolleghem, P. River water quality modelling: I. state of the art. Water Sci. Technol. 1998, 38, 237–244. [Google Scholar] [CrossRef]
- US EPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms; EPA 821-R-02-012; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2002.
- Schwoerbel, J.; Brendelberger, H. Einführung in die Limnologie. (Introduction to Limnology); Spektrum Akademie: Heidelberg, Germany, 2005. (In German) [Google Scholar]
- ATV-A 128E; Standards for the Dimensioning and Design of Stormwater Structures in Combined Sewers. GFA: Hennef, Germany, 1992.
- Fenz, R. Gewässerschutz bei Entlastungsbauwerken der Mischkanalisation; Wiener Mitteilungen, Band 174. Institut für Wassergüte und Abfallwirtschaft; Technische Universität: Wien, Austria, 2002. [Google Scholar]
- Dąbrowski, W. Estimating, computing and measuring multiplication factors for the working of storm overfalls. Gaz Woda Tech. Sanit. 2007, 11, 19–22. (In Polish) [Google Scholar]
- Fidala-Szope, M.; Sawicka-Siarkiewicz, H.; Koczyk, A. Protection of Surface Waters Against Stormwater Discharges from Combined Sewers: Decision Guide; Instytut Ochrony Środowiska: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Vaes, G. The Influence of Rainfall and Model Simplification on Combined Sewer System Design. Ph.D. Thesis, Catholic University of Leuven, Leuven, Belgium, 1999. [Google Scholar]
- Butz, J. Stoffstrombilanzen für Phosphor und Sechs Schwermetalle am Beispiel des Oberen Kraichbachs; Universität Fridericiana zu Karlsruhe (TH): Karlsruhe, Germany, 2005. [Google Scholar]
- Leandro, J.; Chen, A.; Djordjević, S.; Savić, D. Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D.A. Parsimonious hydrological modeling of urban sewer and river catchments. J. Hydrol. 2012, 464–465, 477–484. [Google Scholar] [CrossRef]
- Barco, J.; Wong, K.; Stenstrom, M. Automatic calibration of the U.S. EPA SWMM model for a large urban catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Cha, S.; Kwon, S. Applying low-impact development techniques for improved water management in urban areas. Water 2024, 16, 2837. [Google Scholar] [CrossRef]
- Ahmad, S.; Jia, H.; Ashraf, A.; Yin, D.; Chen, Z.; Ahmed, R.; Israr, M. A novel GIS-SWMM-ABM approach for flood risk assessment in data-scarce urban drainage systems. Water 2024, 16, 1464. [Google Scholar] [CrossRef]
- Andrés-Doménech, I.; Múnera, J.C.; Francés, F.; Marco, J.B. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrol. Earth Syst. Sci. 2010, 14, 2057–2072. [Google Scholar] [CrossRef]
- Carleton, M.G. Comparison of overflows from separate and combined sewers—Quantity and quality. Water Sci. Technol. 1990, 22, 31–38. [Google Scholar] [CrossRef]
- Licznar, P. Stormwater reservoir dimensioning based on synthetic rainfall time series. Ochr. Srodowiska 2013, 35, 27–32. (In Polish) [Google Scholar]
- Arbeitsblatt DWA-A 110; Hydraulische Dimensionierung und Leistungsnachweis von Abwasserleitungen und—Kanälen. DWA: Hennef, Germany, 2006. Available online: https://shop.dwa.de/media/65/8d/ac/1726527742/a_110_08_2006.pdf (accessed on 3 December 2024).
- Kroll, S.; Blumensaat, F.; Dirckx, G.; Thoeye, C.; De Gueldre, G.; Van de Steene, B.; Tränckner, J. Assessment of CSO activity using simple volume balancing. In Proceedings of the 6th International Conference Novatech, Lyon, France, 25–28 June 2007. [Google Scholar]
- Cambez, M.J.; Pinho, J.; David, L.M. Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, 31 August–5 September 2008. [Google Scholar]
- Kiczko, A.; Romanowicz, R.J.; Osuch, M.; Karamuz, E. Maximising the usefulness of flood risk assessment for the River Vistula in Warsaw. Nat. Hazard. Earth Sys. 2013, 13, 3443–3455. [Google Scholar] [CrossRef]
- Kleidorfer, M.; Deletic, A.; Fletcher, T.D.; Rauch, W. Impact of input data uncertainties on urban stormwater model parameters. Water Sci. Technol. 2009, 60, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Korving, H.; Van Gelder, P.; Van Noortwijk, J.; Clemens, F. Influence of model parameter uncertainties on decision-making for sewer system management. In Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002. [Google Scholar]
- Thorndahl, S.; Willems, P. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series. Water Res. 2008, 42, 455–466. [Google Scholar] [CrossRef]
- Thorndahl, S. Stochastic long term modelling of a drainage system with estimation of return period uncertainty. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, 31 August–5 September 2008. [Google Scholar]
- Bąk, Ł.; Górski, J.; Górska, K.; Szeląg, B. Suspended solids and heavy metals content of selected rainwater waves in an urban catchment area: A case study. Ochr. Środ 2012, 34, 49–52. (In Polish) [Google Scholar]
- Fu, G.; Butler, D.; Khu, S.T.; Sun, S. Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Fu, G.; Butler, D. Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 2014, 510, 49–58. [Google Scholar] [CrossRef]
- Fontanazza, C.M.; Freni, G.; La Loggia, G.; Notaro, V. Uncertainty evaluation of design rainfall for urban flood risk analysis. Water Sci. Technol. 2011, 63, 2641–2650. [Google Scholar] [CrossRef]
- Balistrocchi, M.; Bacchi, B. Modelling the statistical dependence of rainfall event variables through copula functions. Hydrol. Earth Syst. Sci. 2011, 15, 1959–1977. [Google Scholar] [CrossRef]
- Arbeitsblatt DWA-A 118; Hydraulische Bemessung und Nachweis von Entwässerungssystemen. DWA: Hennef, Germany, 2006.
- Kotowski, A.; Dancewicz, A.; Kaźmierczak, B. Accuracy of measurements of precipitation amount using standard and tipping bucket pluviographs in comparison to Hellmann rain gauges. Environ. Prot. Eng. 2011, 37, 23–34. [Google Scholar]
- Suligowski, R. Struktura Czasowa i Przestrzenna Opadów Atmosferycznych w Polsce. Próba Regionalizacji; Prace Instytutu Geografii Akademii Świętokrzyskiej w Kielcach: Kielce, Poland, 2004. [Google Scholar]
- Szeląg, B.; Kiczko, A.; Studzinski, J.; Dąbek, L. Hydrodynamic and probabilistic modelling of storm overflow discharges. J. Hydroinform. 2018, 20, 1100–1110. [Google Scholar] [CrossRef]
- Szeląg, B.; Suligowski, R.; Studzinski, J.; De Paola, F. Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: A probabilistic approach. Hydrol. Earth Syst. Sci. 2020, 24, 595–614. [Google Scholar] [CrossRef]
- Butech Limited Liability Company. Construction of Stormwater Treatment on the Collector Si9, Building Project; Manuscript: Kielce, Poland, 2003. (In Polish) [Google Scholar]
- Szeląg, B.; Bąk, Ł. Probabilistic model for the annual number of storm overflow discharges in a stormwater drainage system. Urban Water J. 2017, 14, 604–611. [Google Scholar] [CrossRef]
- Huber, W.C.; Dickinson, R.E. Storm Water Management Model; Version 4: User’s Manual; EPA/600/3-88/001a; U.S. Environmental Protection Agency, Office of Research and Development: Athens, GA, USA, 1988.
- Rossman, L.A. Storm Water Management Model; User’s Manual. Version 5.0. EPA/600/R-05/040; U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Office of Research and Development: Cincinnati, OH, USA, 2010.
- Fu, G.; Kapelan, Z. Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and fuzzy model parameters. J. Hydroinform. 2013, 15, 687–699. [Google Scholar] [CrossRef]
- Brzezińska, A.; Zawilski, M.; Sakson, G. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring. Environ. Monit. Assess 2016, 188, 502. [Google Scholar] [CrossRef]
- Yu, Y.; Kojima, K.; An, K.; Furumai, H. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo. Water Sci. Technol. 2013, 68, 544–551. [Google Scholar] [CrossRef]
- Muhaisen, O.S.; Osorio, F.; García, P.A. Two-copula based simulation for detention basin design. Civ. Eng. Environ. Syst. 2009, 26, 355–366. [Google Scholar] [CrossRef]
- Osorio, F.; Muhaisen, O.; García, P.A. Copula-based simulation for the estimation of optimal volume for a detention basin. J. Hydrol. Eng. 2009, 14, 1378–1382. [Google Scholar] [CrossRef]








| No. | Hydrograph of the Flow from the Catchment | Separation Chamber | |||
|---|---|---|---|---|---|
| Ptot mm | td min | Vtot m3 | δ - | R - | |
| 1 | 8.6 | 60 | 1733 | 0.88 | 0.90 |
| 2 | 9.2 | 286 | 2221 | 0.95 | 0.94 |
| 3 | 12.5 | 107 | 1908 | 0.97 | 0.91 |
| 4 | 16.5 | 270 | 3415 | 0.94 | 0.86 |
| 5 | 4.2 | 26 | 2133 | 0.96 | 0.88 |
| 6 | 5.4 | 56 | 684 | 0.91 | 0.87 |
| 7 | 3.6 | 92 | 327 | 0.92 | 0.90 |
| Ptot | Pt30 | Pt15 | Pt10 | td | tap | Vd | |
|---|---|---|---|---|---|---|---|
| Ptot | 1.00 | 0.41 | 0.29 | 0.25 | 0.59 | −0.38 | 0.62 |
| Pt30 | - | 1.00 | 0.95 | 0.75 | −0.26 | −0.13 | 0.92 |
| Pt15 | - | - | 1.00 | 0.87 | −0.39 | −0.05 | 0.85 |
| Pt10 | - | - | - | 1.00 | −0.43 | −0.02 | 0.83 |
| td | - | - | - | - | 1.00 | −0.27 | −0.05 |
| tap | - | - | - | - | - | 1.00 | −0.21 |
| Vd | - | - | - | - | - | - | 1.00 |
| Distribution | Kolmogorov–Smirnov Test | Chi-Square Test |
|---|---|---|
| Beta | 0.0001 | 0.0002 |
| Chi-square | 0.0002 | 0.0003 |
| Weibull | 0.0253 | 0.0312 |
| Exponential | 0.0007 | 0.0005 |
| GEV | 0.0002 | 0.0003 |
| Fisher–Tippett | 0.0003 | 0.0004 |
| Log-normal | 0.3130 | 0.2526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górski, J.; Szeląg, B.; Bąk, Ł.; Świercz, A. A Probabilistic Model for Predicting the Performance of a Stormwater Overflow Structure as Part of a Stormwater Treatment Plant. Water 2024, 16, 3598. https://doi.org/10.3390/w16243598
Górski J, Szeląg B, Bąk Ł, Świercz A. A Probabilistic Model for Predicting the Performance of a Stormwater Overflow Structure as Part of a Stormwater Treatment Plant. Water. 2024; 16(24):3598. https://doi.org/10.3390/w16243598
Chicago/Turabian StyleGórski, Jarosław, Bartosz Szeląg, Łukasz Bąk, and Anna Świercz. 2024. "A Probabilistic Model for Predicting the Performance of a Stormwater Overflow Structure as Part of a Stormwater Treatment Plant" Water 16, no. 24: 3598. https://doi.org/10.3390/w16243598
APA StyleGórski, J., Szeląg, B., Bąk, Ł., & Świercz, A. (2024). A Probabilistic Model for Predicting the Performance of a Stormwater Overflow Structure as Part of a Stormwater Treatment Plant. Water, 16(24), 3598. https://doi.org/10.3390/w16243598

