Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Origin of Precipitation
4. Conceptual Model of the Role of Trees in Watershed Hydrology
4.1. Soil Characteristics and Water Infiltration
4.2. Streamflow Versus Base Flow Partitioning
4.3. Evapotranspiration
4.4. Soil Water Availability
Relationship Between Soil Characteristics and SWA
4.5. Combined Effects of Forests and Local Climate on SWA
4.6. Relationship Between Topographic Factors and SWA
5. Relationships Between Forests and Runoff and Soil Erosion Control
5.1. Runoff Responses to Forests at Multiple Scales
5.2. Factors Affecting Surface Runoff
6. Effect of Forests on Watershed Hydrology at Various Spatial Scales
7. Relationships Between Tree Species and SWA
7.1. Fast-Growing/Commercial Trees
7.2. Slow-Growing Forests
7.3. Effect of Stand Density on SWA
7.4. Effect of Forest Age on SWA
7.4.1. Young/Juvenile Forest Versus SWA
7.4.2. Mature and Old Forests Versus SWA
7.5. Water-Related Ecosystem Services and the Role of Forests
8. The Links Between Forest Cover and Sustainable Development Goals
9. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Brack, D. Forests and Climate Change; United Nations: San Francisco, CA, USA, 2019; p. 56. [Google Scholar]
- Arora, P.; Luhach, J.; Sharma, M.; Chaudhry, S. Mitigation of climate change and role of forest management: A short review. Univers. J. Environ. Res. Technol. 2012, 2, 198–202. [Google Scholar]
- Azigwe, J.B.; Duku, I.G.; Laare, J.; Adda, G. Rain water harvesting for planting and growing trees to green the polytechnic campus: A case study of Bolgatanga polytechnic. Brit. J. Environ. Sci. 2016, 4, 49–63. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Lara, A.; Boisier, J.P.; Galleguillos, M. The impacts of native forests and forest plantations on water supply in Chile. Forests 2019, 10, 473. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; Costanza, J.K.; Vogt, P. A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landscape Ecol. 2016, 31, 137–148. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover–water yield debate: From demand- to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Robinson, M.; Gannon, B.; Schuch, M. A comparison of the hydrology of moorland under natural conditions, agricultural use and forestry. Hydrol. Sci. J. 1991, 36, 565–577. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Buytaert, W.; Iñiguez, V.; Bièvre, B.D. The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Galleguillos, M.; Gimeno, F.; Puelma, C.; Zambrano-Bigiarini, M.; Lara, A.; Rojas, M. Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. J. Hydrol. 2021, 595, 126047. [Google Scholar] [CrossRef]
- Wang, H.; Duan, K.; Liu, B.; Chen, X. Assessing the large-scale plant–water relations in the humid, subtropical pearl river basin of China. Hydrol. Earth Syst. Sci. 2021, 25, 4741–4758. [Google Scholar] [CrossRef]
- Anurag, H.; Ng, G.H.C.; Tipping, R.; Tokos, K. Modeling the impact of spatiotemporal vegetation dynamics on groundwater recharge. J. Hydrol. 2021, 601, 126584. [Google Scholar] [CrossRef]
- Delzon, S.; Loustau, D. Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 2005, 129, 105–119. [Google Scholar] [CrossRef]
- Scott, D.F.; Prinsloo, F.W. Longer-term effects of pine and eucalypt plantations on streamflow: Effects of plantations on streamflow. Water Resour. Res. 2008, 44, 18. [Google Scholar] [CrossRef]
- Gu, D.; He, W.; Huang, K.; Otieno, D.; Zhou, C.; He, C.; Huang, Y. Transpiration of moso bamboo in southern China is influenced by ramet age, phenology, and drought. For. Ecol. Manag. 2019, 450, 117526. [Google Scholar] [CrossRef]
- Bonan, G.B. Ecological Climatology. Concepts and Applications; Cambridge University Press: Cambridge, UK, 2002; p. 550. [Google Scholar]
- Le Maitre, D.C.; Scott, D.F.; Colvin, C. A review of information on interactions between vegetation and groundwater. Water 1999, 25, 137–157. Available online: https://researchspace.csir.co.za/server/api/core/bitstreams/ff784773-53a0-49d9-ab1f-34f936da5954/content (accessed on 1 May 2024).
- Yang, Z.; Li, W.; Li, X.; He, J. Quantitative analysis of the relationship between vegetation and groundwater buried depth: A case study of a coal mine district in Western China. Ecol. Indic. 2019, 102, 770–782. [Google Scholar] [CrossRef]
- Kopeć, D.; Michalska-Hejduk, D.; Krogulec, E. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecol. Eng. 2013, 57, 242–251. [Google Scholar] [CrossRef]
- Zhou, Y.; Wenninger, J.; Yang, Z.; Yin, L.; Huang, J.; Hou, L.; Wang, X.; Zhang, D.; Uhlenbrook, S. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China—A synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 2435–2447. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, M.Q.; Wang, Y. Wavelet analysis on effects of climate change on hydrology and water resources. Appl. Ecol. Environ. Res. 2019, 17, 9411–9423. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Arora, V.K.; Boer, G.J. Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res. 2001, 106, 3335–3348. [Google Scholar] [CrossRef]
- D’Almeida, C.; Vörösmarty, C.J.; Hurtt, G.C.; Marengo, J.A.; Dingman, S.L.; Keim, B.D. The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol. 2007, 27, 633–647. [Google Scholar] [CrossRef]
- Vergopolan, N.; Fisher, J.B. The impact of deforestation on the hydrological cycle in Amazonia as observed from remote sensing. Int. J. Remote Sens. 2016, 37, 5412–5430. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, X.; Zhang, M.; Creed, I.F.; McNulty, S.G.; Ferraz, S.F.B. A global synthesis of hydrological sensitivities to deforestation and forestation. For. Ecol. Manag. 2023, 529, 120718. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Jones, J.; Sun, G.; Wei, X.; Ellison, D.; Archer, E.; McNulty, S.; Asbjornsen, H.; Zhang, Z.; et al. Managing the forest-water nexus for climate change adaptation. For. Ecol. Manag. 2022, 525, 120545. [Google Scholar] [CrossRef]
- Gimeno, L.; Eiras-Barca, J.; Durán-Quesada, A.M.; Dominguez, F.; Van Der Ent, R.; Sodemann, H.; Sánchez-Murillo, R.; Nieto, R.; Kirchner, J.W. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2021, 2, 558–569. [Google Scholar] [CrossRef]
- Belmar, O.; Barquín, J.; Álvarez-Martínez, J.M.; Peñas, F.J.; Del Jesus, M. The role of forest maturity in extreme hydrological events. Ecohydrology 2018, 11, e1947. [Google Scholar] [CrossRef]
- Penna, D.; Oliviero, O.; Assendelft, R.; Zuecco, G.; Meerveld, I.V.; Anfodillo, T.; Carraro, V.; Borga, M.; Fontana, G.D. Tracing the water sources of trees and streams: Isotopic analysis in a small pre-alpine catchment. Procedia Environ. Sci. 2013, 19, 106–112. [Google Scholar] [CrossRef]
- Knighton, J.; Singh, K.; Evaristo, J. Understanding catchment-scale forest root water uptake strategies across the continental united states through inverse ecohydrological modeling. Geophys Res. Lett. 2020, 47, e2019GL085937. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence Peter, J.; Zeng, X.; Yang, Z.; Levis, S.; Sakaguchi, K.; et al. Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst. 2011, 3, 1–29. [Google Scholar] [CrossRef]
- Brooks, J.; Barnard, H.R.; Coulombe, R.; McDonnell, J.J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci. 2010, 3, 100–104. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Van Osch, F.P.; Rietkerk, M.; Chen, J.; Gotsch, S.; Tobon, C.; Geissert, D.R.; et al. Ecohydrological advances and applications in plant-water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Vose, J.M.; Miniat, C.F.; Luce, C.H.; Asbjornsen, H.; Caldwell, P.V.; Campbell, J.L.; Grant, G.E.; Isaak, D.J.; Loheide, S.P.; Sun, G. Ecohydrological implications of drought for forests in the United States. For. Ecol. Manag. 2016, 380, 335–345. [Google Scholar] [CrossRef]
- Gimeno, L.; Drumond, A.; Nieto, R.; Trigo, R.M.; Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Pearce, F. Weather makers. Science 2020, 368, 1302–1305. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Guillemot, C.J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalysis. Clim. Dyn. 1998, 14, 213–231. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Sorí, R.; Gimeno-Sotelo, L.; Nieto, R.; Liberato, M.L.R.; Stojanovic, M.; Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Gimeno, L. Oceanic and terrestrial origin of precipitation over 50 major world river basins: Implications for the occurrence of drought. Sci. Total Environ. 2023, 859, 160288. [Google Scholar] [CrossRef]
- Sheil, D. Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. For. Ecosyst. 2018, 5, 19. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. Estimation of continental precipitation recycling. J. Clim. 1993, 6, 1077–1089. [Google Scholar] [CrossRef]
- Ampuero, A.; Stríkis, N.M.; Apaéstegui, J.; Vuille, M.; Novello, V.F.; Espinoza, J.C.; Cruz, F.W.; Vonhof, H.; Mayta, V.C.; Martins, V.T.S.; et al. The forest effects on the isotopic composition of rainfall in the northwestern amazon basin. J. Geophys. Res. Atmos. 2020, 125, e2019JD031445. [Google Scholar] [CrossRef]
- Barbeta, A.; Peñuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci Rep. 2017, 7, 10580. [Google Scholar] [CrossRef] [PubMed]
- Carrière, S.D.; Ruffault, J.; Cakpo, C.B.; Olioso, A.; Doussan, C.; Simioni, G.; Chalikakis, K.; Patris, N.; Davi, H.; MartinSt-Paul, N.K. Intra-specific variability in deep water extraction between trees growing on a mediterranean karst. J. Hydrol. 2020, 590, 125428. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Meli, P.; Ferraz, S.F.B.; Rodrigues, R.R.; Sauer, T.J. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. For. Ecol. Manag. 2019, 444, 89–95. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Comans, R.N.J. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247–248, 24–37. [Google Scholar] [CrossRef]
- Van Meerveld, I.; Seibert, J. Reforestation effects on low flows: Review of public perceptions and scientific evidence. WIREs Water 2024, e1760. [Google Scholar] [CrossRef]
- Hock, B.; Payn, T.; Clinton, P.; Turner, J. Towards green markets for New Zealand plantations. N. Z. J. For. 2009, 54, 9–18. Available online: https://www.researchgate.net/publication/259220227_Towards_green_markets_for_New_Zealand_plantations (accessed on 3 May 2024).
- Harden, C.P.; Mathews, L. Rainfall response of degraded soil following reforestation in the copper basin, Tennessee, USA. Environ. Manag. 2000, 26, 163–174. [Google Scholar] [CrossRef]
- Tsui, C.-C.; Chen, Z.-S.; Hsieh, C.-F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Begum, F.; Bajracharya, R.M.; Sharma, S.; Sitaula, B.K. Influence of slope aspect on soil physico-chemical and biological properties in the mid hills of central Nepal. Int. J. Sustain. Dev. World Ecol. 2010, 17, 438–443. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S. Soil properties and tree growth performance along a slope of a reclaimed land in the rain forest agroecological zone of Ghana. Sci. Afr. 2021, 13, e00951. [Google Scholar] [CrossRef]
- Rhoades, C.C. Single-tree influences on soil properties in agroforestry: Lessons from natural forest and savanna ecosystems. Agroforest. Syst. 1996, 35, 71–94. [Google Scholar] [CrossRef]
- Rodríguez-Robles, U.; Arredondo, T. The role of the geologic substrate on tillandsia recurvata infestation and the development of forest decaying on a semiarid oak forest. Catena 2022, 208, 105724. [Google Scholar] [CrossRef]
- Rashidi, M.; Ahmadbeyki, A.; Hajiaghaei, A. Prediction of soil infiltration rate based on some physical properties of soil. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 1359–1367. [Google Scholar] [CrossRef]
- Descroix, L.; Viramontes, D.; Vauclin, M.; Gonzalez Barrios, J.L.; Esteves, M. Influence of soil surface features and vegetation on runoff and erosion in the western sierra madre (Durango, Northwest Mexico). Catena 2001, 43, 115–135. [Google Scholar] [CrossRef]
- Cadol, D.; Kampf, S.; Wohl, E. Effects of evapotranspiration on baseflow in a tropical headwater catchment. J. Hydrol. 2012, 462–463, 4–14. [Google Scholar] [CrossRef]
- Ding, B.; Zhang, Y.; Yu, X.; Jia, G.; Wang, Y.; Wang, Y.; Zheng, P.; Li, Z. Effects of forest cover type and ratio changes on runoff and its components. Int. Soil Water Conserv. Res. 2022, 10, 445–456. [Google Scholar] [CrossRef]
- Bent, G.C. Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. For. Ecol. Manag. 2001, 143, 115–129. [Google Scholar] [CrossRef]
- Tarigan, S.; Wiegand, K.; Sunarti, S.B. Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrol. Earth Syst. Sci. 2018, 22, 581–594. [Google Scholar] [CrossRef]
- Cheng, J.D.; Lin, L.L.; Lu, H.S. Influences of forests on water flows from headwater watersheds in Taiwan. For. Ecol. Manag. 2002, 165, 11–28. [Google Scholar] [CrossRef]
- Neill, A.J.; Birkel, C.; Maneta, M.P.; Tetzlaff, D.; Soulsby, C. Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling. Hydrol. Earth Syst. Sci. 2021, 25, 4861–4886. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. J. Hydrol. Reg. Stud. 2015, 4, 349–368. [Google Scholar] [CrossRef]
- Khomsiati, N.L.; Suryoputro, N.; Yulistyorini, A.; Idfi, G.; Alias, N.E.B. The effect of forest area change in tropical islands towards baseflow and streamflow. IOP Conf. Series: Environ. Earth Sci. 2021, 847, 012032. [Google Scholar] [CrossRef]
- Al-Tameemi, M.A.; Chukin, V.V. Global water cycle and solar activity variations. J. Atmos. Sol. Terr. Phys. 2016, 142, 55–59. [Google Scholar] [CrossRef]
- Dib, V.; Brancalion, P.H.S.; Chan Chou, S.; Cooper, M.; Ellison, D.; Farjalla, V.F.; Filoso, S.; Meli, P.; Pires, A.P.F.; Rodriguez, D.A.; et al. Shedding light on the complex relationship between forest restoration and water services. Restor. Ecol. 2023, 31, e13890. [Google Scholar] [CrossRef]
- Guug, S.S.; Abdul-Ganiyu, S.; Kasei, R.A. Application of swat hydrological model for assessing water availability at the sherigu catchment of Ghana and southern Burkina Faso. HydroResearch 2020, 3, 124–133. [Google Scholar] [CrossRef]
- Garcia-Chevesich, P.A.; Neary, D.G.; Scott, D.F.; Benyon, T.R. Forest Management and the Impact on Water Resources: B A Review of 13 Countries. United Nations Educational, Scientific, and Cultural Organization International Hydrological Programme International Sediment Initiative; International Hydrological Programme, Ihp-Viii, Unesco, Regional Office for Sciences for Latin America and the Caribbean: Paris, France, 2017; p. 103. [Google Scholar]
- Lei, C.; Wagner, P.D.; Fohrer, N. Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a german lowland catchment. Ecol. Indic. 2021, 120, 106940. [Google Scholar] [CrossRef]
- Dodd, M.B.; Lauenroth, W.K. The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecol. 1997, 133, 13–28. [Google Scholar] [CrossRef]
- Castillo, Y.; Oyarzun, C. Effect of Exotic Fast-Growing Forest Plantations on Water Yield in South-Central Chilean Watersheds: A Review (Preprint). 2021. Available online: https://www.researchgate.net/profile/Yerko-Castillo-Avalos-2/publication/354830939_Effect_of_Exotic_Fast-Growing_Forest_Plantations_on_Water_Yield_in_South-Central_Chilean_Watersheds_a_Review/links/6307d3831ddd4470210ab081/Effect-of-Exotic-Fast-Growing-Forest-Plantations-on-Water-Yield-in-South-Central-Chilean-Watersheds-a-Review.pdf (accessed on 21 June 2024).
- Costa, F.R.C.; Schietti, J.; Stark, S.C.; Smith, M.N. The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. 2023, 237, 714–733. [Google Scholar] [CrossRef] [PubMed]
- Runyan, C.; D’Odorico, P. Irreversibility and ecosystem impacts. In Global Deforestation; Cambridge University Press: Cambridge, UK, 2016; p. 144. [Google Scholar]
- Soong, J.L.; Janssens, I.A.; Grau, O.; Margalef, O.; Stahl, C.; Van Langenhove, L.; Urbina, I.; Chave, J.; Dourdain, A.; Ferry, B.; et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci Rep. 2020, 10, 2302. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.M.; Silva, L.C.R.; Horwath, W.R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon–water relations. Proc. Natl. Acad. Sci. USA 2018, 115, E4219–E4226. [Google Scholar] [CrossRef]
- Carrière, S.D.; Martin-StPaul, N.K.; Cakpo, C.B.; Patris, N.; Gillon, M.; Chalikakis, K.; Doussan, C.; Olioso, A.; Babic, M.; Jouineau, A.; et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings—Insights from isotopic tracing and leaf water potential. Sci. Total Environ. 2020, 699, 134332. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chang, S.X.; Salifu, K.F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review. Environ. Rev. 2014, 22, 41–50. [Google Scholar] [CrossRef]
- Hartmann, A.; Weiler, M.; Greinwald, K.; Blume, T. The Impact of Soil Development, Rainfall Intensity and Vegetation Complexity on Subsurface Flow Paths Along a Glacial Chronosequence of 10 Millennia (Preprint). Hydrol. Earth Syst. Sci. 2021, 1–35. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Cantón, Y.; Chamizo, S.; Lázaro, R.; Escudero, A. Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems 2013, 16, 529–546. [Google Scholar] [CrossRef]
- Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of climate change on water balance components and droughts in the Guajoyo river basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef]
- Jiali, Q.; Shen, Z.; Leng, G.; Xie, H.; Hou, X.; Wei, G. Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. J. Hydrol. 2019, 573, 123–135. [Google Scholar] [CrossRef]
- Ich, I.; Sok, T.; Kaing, V.; Try, S.; Chan, R.; Oeurng, C. Climate change impact on water balance and hydrological extremes in the Lower Mekong basin: A case study of Prek Thnot River Basin, Cambodia. J. Water Clim. Chang. 2022, 13, 2911–2939. [Google Scholar] [CrossRef]
- Li, Z.; Quiring, S.M. Investigating spatial heterogeneity of the controls of surface water balance in the contiguous United States by considering anthropogenic factors. J. Hydrol. 2021, 601, 126621. [Google Scholar] [CrossRef]
- Pecchi, M.; Marchi, M.; Moriondo, M.; Forzieri, G.; Ammoniaci, M.; Bernetti, I.; Bindi, M.; Chirici, G. Potential impact of climate change on the forest coverage and the spatial distribution of 19 key forest tree species in Italy under RCP4.5 IPCC Trajectory for 2050s. Forests 2020, 11, 934. [Google Scholar] [CrossRef]
- Nijland, W.; Van Der Meijde, M.; Addink, E.A.; De Jong, S.M. Detection of soil moisture and vegetation water abstraction in a Mediterranean natural area using electrical resistivity tomography. Catena 2010, 81, 209–216. [Google Scholar] [CrossRef]
- Dahal, P.; Shrestha, M.L.; Panthi, J.; Pradhananga, D. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environ. Res. 2020, 185, 109430. [Google Scholar] [CrossRef] [PubMed]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Zhao, Y.; Xu, Y. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci. Total Environ. 2018, 622–623, 1016–1028. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2014, 161, 460–468. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob Planet Chang. 2014, 112, 79–81. [Google Scholar] [CrossRef]
- Grover, V.I. Impact of climate change on the water cycle. In Managing Water Resources Under Climate Uncertainty; Shrestha, S., Anal, A., Salam, P., van der Valk, M., Eds.; Springer Water: Cham, Switzerland, 2015; pp. 3–30. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, L.; Foltz, G.R.; Qu, X.; Ying, J.; Tokinaga, H.; Mechoso, C.R.; Li, J.; Gu, X. Hydrological cycle changes under global warming and their effects on multiscale climate variability. Ann. N. Y. Acad. Sci. 2020, 1472, 21–48. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Hayashi, Y.; Lin, E. Terrestrial water cycle and the impact of climate change. Ambio 2003, 32, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Retureta, R.; Aguayo, M.; Stehr, A.; Sauvage, S.; Echeverría, C.; Sánchez-Pérez, J.-M. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Water 2020, 12, 302. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–664. [Google Scholar] [CrossRef]
- Gallardo-Cruz, J.A.; Pérez-García, E.A.; Meave, J.A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecol. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Rossatto, D.R.; de Carvalho Ramos Silva, L.; Villalobos-Vega, R.; da Sternberg, L.S.L.; Franco, A.C. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ. Exp. Bot. 2012, 77, 259–266. [Google Scholar] [CrossRef]
- Liu, R.; Pan, Y.; Bao, H.; Liang, S.; Jiang, Y.; Tu, H.; Nong, J.; Huang, W. Variations in soil physico-chemical properties along slope position gradient in secondary vegetation of the hilly region, Guilin, southwest China. Sustainability 2020, 12, 1303. [Google Scholar] [CrossRef]
- Adams, H.R.; Barnard, H.R.; Loomis, A.K. Topography alters tree growth–climate relationships in a semi-arid forested catchment. Ecosphere 2014, 5, 1–16. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-himalayan valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s loess plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Wang, L.; Lei, X.; Liao, W.; Hui, Y.; Meng, X. Spatiotemporal response of the water cycle to land use conversions in a typical hilly–gully basin on the loess plateau, China. Hydrol. Earth Syst. Sci. 2017, 21, 6485–6499. [Google Scholar] [CrossRef]
- Hu, W.; Chau, H.W.; Qiu, W.; Si, B. Environmental controls on the spatial variability of soil water dynamics in a small watershed. J. Hydrol. 2017, 551, 47–55. [Google Scholar] [CrossRef]
- Rempe, D.M.; Dietrich, W.E. A bottom-up control on fresh-bedrock topography under landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 6576–6581. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Liu, G.; Liu, Q.; Feng, J.; Wang, X.; Han, G.; Huang, C. Effects of micro-topography and vegetation type on soil moisture in a large gully on the Loess Plateau of China. Hydrol. Res. 2018, 49, 1255–1270. [Google Scholar] [CrossRef]
- Yao, L.; Wang, D. Controls of Land Surface and Bedrock Topography on the Spatial Distributions of Water Table and Storage: Unifying Saturation Excess Runoff Models (Preprint). 2021. Available online: https://www.researchgate.net/publication/349137548_Controls_of_land_surface_and_bedrock_topography_on_the_spatial_distributions_of_water_table_and_storage_unifying_saturation_excess_runoff_models (accessed on 20 December 2023).
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Leomo, S.; Ginting, S.; Sabarudin, L.; Tufaila, M.; Muhidin, M. Effect of vegetation types on soil erosion in endanga watershed, southeast Sulawesi, Indonesia. Biosci. Res. 2018, 15, 1688–1694. [Google Scholar]
- Xu, Z.; Liu, W.; Li, Q.; Wu, J.; Duan, H.; Huang, G.; Ge, Y. Responses of intra-annual runoff to forest recovery patterns in subtropical China. J. For. Res. 2020, 32, 1479–1488. [Google Scholar] [CrossRef]
- Ao, C.; Zeng, W.; Yang, P.; Xing, W.; Lei, G.; Wu, J.; Huang, J. The effects of slope shape and polyacrylamide application on runoff, erosion and nutrient loss from hillslopes under simulated rainfall. Hydrol. Process. 2021, 35, e14130. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.; Feng, T.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef]
- Shen, L.; Wang, X.; Liu, T.; Wei, W.; Zhang, S.; Li, L.; Zhang, W. The relationship between root growth, soil resources, and productivity in an apple–soybean irrigated agroforestry system in northwest China (preprint). In review. 2022. Available online: https://www.researchgate.net/publication/358838215_The_relationship_between_root_growth_soil_resources_and_productivity_in_an_apple-soybean_irrigated_agroforestry_system_in_northwest_China. (accessed on 3 February 2023). [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the loess plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Liu, L. Spatial scale effect on seasonal streamflows in permafrost catchments on the Qinghai–Tibet Plateau. Hydrol. Process. 2012, 26, 973–984. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Taesombat, W. Effects of land cover on runoff coefficient. J. Hydrol. 2011, 410, 226–238. [Google Scholar] [CrossRef]
- Eagleson, P.S. Ecohydrology. Darwinian Expression of Vegetation from and Function; Cambridge University Press: Cambridge, UK, 2002; p. 442. [Google Scholar]
- Horton, R.E. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. An experimental investigation of runoff production in permeable soils. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef]
- Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; de Almeida, F.T.; de Souza, A.P.; de Oliveira, R.F.; Paulino, J.; Uliana, E.M. Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. J. South Am. Earth Sci. 2021, 108, 103224. [Google Scholar] [CrossRef]
- Gardon, F.R.; de Toledo, R.M.; Brentan, B.M.; dos Santos, R.F. Rainfall interception and plant community in young forest restorations. Ecol. Indic. 2020, 109, 105779. [Google Scholar] [CrossRef]
- Nainar, A.; Tanaka, N.; Sato, T.; Mizuuchi, Y.; Kuraji, K. A comparison of hydrological characteristics between a cypress and mixed-broadleaf forest: Implication on water resource and floods. J. Hydrol. 2021, 595, 125679. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, W.; Lin, Y.; Liu, Z.; Shen, W.; Zhou, L.; Rao, X.; Liu, S.; Cai, X.; He, D.; et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manag. 2018, 422, 1–10. [Google Scholar] [CrossRef]
- Brown, A.G.; Nambiar, E.K.S. Plantations, Farm Forestry and Water. In Proceedings of the a National Workshop, Melbourne, Australia, 20–21 July 2000; p. 73. [Google Scholar]
- Rahmat, A.; Noda, K.; Onishi, T.; Senge, M. Runoff characteristcs of forest watersheds under different forest managements. Rev. Agric. Sci. 2018, 6, 119–133. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Keenan, R.J. Planted forests and water in perspective. For. Ecol. Manag. 2007, 251, 1–9. [Google Scholar] [CrossRef]
- Wongchuig, S.; Espinoza, J.C.; Condom, T.; Junquas, C.; Sierra, J.P.; Fita, L.; Sörensson, A.; Polcher, J. Changes in the surface and atmospheric water budget due to projected Amazon deforestation: Lessons from a fully coupled model simulation. J. Hydrol. 2023, 625, 130082. [Google Scholar] [CrossRef]
- Betts, R.A.; Boucher, O.; Collins, M.; Cox, P.M.; Falloon, P.D.; Gedney, N.; Hemming, D.L.; Huntingford, C.; Jones, C.D.; Sexton, D.M.H.; et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 2007, 448, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Fu, W.; Shi, X.; Ricciuto, D.M.; Fisher, J.B.; Dickinson, R.E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett. 2015, 10, 094008. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef]
- Ferraz, F.; Zanetti, S.; Cecílio, R.; De Carvalho, D.; De Oliveira, F. Method for the analysis of the relationship between forest cover and streamflow in watersheds. iForest–Biogeosci. For. 2021, 14, 344–352. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- de Ferraz, S.F.B.; Rodrigues, C.B.; Garcia, L.G.; Alvares, C.A.; de Lima, W.P. Effects of Eucalyptus plantations on streamflow in Brazil: Moving beyond the water use debate. For. Ecol. Manag. 2019, 453, 117571. [Google Scholar] [CrossRef]
- Joshi, M.; Palanisami, K. Impact of eucalyptus plantations on ground water availability in South Karnataka. In Proceedings of the ICID 21st International Congress on Irrigation and Drainage, Tehran, Iran, 15–23 October 2011; pp. 255–262. [Google Scholar]
- Little, C.; Lara, A.; McPhee, J.; Urrutia, R. Revealing the impact of forest exotic plantations on water yield in large scale watersheds in south-central Chile. J. Hydrol. 2009, 374, 162–170. [Google Scholar] [CrossRef]
- Naghizadeh, Z.; Wessels, C.B. The effect of water availability on growth strain in Eucalyptus grandis-urophylla trees. For. Ecol. Manag. 2021, 483, 118926. [Google Scholar] [CrossRef]
- Ong, C.K.; Black, C.R.; Muthuri, C.W. Modifying forestry and agroforestry to increase water productivity in the semi-arid tropics. CAB Rev. 2006, 1, 1–19. [Google Scholar] [CrossRef]
- Shem, K.; Catherine, M.; Ong, C. Gas exchange responses of Eucalyptus, C. Africana and G. robusta to varying soil moisture content in semi-arid (Thika) Kenya. Agroforest Syst. 2009, 75, 239–249. [Google Scholar] [CrossRef]
- Sikka, A.K.; Samra, J.S.; Sharda, V.N.; Samraj, P.; Lakshmanan, V. Low flow and high flow responses to converting natural grassland into bluegum (eucalyptus globulus) in nilgiris watersheds of South India. J. Hydrol. 2003, 270, 12–26. [Google Scholar] [CrossRef]
- Tian, A.; Wang, Y.; Webb, A.A.; Liu, Z.; Ma, J.; Yu, P.; Wang, X. Water yield variation with elevation, tree age and density of larch plantation in the liupan mountains of the loess plateau and its forest management implications. Sci. Total Environ. 2021, 752, 141752. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Morris, J.D.; Yan, J.H.; Yu, Z.Y.; Peng, S.L. Hydrological impacts of reafforestation with eucalypts and indigenous species: A case study in southern China. For. Ecol. Manag. 2002, 167, 209–222. [Google Scholar] [CrossRef]
- Cassiano, C.C.; Moreira, R.M.E.; Ferraz, S.F.D.B. Fast-growing forest management to regulate the balance between wood production and water supply. Sci. Agric. 2023, 80, e20210148. [Google Scholar] [CrossRef]
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.-L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef]
- Reichert, J.M.; Prevedello, J.; Gubiani, P.I.; Vogelmann, E.S.; Reinert, D.J.; Consensa, C.O.B.; Soares, J.C.W.; Srinivasan, R. Eucalyptus tree stockings effect on water balance and use efficiency in subtropical sandy soil. For. Ecol. Manag. 2021, 497, 119473. [Google Scholar] [CrossRef]
- Christina, M.; Nouvellon, Y.; Laclau, J.; Stape, J.L.; Bouillet, J.; Lambais, G.R.; Maire, G. Importance of deep water uptake in tropical eucalypt forest. Funct. Ecol. 2016, 31, 509–519. [Google Scholar] [CrossRef]
- Iroumé, A.; Jones, J.; Bathurst, J.C. Forest operations, tree species composition and decline in rainfall explain runoff changes in the Nacimiento experimental catchments, south central Chile. Hydrol. Process. 2021, 35, e14257. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J. Are Pinus halepensis plantations useful as a restoration tool in semiarid mediterranean areas? For. Ecol. Manag. 2004, 198, 303–317. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Roldán, A.; Albaladejo, J.; Castillo, V. Soil water availability improved by site preparation in a pinus halepensis afforestation under semiarid climate. For. Ecol. Manag. 2001, 149, 115–128. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Environmental impacts of forest monocultures: Water use, acidification, wildlife conservation, and carbon storage. In Planted Forests: Contributions to the Quest for Sustainable Societies, Forestry Sciences; Boyle, J.R., Winjum, J.K., Kavanagh, K., Jensen, E.C., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 239–262. [Google Scholar]
- Cui, X.; Liu, S.; Wei, X. Impacts of forest changes on hydrology: A case study of large watersheds in the upper reaches of Minjiang River watershed in China. Hydrol. Earth Syst. Sci. 2012, 16, 4279–4290. [Google Scholar] [CrossRef]
- Sudmeyer, R.A.; Simons, J.A. Eucalyptus globulus agroforestry on deep sands on the southeast coast of Western Australia: The promise and the reality. Agric. Ecosyst. Environ. 2008, 127, 73–84. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, K.; Tan, Z.; He, Q.; Zhang, H.; Wang, C. A method for performing reforestation to effectively recover soil water content in extremely degraded tropical rain forests. Front. Ecol. Evol. 2021, 9, 643994. [Google Scholar] [CrossRef]
- Iwara, A.I.; Ogundele, F.O.; Ibor, U.W.; Arrey, V.M.; Okongor, O.E. Effect of vegetation adjoining tourism facilities on soil properties in the tourism enclave of cross river state. Res. J. Appl. Sci. 2011, 6, 276–281. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, A. Spatiotemporal analysis of the effects of forest covers on water yield in the western ghats of peninsular India. J. Hydrol. 2012, 446–447, 24–34. [Google Scholar] [CrossRef]
- Younger, S.E.; Jackson, C.R.; Rasmussen, T.C. Relationships among forest type, watershed characteristics, and watershed ET in rural basins of the Southeastern US. J. Hydrol. 2020, 591, 125316. [Google Scholar] [CrossRef]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci Rep. 2016, 6, 21930. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Onodera, S.-I.; Saito, M.; Shimizu, Y.; Iwata, T. Effects of forest growth in different vegetation communities on forest catchment water balance. Sci. Total Environ. 2022, 809, 151159. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, Y.; Fan, S.; Peng, C.; Huang, B.; Liu, G. Soil properties and understory species diversity at different stand densities in a tropical rainforest on Hainan Island, China|Bodeneigenschaften und Artenvielfalt bei unterschiedlicher Bestandsdichte in einem tropischen Regenwald auf der Insel Hainan, China. Austrian J. For. Sci. 2020, 137, 225–246. [Google Scholar]
- Nan, W.; Ta, F.; Meng, X.; Dong, Z.; Xiao, N. Effects of age and density of Pinus sylvestris var. mongolica on soil moisture in the semiarid Mu Us Dunefield, northern China. For. Ecol. Manag. 2020, 473, 118313. [Google Scholar] [CrossRef]
- Moreno, G.; Cubera, E. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manag. 2008, 254, 74–84. [Google Scholar] [CrossRef]
- Lie, Z.; Liu, L.; Xue, L. Effects of drought stress on physiological characteristics of Cinnamomum camphora seedlings under different planting densities. Int. J. Agric. Biol. 2018, 20, 1437–1441. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20193359306 (accessed on 15 January 2024).
- Steckel, M.; Moser, W.K.; Del Río, M.; Pretzsch, H. Implications of reduced stand density on tree growth and drought susceptibility: A study of three species under varying climate. Forests 2020, 11, 627. [Google Scholar] [CrossRef]
- Hlásny, T.; Sitková, Z.; Barka, I. Regional assessment of forest effects on watershed hydrology: Slovakia as a case study. J. For. Sci. 2013, 59, 405–415. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, T.; Ma, Y.; Wang, Y.; Wang, W.; Zha, N.; Shao, M. Forest ecosystem service functions and their associations with landscape patterns in Renqiu City. PLoS ONE 2022, 17, e0265015. [Google Scholar] [CrossRef]
- Giuggiola, A.; Zweifel, R.; Feichtinger, L.M.; Vollenweider, P.; Bugmann, H.; Haeni, M.; Rigling, A. Competition for water in a xeric forest ecosystem—Effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For. Ecol. Manag. 2018, 409, 241–249. [Google Scholar] [CrossRef]
- Zema, D.A.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Sci. Total Environ. 2021, 753, 142006. [Google Scholar] [CrossRef] [PubMed]
- Law, B.E.; Goldstein, A.H.; Anthoni, P.M.; Unsworth, M.H.; Panek, J.A.; Bauer, M.R.; Fracheboud, J.M.; Hultman, N. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiol. 2001, 21, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Stromberg, J.C.; Tluczek, M.G.F.; Hazelton, A.F.; Ajami, H. A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in populus/salix/tamarix forests along the upper San Pedro River, Arizona, USA. Forest Ecol. Manag. 2010, 259, 1181–1189. [Google Scholar] [CrossRef]
- Macfarlane, C.; Bond, C.; White, D.A.; Grigg, A.H.; Ogden, G.N.; Silberstein, R. Transpiration and hydraulic traits of old and regrowth eucalypt forest in southwestern Australia. For. Ecol. Manag. 2010, 260, 96–105. [Google Scholar] [CrossRef]
- Roberts, S.; Vertessy, R.; Grayson, R. Transpiration from eucalyptus sieberi (L. Johnson) forests of different age. For. Ecol. Manag. 2001, 143, 153–161. [Google Scholar] [CrossRef]
- Vertessy, R.A.; Watson, F.G.R.; O’Sullivan, S.K. Factors determining relations between stand age and catchment water balance in mountain ash forests. For. Ecol. Manag. 2001, 143, 13–26. [Google Scholar] [CrossRef]
- Dunn, G.M.; Connor, D.J. An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiol. 1993, 13, 321–336. [Google Scholar] [CrossRef]
- Sun, G.; Noormets, A.; Chen, J.; McNulty, S.G. Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in northern Wisconsin, USA. Agric For. Meteorol. 2008, 148, 257–267. [Google Scholar] [CrossRef]
- Jones, J.; Ellison, D.; Ferraz, S.; Lara, A.; Wei, X.; Zhang, Z. Forest restoration and hydrology. For. Ecol. Manag. 2022, 520, 120342. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Lima, W.D.P.; Rodrigues, C.B. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 2013, 301, 58–66. [Google Scholar] [CrossRef]
- Dye, P.J. Climate, forest and streamflow relationships in South African afforested catchments. Commonw. For. Rev. 1996, 75, 31–38. Available online: https://www.jstor.org/stable/42607273 (accessed on 15 January 2024).
- Lesch, W.; Scott, D.F. The response in water yield to the thinning of Pinus radiata, Pinus patula and Eucalyptus grandis plantations. For. Ecol. Manag. 1997, 99, 295–307. [Google Scholar] [CrossRef]
- Haydon, S.R.; Benyon, R.G.; Lewis, R. Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F. Muell.). J. Hydrol. 1997, 187, 351–366. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L. Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China. Agric. Water Manag. 2017, 191, 1–15. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L. Soil water dynamics in apple orchards of different ages on the loess plateau of China. Vadose Zone J. 2018, 17, 180049. [Google Scholar] [CrossRef]
- Emanuel, R.E.; Epstein, H.E.; McGlynn, B.L.; Welsch, D.L.; Muth, D.J.; D’Odorico, P. Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Xu, H.; Creed, I.F.; Blanco, J.A.; Wei, X.; Sun, G.; Asbjornsen, H.; Bishop, K. Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. For. Ecol. Manag. 2023, 534, 120853. [Google Scholar] [CrossRef]
- Syversen, N.; Bechmann, M. Vegetative buffer zones as pesticide filters for simulated surface runoff. Ecol. Eng. 2004, 22, 175–184. [Google Scholar] [CrossRef]
- Romanyà, J.; Fons, J.; Sauras-Yera, T.; Gutiérrez, E.; Vallejo, V.R. Soil–plant relationships and tree distribution in old growth nothofagus betuloides and nothofagus pumilio forests of tierra del fuego. Geoderma 2005, 124, 169–180. [Google Scholar] [CrossRef]
- Yu, C.; Gao, B.; Muñoz-Carpena, R. Effect of dense vegetation on colloid transport and removal in surface runoff. J. Hydrology 2012, 434–435, 1–6. [Google Scholar] [CrossRef]
- Zongo, B.; Zongo, F.; Toguyeni, A.; Boussim, J.I. Water quality in forest and village ponds in Burkina Faso (western Africa). J. For. Res. 2017, 28, 1039–1048. [Google Scholar] [CrossRef]
- Gilley, J.E.; Eghball, B.; Wienhold, B.J.; Miller, P.S. Nutrients in runoff following the application of swine manure to interrill areas. Trans. ASAE 2001, 44, 1651–1659. [Google Scholar] [CrossRef]
- Utzig, D.L.; Minella, J.P.G.; Schneider, F.J.A.; Londero, A.L.; Dambroz, A.B.P.; Barros, C.A.P.; Tiecher, T.; Kaiser, D.R. Nutrient transport in surface runoff and sediment yield on macroplots and zero-order catchments under no-tillage. Catena 2023, 231, 107333. [Google Scholar] [CrossRef]
- Pedrazas, M.A.; Hahm, W.J.; Huang, M.; Dralle, D.; Nelson, M.D.; Breunig, R.E.; Fauria, K.E.; Bryk, A.B.; Dietrich, W.E.; Rempe, D.M. The relationship between topography, bedrock weathering, and water storage across a sequence of ridges and valleys. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005848. [Google Scholar] [CrossRef]
- François, M.; Pontes, M.C.G.; Da Silva, A.L.; Mariano-Neto, E. Impacts of cacao agroforestry systems on climate change, soil conservation, and water resources: A review. Water Policy 2023, 25, 564–581. [Google Scholar] [CrossRef]
- Oliva, M.; Rubio, K.; Epquin, M.; Marlo, G.; Leiva, S. Cadmium uptake in native cacao trees in agricultural lands of Bagua, Peru. Agronomy 2020, 10, 1551. [Google Scholar] [CrossRef]
- Oliveira, B.R.M.; de Almeida, A.-A.F.; de Santos, N.A.; Pirovani, C.P. Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Sci. Hortic. 2022, 293, 110733. [Google Scholar] [CrossRef]
- Hooke, J.; Sandercock, P. Use of vegetation to combat desertification and land degradation: Recommendations and guidelines for spatial strategies in Mediterranean lands. Landsc Urban Plan. 2012, 107, 389–400. [Google Scholar] [CrossRef]
- Sarvade, S.; Upadhyay, V.B.; Kumar, M.; Khan, M.I. Soil and water conservation techniques for sustainable agriculture. In Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 133–188. [Google Scholar]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Martin, K.L.; Vose, J.M.; Baker, J.S.; Warziniack, T.W.; Costanza, J.K.; Frey, G.E.; Nehra, A.; Mihiar, C.M. Forested watersheds provide the highest water quality among all land cover 1 types, but the benefit of this ecosystem service depends on landscape context. Sci.Total. Environ. 2023, 882, 163550. [Google Scholar] [CrossRef]
- Stefanidis, S.; Proutsos, N.; Alexandridis, V.; Mallinis, G. Ecosystem Services Supply from Peri-Urban Watersheds in Greece: Soil Conservation and Water Retention. Land 2024, 13, 765. [Google Scholar] [CrossRef]
- Brogna, D.; Michez, A.; Jacobs, S.; Dufrêne, M.; Vincke, C.; Dendoncker, N. Linking Forest Cover to Water Quality: A Multivariate Analysis of Large Monitoring Datasets. Water 2017, 9, 176. [Google Scholar] [CrossRef]
- UN (United Nations). The Global Forest Goals Report 2021; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2021; p. 10017. [Google Scholar]
- Raman, R.; Manalil, S.; Dénes, D.L.; Nedungadi, P. The role of forestry sciences in combating climate change and advancing sustainable development goals. Front. For. Glob. Chang. 2024, 7, 1409667. [Google Scholar] [CrossRef]
- Katila, P.; McDermott, C.; Larson, A.; Aggarwal, S.; Giessen, L. Forest tenure and the Sustainable Development Goals—A critical view. For. Policy Econ. 2020, 120, 102294. [Google Scholar] [CrossRef]
- Masha, M.; Bojago, E.; Belayneh, M.; Tadila, G.; Abera, A. Quantifying forest degradation rates and their drivers in Alle district, southwestern Ethiopia: Implications for sustainable forest management practices. Geomatica 2024, 76, 100009. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Cramm, M.; Van Brusselen, J.; Linhares-Juvenal, T. Forest Concessions and the United Nations Sustainable Development Goals: Potentials, Challenges and Ways Forward. Forests 2019, 10, 45. [Google Scholar] [CrossRef]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector—A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef]
- Raihan, A.; Hasan, M.A.; Voumik, L.C.; Pattak, D.C.; Akter, S.; Ridwan, M. Sustainability in Vietnam: Examining economic growth, energy, innovation, agriculture, and forests’ impact on CO2 emissions. World Dev. Sustain. 2024, 4, 100164. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Mondal, P.; McDermid, S.S.; Qadir, A. A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.A.L.; Robert, R.C.G.; Purfürst, T. How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods. Sustainability 2023, 15, 8988. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
François, M.; de Aguiar, T.R., Jr.; Mielke, M.S.; Rousseau, A.N.; Faria, D.; Mariano-Neto, E. Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water 2024, 16, 3350. https://doi.org/10.3390/w16233350
François M, de Aguiar TR Jr., Mielke MS, Rousseau AN, Faria D, Mariano-Neto E. Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water. 2024; 16(23):3350. https://doi.org/10.3390/w16233350
Chicago/Turabian StyleFrançois, Mathurin, Terencio Rebello de Aguiar, Jr., Marcelo Schramm Mielke, Alain N. Rousseau, Deborah Faria, and Eduardo Mariano-Neto. 2024. "Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis" Water 16, no. 23: 3350. https://doi.org/10.3390/w16233350
APA StyleFrançois, M., de Aguiar, T. R., Jr., Mielke, M. S., Rousseau, A. N., Faria, D., & Mariano-Neto, E. (2024). Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water, 16(23), 3350. https://doi.org/10.3390/w16233350