Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Pretreatment
2.3. Radiometric Analysis for FRNs
2.4. SOM Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of FRNs and SOM for Potential SS Sources
3.2. Differentiating the Potential SS Sources by Binding FRNs and SOM
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; W.H. Freeman: San Francisco, CA, USA, 1964; pp. 1–544. [Google Scholar]
- Gomi, T.; Moore, R.D.; Hassan, M.A. Suspended sediment dynamics in small forest streams of the Pacific Northwest. J. Am. Water Resour. Assoc. 2005, 41, 877–898. [Google Scholar] [CrossRef]
- Dunne, T.; Leopold, L.B. Water in Environmental Planning; W.H. Freeman: San Francisco, CA, USA, 1978; pp. 1–818. [Google Scholar]
- Haupt, H.F.; Kidd, W.J. Good logging practices reduce sedimentation in Central Idaho. J. For. 1965, 63, 664–670. [Google Scholar]
- Geronimo, F.K.F.; Maniquiz-Redillas, M.C.; Hong, J.; Kim, L.H. Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems. Membr. Water Treat. 2019, 10, 91–97. [Google Scholar]
- Corbett, E.S.; Lynch, J.A.; Sopper, W.E. Timber harvesting practices and water quality in the Eastern United States. J. For. 1978, 76, 484–488. [Google Scholar]
- Campbell, I.C.; Doeg, T.J. Impact of timber harvesting and production on streams: A review. Aust. J. Mar. Freshw. Res. 1989, 40, 519–539. [Google Scholar] [CrossRef]
- Binkley, D.; Brown, T.C. Forest practices as nonpoint sources pollution in North-America. Water Resour. Bull. 1993, 29, 729–740. [Google Scholar] [CrossRef]
- Nisbet, T.R. The role of forest management in controlling diffuse pollution in UK forestry. For. Ecol. Manag. 2001, 143, 215–226. [Google Scholar] [CrossRef]
- Sheridan, W.L.; McNeil, W.J. Some effects of logging on two salmon streams in Alaska. J. For. 1968, 66, 128–133. [Google Scholar]
- Lisle, T.E. Sediment transport and resultant deposition in spawning gravel, North Coastal California. Water Resour. Res. 1989, 25, 1303–1319. [Google Scholar] [CrossRef]
- Nones, M. Dealing with sediment transport in flood risk management. Acta Geophys. 2019, 67, 677–685. [Google Scholar] [CrossRef]
- MacDonald, L.H.; Sampson, R.W.; Anderson, D.M. Runoff and road erosion at the plot and road segment scales, St John, US Virgin Islands. Earth Surf. Process. Landf. 2001, 26, 251–272. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry 2023; Korea Forest Service: Daejeon, Republic of Korea, 2023; pp. 24–25. (In Korean)
- Kim, I.J.; Han, D.H. A Small Stream Management Plan to Protect the Aquatic Ecosystem; Korea Environment Institute: Sejong, Republic of Korea, 2008; pp. 1–149. (In Korean)
- Cho, J.H.; Lee, J.H. Stormwater runoff characteristics and effective management of nonpoint source pollutants from a highland agricultural region in the Lake Soyang watershed. Water 2017, 9, 784. [Google Scholar] [CrossRef]
- Kwon, H.; Lee, J.; Lim, J.; Woo, S.; Kim, J.; Lim, K.; Kim, D.; Hong, E. Characteristics of spatial variability in water quality on stream of Lake Doam watershed. J. Korean Soc. Agric. Eng. 2020, 62, 43–50. (In Korean) [Google Scholar]
- Lee, Y.; Shin, S. Trend analysis of water pollutant at summer rainfall season. J. Environ. Prot. Sci. 2014, 5, 223–231. [Google Scholar] [CrossRef]
- Kim, K.; Kim, B.; Eum, J.; Seo, B.; Kim, K.; Kim, B.; Eum, J.; Seo, B.; Shope, C.L.; Peiffer, S. Impacts of land use change and summer monsoon on nutrients and sediment exports from an agricultural catchment. Water 2018, 10, 544. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA); Natural Resources Conservation Service (NRCS). National Engineering Handbook: Part 630—Hydrology National Engineering Handbook; US Government Printing Office: Washington, DC, USA, 2004; pp. 1–424.
- Lee, G.; Yu, W.; Jung, K.; APIP. Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model. Environ. Earth Sci. 2013, 70, 33–47. [Google Scholar] [CrossRef]
- Kim, G.; Chung, S.; Lee, C. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea. Environ. Monit. Assess. 2007, 134, 441–452. [Google Scholar] [CrossRef]
- Yoon, S.W.; Chung, S.W.; Oh, D.G.; Lee, J.W. Monitoring of non-point source pollutants load from a mixed forest land use. Res. J. Environ. Sci. 2010, 22, 801–805. [Google Scholar] [CrossRef]
- Memon, S.; Paule, M.C.; Lee, B.Y.; Umer, R.; Sukhbaatar, C.; Lee, C.H. Investigation of turbidity and suspended solids behavior in storm water run-off from different land-use sites in South Korea. Desalination Water Treat. 2015, 53, 3088–3095. [Google Scholar] [CrossRef]
- Choi, I.C.; Shin, H.J.; Nguyen, T.T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Dunne, T. Sediment budget for a small catchment in a mountainous terrain. Z. Geomorphol. N. F. Suppl. 1978, 29, 191–206. [Google Scholar]
- Walling, D.E.; Collins, A.L.; Sichingabula, H.M.; Leeks, G.J.L. Integrated assessment of catchment sediment budgets. Land Degrad. Dev. 2001, 12, 387–415. [Google Scholar] [CrossRef]
- Walling, D.E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 2005, 344, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Church, M. The sediment budget in severely disturbed watershed, Queen Charlotte Range, British Columbia. Can. J. For. Res. 1986, 16, 1092–1106. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Fingerprinting the origin of fluvial suspended sediment in larger river basins: Combining assessment of spatial provenance and source type. Geogr. Ann. 1997, 79, 239–254. [Google Scholar] [CrossRef]
- Mizugaki, S.; Onda, Y.; Fukuyama, T.; Koga, S.; Asai, H.; Hiramatsu, S. Estimation of suspended sediment sources using 137Cs and 210Pbex in unmanaged Japanese cypress plantation watersheds in southern Japan. Hydrol. Process. 2008, 22, 4519–4531. [Google Scholar] [CrossRef]
- Wallbrink, P.J.; Murray, A.S.; Olley, M.; Olive, J. Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137Cs and 210Pb. Water Resour. Res. 1998, 34, 879–887. [Google Scholar] [CrossRef]
- Walling, D.E.; Collins, A.L.; Stroud, R.W. Tracing suspended sediment and particulate phosphorus sources in catchments. J. Hydrol. 2008, 350, 274–289. [Google Scholar] [CrossRef]
- Huang, D.; Du, J.; Moore, J.W.S.; Zhang, J. Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (7Be, 210Pb, and 234Th). J. Geophys. Res. Ocean. 2013, 118, 1736–1748. [Google Scholar] [CrossRef]
- Schuller, P.; Walling, D.E.; Iroumé, A.; Quilodrán, C.; Castillo, A.; Navas, A. Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. J. Environ. Radioact. 2013, 124, 147–159. [Google Scholar] [CrossRef]
- Kim, J.K.; Onda, Y.; Yang, D.Y.; Kim, M.S. Temporal variations in reservoir sediment sources in a small mountainous catchment in Korea. Earth Surf. Process. Landf. 2013, 38, 1380–1392. [Google Scholar] [CrossRef]
- Blake, W.H.; Walling, D.E.; He, Q. Fallout beryllium-7 as a tracer in soil erosion investigations. Appl. Radiat. Isot. 1999, 51, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Walling, D. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J. Hydrol. 2002, 261, 218–244. [Google Scholar] [CrossRef]
- Davis, C.M.; Fox, J.F. Sediment fingerprinting: Review of the method and future improvements for allocating nonpoint source pollution. JECE 2009, 135, 490–504. [Google Scholar] [CrossRef]
- Brown, R.B. Agricultural Erosion and Sediment in the Western Willamette Valley as Indicated by the Redistribution of Cesium-137. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 21 May 1980. [Google Scholar]
- Yoon, J.H.; Kim, Y.N.; Kim, K.H.; Kirkham, M.B.; Kim, H.S.; Yang, J.E. Use of 137Cs and 210Pbex fallout radionuclides for spatial soil erosion and redistribution assessment on steeply sloping agricultural highlands. J. Mt. Sci. 2021, 18, 2888–2899. [Google Scholar] [CrossRef]
- Nosrati, K.; Haddadchi, A.; Collins, A.L.; Jalali, S.; Zare, M.R. Tracing sediment sources in a mountainous forest catchment under road construction in northern Iran: Comparison of bayesian and frequentist approaches. Environ. Sci. Pollut. Res. 2018, 25, 30979–30997. [Google Scholar] [CrossRef] [PubMed]
- Meliho, M.; Nouira, A.; Benmansour, M.; Boulmane, M.; Khattabi, A.; Mhammdi, N.; Benkdad, A. Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J. Environ. Radioact. 2019, 208, 106021. [Google Scholar] [CrossRef]
- Gaspar, L.; Lizaga, I.; Navas, A. Spatial distribution of fallout and lithogenic radionuclides controlled by soil carbon and water erosion in an agroforestry South-Pyrenean catchment. Geoderma 2021, 391, 114941. [Google Scholar] [CrossRef]
- Khodadadi, M.; Mabit, L.; Zaman, M.; Porto, P.; Gorji, M. Using 137Cs and 210Pbex measurements to explore the effectiveness of soil conservation measures in semi-arid lands: A case study in the Kouhin region of Iran. J. Soils Sediments 2018, 19, 2103–2113. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, J.K.; Kim, J.W.; Hong, S.S. Evaluation of suspended-sediment sources in the Yeongsan River using Cs-137 after major human impacts. Quat. Int. 2014, 344, 64–74. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, J.W.; Kim, J.K. Suspended sediment source tracing at the Juksan Weir in the Yeongsan River using composite fingerprints. Quat. Int. 2019, 519, 245–254. [Google Scholar] [CrossRef]
- Park, C.W.; Son, Y.K.; Zhang, Y.S.; Hong, S.Y.; Hyun, B.K.; Song, K.C.; Ha, S.K.; Moon, Y.H. Soil erosion risk assessment in the upper Han River basis using spatial soil erosion map. Korean J. Soil. Sci. Fertil. 2010, 43, 828–836. (In Korean) [Google Scholar]
- Choi, I.; Kim, Y.S.; Lee, G.C.; Choi, J. NOM characteristics and turbidity in-flow in Lake Soyang. J. Korean Soc. Atmos. 2011, 11, 177–185. (In Korean) [Google Scholar]
- Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Owen, J.S.; Kim, B. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region. Environ. Monit. Assess. 2016, 188, 692. [Google Scholar] [CrossRef] [PubMed]
- Yonhap News. Available online: https://www.yna.co.kr/view/AKR20110822113200062 (accessed on 22 August 2011).
- msTODAY. Available online: https://www.mstoday.co.kr/news/articleView.html?idxno=49030 (accessed on 3 August 2020).
- Nate News. Available online: https://news.nate.com/view/20180829n33657 (accessed on 29 August 2018).
- International Union of Radioecologists. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments; International Atomic Energy Agency (IAEA): Vienna, Austria, 1994; pp. 1–74. [Google Scholar]
- Korea Atomic Energy Research Institute (KAERI). Soil-to-Rice Transfer Factors of Long-Lived Radionuclides for Paddy Fields around the Radioactive Waste Disposal Facilities; Korea Atomic Energy Research Institute (KAERI): Daejeon, Republic of Korea, 2009; pp. 1–20. (In Korean) [Google Scholar]
- Anh, P.T.Q.; Gomi, T.; MacDonald, L.H.; Mizugaki, S.; Khoa, P.V.; Furuichi, T. Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot-scale study. Geoderma 2014, 232–234, 352–362. [Google Scholar] [CrossRef]
- Joshi, S.R. Nondestructive determination of lead-210 and radium-226 in sediments by direct photon analysis. J. Radioanal. Nucl. Chem. 1987, 116, 169–182. [Google Scholar] [CrossRef]
- Murray, A.S.; Marten, R.; Johnston, A.; Martin, P. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. J. Radioanal. Nucl. Chem. 1987, 115, 263–288. [Google Scholar] [CrossRef]
- He, Q.; Walling, D.E. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J. Environ. Radioact. 1996, 30, 117–137. [Google Scholar] [CrossRef]
- Wallbrink, P.J.; Roddy, B.P.; Olley, J.M. Quantifying the Redistribution of Soils and Sediments Within A Post-Harvested Forest Coupe Near Bombala, New South Wales, Australia (CSIRO Land and Water Technical Report Series 7/97); CSIRO Land and Water: NSW, Australia, 1997; pp. 1–40. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; American Society for Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Kato, H.; Onda, Y.; Tanaka, Y. Using 137Cs and 210Pbex measurements to estimate soil redistribution rates on semi-arid grassland in Mongolia. Geomorphology 2010, 114, 508–519. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Clebsch, E.E.C.; Rudolph, W.K. Distribution of fallout and natural gamma radionuclides in litter, humus and surface mineral soil layers under natural vegetation in the Great Smoky Mountains, North Carolina-Tennessee. Health Phys. 1970, 18, 479–489. [Google Scholar] [CrossRef]
- García-Oliva, F.; Lugo, R.M.; Maass, J.M. Soil 137Cs activity in a tropical deciduous ecosystem under pasture conversion in Mexico. J. Environ. Radioact. 1995, 26, 37–49. [Google Scholar] [CrossRef]
- Takenaka, C.; Onda, Y.; Hamajima, Y. Distribution of cesium-137 in Japanese forest soils: Correlation with the contents of organic carbon. Sci. Total Environ. 1998, 222, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Lai, S.Y.; Lin, Y.M.; Chiang, H.C. Distribution of the radionuclide 137Cs in the soils of a wet mountainous forest in Taiwan. Appl. Radiat. Isot. 1999, 50, 1097–1103. [Google Scholar] [CrossRef]
- Kjøbli, L. Mobility of Metals in Surface Soils from Clear-Cut Sites of Different Age. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1997. (In Norwegian). [Google Scholar]
- Berthelsen, B.O.; Steinnes, E.; Næumann, R. Distribution of 137Cs in surface soils as affected by forest clear-cutting. J. Environ. Radioact. 1999, 42, 39–49. [Google Scholar] [CrossRef]
- Kato, H.; Onda, Y.; Hisadome, K.; Loffredo, N.; Kawamor, A. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017, 166, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Saidin, Z.H.; Levia, D.F.; Kato, H.; Kurihara, M.; Hudson, J.E.; Nanko, K.; Onda, Y. Vertical distribution and transport of radiocsium via branchflow and stemflow through the canopy of cedar and oak stands in the aftermath of the Fukushima Dai-ichi Nuclear Power Plant accident. Sci. Total Environ. 2022, 818, 151698. [Google Scholar] [CrossRef]
- Wallbrink, P.J.; Murray, A.S. Use of fallout radionuclides as indicators of erosion processes. Hydrol. Process. 1993, 7, 297–304. [Google Scholar] [CrossRef]
- Nosrati, K.; Haddadchi, A.; Zare, M.R.; Shirzadi, L. An evaluation of the role of hillslope components and land use in soil erosion using 137Cs inventory and soil organic carbon stock. Geoderma 2015, 243–244, 29–40. [Google Scholar] [CrossRef]
No. | SOC (%) | SOM (%) | 137Cs (Bq/kg) | 210Pbex (Bq/kg) | |
---|---|---|---|---|---|
Cl | 1 | 0.64 | 1.11 | 2.6 | 221.2 |
2 | 0.40 | 0.69 | 2.7 | 168.4 | |
3 | 0.48 | 0.84 | 3.7 | 207.3 | |
4 | 0.74 | 1.28 | 1.8 | 219.3 | |
5 | 0.93 | 1.61 | 5.8 | 189.8 | |
Nf | 1 | 5.00 | 8.62 | 8.6 | 494.5 |
2 | 4.15 | 7.16 | 42.0 | 741.4 | |
3 | 2.81 | 4.84 | 44.0 | 593.3 | |
4 | 1.67 | 2.89 | 17.3 | 390.0 | |
5 | 3.04 | 5.24 | 12.6 | 222.9 | |
Eh | 1 | 1.73 | 2.98 | 3.6 | 91.0 |
2 | 0.64 | 1.10 | 1.4 | 156.8 | |
3 | 0.28 | 0.48 | 2.1 | 165.0 | |
4 | 0.34 | 0.58 | 0.7 | 58.8 | |
5 | 0.49 | 0.85 | 0.9 | 109.3 | |
Hf | 1 | 5.30 | 9.14 | 42.2 | 1183.1 |
2 | 3.46 | 5.96 | 28.4 | 659.9 | |
3 | 6.43 | 11.09 | 53.9 | 1464.3 | |
4 | 3.82 | 6.58 | 16.8 | 724.3 | |
5 | 6.07 | 10.47 | 89.3 | 1385.1 | |
Sb | 1 | 1.59 | 2.75 | 6.0 | 167.5 |
2 | 2.47 | 4.26 | 9.7 | 283.6 | |
3 | 2.16 | 3.72 | 1.5 | 154.3 | |
4 | 1.82 | 3.14 | 5.6 | 408.3 | |
5 | 2.93 | 5.05 | 22.3 | 591.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Kim, K.; Jang, S.; Lee, J.; Gi, S.; Kim, M.; Kim, J.K.; Kim, S. Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea. Water 2024, 16, 182. https://doi.org/10.3390/w16010182
Nam S, Kim K, Jang S, Lee J, Gi S, Kim M, Kim JK, Kim S. Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea. Water. 2024; 16(1):182. https://doi.org/10.3390/w16010182
Chicago/Turabian StyleNam, Sooyoun, Kidae Kim, Sujin Jang, Jaeuk Lee, Shinwoo Gi, Minseok Kim, Jin Kwan Kim, and Sukwoo Kim. 2024. "Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea" Water 16, no. 1: 182. https://doi.org/10.3390/w16010182
APA StyleNam, S., Kim, K., Jang, S., Lee, J., Gi, S., Kim, M., Kim, J. K., & Kim, S. (2024). Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea. Water, 16(1), 182. https://doi.org/10.3390/w16010182