Distribution Pattern of Dioxins in Sediment Cores from the Xiangxi River, a Tributary of Three Gorges Reservoir, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Site and Sampling Methods
2.2. Sediment Rate Measurement
2.3. Analysis of PCDD/Fs
2.4. Total Organic Carbon Measurement
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiedler, H.; Hutzinger, O.; Timms, C.W. Dioxins: Sources of environmental load and human exposure. Toxicol. Environ. Chem. 1990, 29, 157–234. [Google Scholar] [CrossRef]
- Wu, J.; Hu, J.; Wang, S.; Jin, J.; Wang, R.; Wang, Y.; Jin, J. Levels, sources, and potential human health risks of PCNs, PCDD/Fs, and PCBs in an industrial area of Shandong Province, China. Chemosphere 2018, 199, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Metelkova, L.; Zhakovskaya, Z.; Kukhareva, G.; Rybalko, A.; Nikiforov, V. Occurrence of PCDD/PCDFs, dioxin-like PCBs, and PBDEs in surface sediments from the Neva River and the Eastern Gulf of Finland (Russia). Environ. Sci. Pollut. Res. Int. 2019, 26, 7375–7389. [Google Scholar] [CrossRef] [PubMed]
- Omwoma, S.; Mbithi, B.M.; Pandelova, M.; Ssebugere, P.; Joseph; Lalah, O.; Wang, Y.; Bi, Y.; Henkelmann, B.; Schramm, K.-W. Comparative exposomics of persistent organic pollutants (PCBs, OCPs, MCCPs and SCCPs) and polycyclic aromatic hydrocarbons (PAHs) in Lake Victoria (Africa) and Three Gorges Reservoir (China). Sci. Total Environ. 2019, 695, 133789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xiong, X.; Hu, H.; Wu, C.; Bi, Y.; Wu, Y.; Zhou, B.; Lam, P.K.S.; Liu, J. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir. China. Environ. Sci. Technol. 2017, 4, 3794–3801. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qin, Y.; Zheng, B.; Zhao, Y.; Zhang, L.; Yang, C.; Shi, Y.; Wen, Q. Three Gorges Reservoir: Metal pollution in surface water and suspended particulate matter on different reservoir operation periods. Environ. Earth Sci. 2016, 75, 1413. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, L.J.; Li, H.; Tian, Z.B.; Zheng, B.H. Water quality variation in tributaries of the Three Gorges Reservoir from 2000 to 2015. Water Res. 2021, 195, 116993. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lingchao, F.; Yuanzhu, W.; Wujuan, M.; Li, J.; Guixiang, Z.; Yang, P.; Chen, Z.; Bi, Y. Anthropogenic activities accelerated the evolution of river trophic status. Ecol. Indic. 2022, 136, 108584. [Google Scholar] [CrossRef]
- Wang, K.; Pang, Y.; Gao, C.; Chen, L.; Jiang, X.; Li, P.; He, C.; Shi, Q.; He, D. Hydrological management affected dissolved organic matter chemistry and organic carbon burial in the Three Gorges Reservoir. Water Res. 2021, 199, 117. [Google Scholar] [CrossRef]
- Zhao, X.J.; Gao, B.; Xu, D.Y.; Gao, L.; Yin, S.H. Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 20844–20858. [Google Scholar] [CrossRef]
- Yubo, H.; Mi, W.; Hu, Z.; Bi, Y. Effects of Three Gorges Dam on spatiotemporal distribution of silicon in the tributary: Evidence from the Xiangxi River. Environ. Sci. Pollut. Res. 2019, 26, 4645–4653. [Google Scholar] [CrossRef]
- Huang, W.; Bi, Y.; Hu, Z.; Zhu, K.; Zhao, W.; Yuan, X. Spatio-temporal variations of GHG emissions from surface water of Xiangxi River in Three Gorges Reservoir region, China. Ecol. Eng. 2015, 83, 28–32. [Google Scholar] [CrossRef]
- Andreas, H.; Norra, S.; Wang, L.; Yijun, Y.; Hu, W.; Zheng, B.; Bi, Y. Three Gorges Reservoir: Density Pump Amplification of Pollutant Transport into Tributaries. Environ. Sci. Technol. 2014, 48, 7798–7806. [Google Scholar]
- Van den Berg, M.; Birnbaum, L.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Håkansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization re-evaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleby, P.G. Dating recent sediments by 210Pb: Problems and solutions. In Dating of Sediments and Determination of Sedimentation Rate; STUK, A-145; Illus, E., Ed.; STUK: Vantaa, Finland, 1998; pp. 7–24. [Google Scholar]
- Appleby, P.G. Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments; Last, W.M., Smol, J.P., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 1. [Google Scholar]
- Chen, L.; Bi, Y.; Zhu, K.; Hu, Z.; Zhao, W.; Henkelmann, B.; Bernhöft, S.; Temoka, C.; Schramm, K.-W. Contamination status of dioxins in sediment cores from the Three Gorges Dam area, China. Environ. Sci. Pollut. Res. 2013, 20, 4268–4277. [Google Scholar] [CrossRef] [PubMed]
- McAnally, W.H., Jr.; Heltzel, S.B.; Donnell, B.P. The Atchafalaya River Delta; Report 1, a Plan for Predicting the Evolution of Atchafalaya Bay, Louisiana; Technical Report HL-82-15; US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1991. [Google Scholar]
- Sun, Y.Z.; Zhang, B.; Gao, L.R.; Liu, Z.T.; Zheng, M.H. Polychlorinated dibenzo-p-dioxins and dibenzofurans in surface sediments from the estuary area of Yangtze River, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2005, 75, 910–914. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, B.; Mengoni, A.; Dong, J.; Peng, X. Distribution patterns of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments of the Xiangjiang River, China. Environ. Monit. Assess. 2012, 184, 7083–7092. [Google Scholar] [CrossRef]
- Zheng, M.; Chu, S.; Sheng, G.; Min, Y.; Bao, Z.; Xu, X. Polychlorinated dibenzo-p-dioxins and dibenzofurans in surface sediments from Peal River Delta in China. Bull. Environ. Contam. Toxicol. 2001, 66, 504–507. [Google Scholar] [CrossRef]
- Kishida, M. Distribution characteristics and source identification of polychlorinated dibenzo-p-dioxin and dibenzofurans, and dioxin-like polychlorinated biphenyls in the waters from River Kanzaki, running through Osaka urban area, Japan. J. Environ. Sci. 2013, 25, 441–451. [Google Scholar] [CrossRef]
- Wenning, R.; Von Burg, A.; Martello, L.; Pekala, J.; Maier, M.; Luksemburg, W. Levels of polychlorinated dibenzo-p-dioxins (PCDDS), dibenzofurans (PCDFS), and polychlorinated biphenyls (PCBS) in the Hackensack River and Newark Bay, New Jersey, USA. Organhalogen Comp. 2004, 66, 1482–1489. [Google Scholar]
- Kurunthachalam, K.; Se, H.; Arthur, O.; John, M.M.; Deborah, M.; Allan, B. Dioxin-like toxicity in the Saginaw River watershed: Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in sediments and floodplain soils from the Saginaw and Shiawassee Rivers and Saginaw Bay, Michigan, USA. Arch. Environ. Contam. Toxicol. 2008, 54, 9–19. [Google Scholar]
- Chris, M.; Mehran, A.; Scott, P.; Murray, C.; Peter, K.; Terry, K.; Karen, M. Persistent organic pollutants in Detroit River suspended sediments: Polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls and polychlorinated naphthalenes. Chemosphere 2002, 49, 111–120. [Google Scholar]
- Rainer, G.; Otto-Heinrich, B.; Peter, F.; Thomas, H.; Eckard, J.; Manfred, K.; Raimund, L.; Olaf, P.; Klaus, R.; Udo, R.; et al. Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the river Elbe, Germany. Chemosphere 2007, 67, 592–603. [Google Scholar]
- Akira, S.; Masayuki, S.; Tatsuya, K.; Shin, T.; Bui, C.; Hideshige, T.; Shinsuke, T. Contamination status of dioxins in sediments from Saigon River Estuary, Vietnam. In Interdisciplinary Studies on Environmental Chemistry—Environmental Research in Asia; Obayashi, Y., Isobe, T., Subramanian, A., Suzuki, S., Tanabe, S., Eds.; Terrapub: Tokyo, Japan, 2009; pp. 31–45. Available online: https://www.researchgate.net/publication/239751985_Contamination_Status_of_Dioxins_in_Sediments_from_Saigon_River_Estuary_Vietnam (accessed on 15 December 2022).
- Yang, S.L.; Zhang, J.; Dai, S.B.; Li, M.; Xu, X.J. Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River. J. Geophys. Res. 2007, 112, F02005. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Tang, Z.; Zhu, X.; Yang, Y.; Fu, H.; Die, Q.; Wang, Q.; Huang, Q. Occurrence, possible sources, and temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in water and sediment from the lower Yangtze River basin, Jiangsu and Shanghai areas of Eastern China. Environ. Sci Pollut. Res. 2013, 20, 8751–8762. [Google Scholar] [CrossRef]
Sample Number | Depth (cm) | 137Cs (Bq/kg) | 210Pbexe (Bq/kg) | 226Ra (Bq/kg) | Total 210Pb (Bq/kg) |
---|---|---|---|---|---|
A0 | 10.0 | 1.49 | 236.19 | 84.07 | 280.61 |
A1 | 20.0 | 1.58 | 187.63 | 87.43 | 222.03 |
A2 | 30.0 | 1.73 | 228.41 | 92.35 | 253.04 |
A3 | 40.0 | 2.23 | 176.53 | 83.14 | 222.30 |
A4 | 50.0 | 4.08 | 142.85 | 64.75 | 160.77 |
A5 | 60.0 | 3.78 | 155.56 | 85.50 | 157.82 |
A6 | 70.0 | 1.26 | 166.74 | 66.28 | 180.61 |
A7 | 80.0 | 4.42 | 131.37 | 71.17 | 122.03 |
A8 | 90.0 | 2.16 | 102.65 | 61.21 | 117.63 |
Location: | XX | XK | PYK | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Number: | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | B0 | B1 | B2 | B3 | B4 | C0 | C1 | C2 |
2,3,7,8-TCDD | n.d. | n.d. | n.d. | n.d. | 0.02 | n.d. | 0.05 | n.d. | n.d. | n.d. | n.d. | 0.08 | n.d. | 0.04 | n.d. | 0.06 | 0.21 |
1,2,3,7,8-PeCDD | n.d. | 0.08 | 0.03 | 0.1 | 0.1 | 0.16 | 0.09 | n.d. | n.d. | 0.26 | n.d. | 0.08 | n.d. | 0.09 | 0.20 | 0.09 | 0.40 |
1,2,3,4,7,8-HxCDD | 0.14 | 0.13 | n.d. | 0.09 | 0.11 | n.d. | 0.06 | 0.07 | n.d. | 0.12 | n.d. | 0.05 | n.d. | 0.06 | n.d. | 0.06 | 0.06 |
1,2,3,6,7,8-HxCDD | n.d. | 0.15 | 0.06 | 0.12 | 0.1 | n.d. | 0.16 | 0.28 | 0.13 | 0.14 | 0.04 | 0.04 | 0.07 | 0.11 | 0.12 | 0.15 | 0.55 |
1,2,3,7,8,9-HxCDD | n.d. | 0.12 | 0.08 | 0.16 | 0.13 | n.d. | 0.15 | 0.15 | 0.08 | 0.14 | 0.07 | 0.08 | 0.11 | 0.09 | 0.18 | 0.12 | 0.21 |
1,2,3,4,6,7,8-HpCDD | 1.2 | 1.4 | 0.9 | 1.7 | 1.5 | 0.94 | 1.7 | 1.2 | 1 | 0.77 | 0.67 | 0.66 | 0.74 | 0.71 | 1.3 | 0.75 | 0.96 |
OCDD | 37.9 | 33.8 | 22 | 58.1 | 43.7 | 26.2 | 56.2 | 33 | 24.9 | 14.3 | 14.6 | 17.6 | 16.5 | 15.5 | 18.5 | 12.0 | 15.0 |
Total PCDDs | 39.28 | 35.68 | 23.07 | 60.27 | 45.67 | 27.31 | 58.47 | 34.69 | 26.11 | 15.73 | 15.38 | 18.59 | 17.42 | 16.6 | 20.30 | 13.27 | 17.39 |
The mean | 38.95 ± 12.75 | 16.78 ± 1.3 | 16.99 ± 2.88 | ||||||||||||||
2,3,7,8-TCDF | 0.23 | 0.15 | 0.24 | 0.2 | 0.26 | 0.26 | 0.36 | 0.22 | 0.16 | 0.17 | 0.09 | 0.08 | 0.11 | 0.15 | 0.21 | 0.14 | 0.35 |
1,2,3,7,8-PeCDF | n.d. | 0.18 | 0.12 | 0.19 | 0.17 | n.d. | 0.2 | 0.15 | 0.12 | 0.14 | 0.18 | 0.07 | 0.14 | 0.08 | 0.35 | 0.11 | 0.16 |
2,3,4,7,8-PeCDF | 0.15 | 0.19 | 0.09 | 0.17 | 0.11 | n.d. | 0.21 | 0.1 | 0.13 | 0.22 | 0.09 | 0.07 | 0.1 | 0.17 | 0.35 | 0.12 | 0.21 |
1,2,3,4,7,8-HxCDF | n.d. | 0.39 | 0.19 | 0.28 | 0.33 | 0.2 | 0.36 | 0.27 | 0.26 | 0.24 | 0.25 | 0.17 | 0.19 | 0.24 | 0.72 | 0.30 | 0.35 |
1,2,3,6,7,8-HxCDF | 0.19 | 0.34 | 0.14 | 0.25 | 0.22 | 0.2 | 0.26 | 0.2 | 0.18 | 0.28 | 0.22 | 0.18 | 0.21 | 0.26 | 0.77 | 0.32 | 0.36 |
1,2,3,7,8,9-HXCDF | n.d. | 0.11 | 0.07 | 0.05 | 0.09 | n.d. | 0.13 | 0.12 | 0.08 | n.d. | 0.07 | 0.04 | n.d. | 0.06 | 0.09 | 0.05 | 0.06 |
2,3,4,6,7,8-HxCDF | 0.18 | 0.31 | 0.12 | 0.21 | 0.19 | 0.13 | 0.28 | 0.14 | 0.16 | 0.16 | 0.17 | 0.14 | 0.22 | 0.24 | 0.55 | 0.26 | 0.32 |
1,2,3,4,6,7,8-HpCDF | 0.99 | 2.1 | 1 | 1.4 | 1.2 | 0.62 | 1.7 | 1.2 | 0.88 | 1.6 | 1.2 | 0.77 | 0.95 | 1.1 | 4.2 | 1.6 | 1.9 |
1,2,3,4,7,8,9-HpCDF | 0.15 | 0.27 | 0.23 | 0.25 | 0.19 | n.d. | 0.24 | 0.18 | 0.15 | 0.23 | 0.14 | 0.08 | 0.09 | 0.13 | 0.57 | 0.22 | 0.21 |
OCDF | 3.8 | 6 | 8 | 5.6 | 4.8 | 2.8 | 7.8 | 5.2 | 3.8 | 1.4 | 1.5 | 0.73 | 0.82 | 1.1 | 3.9 | 1.4 | 2.1 |
Total PCDFs | 5.7 | 10 | 10.2 | 8.6 | 7.6 | 4.2 | 11.6 | 7.8 | 5.9 | 4.4 | 3.9 | 2.3 | 2.8 | 3.5 | 11.7 | 4.5 | 6.0 |
The mean | 7.96 ± 2.27 | 3.38 ± 0.75 | 7.4 ± 3.1 | ||||||||||||||
Sum | 44.98 | 45.68 | 33.27 | 68.87 | 53.27 | 31.51 | 70.07 | 42.49 | 32.01 | 20.13 | 19.28 | 20.89 | 20.22 | 20.10 | 32.01 | 17.79 | 23.41 |
PCDD/PCDF | 6.891 | 3.568 | 2.262 | 7.008 | 6.009 | 6.502 | 5.041 | 4.447 | 4.425 | 3.575 | 3.944 | 8.083 | 6.221 | 4.743 | 1.734 | 2.940 | 2.889 |
TEQ (WHO 2005) | 0.15 | 0.39 | 0.2 | 0.37 | 0.35 | 0.27 | 0.44 | 0.22 | 0.2 | 0.53 | 0.17 | 0.29 | 0.17 | 0.37 | 0.72 | 0.36 | 0.98 |
TC | 7.12 | 7.82 | 12.50 | 16.71 | 13.23 | 14.71 | 16.45 | 13.33 | 13.13 | 22.39 | 17.49 | 27.18 | 27.74 | 24.42 | 22.48 | 18.40 | 27.90 |
TOC | 1.37 | 1.57 | 1.59 | 7.92 | 4.92 | 3.48 | 5.83 | 3.19 | 2.02 | 10.29 | 8.05 | 8.19 | 8.00 | 5.68 | 8.60 | 9.87 | 12.38 |
TIC | 5.75 | 6.25 | 10.91 | 8.79 | 8.31 | 11.23 | 10.62 | 10.14 | 11.11 | 12.10 | 9.44 | 18.99 | 19.74 | 18.74 | 13.88 | 8.53 | 15.52 |
∑PCDD/Fs/TOC* | 32.83 | 29.10 | 20.92 | 8.70 | 10.83 | 9.05 | 12.02 | 13.32 | 15.85 | 1.96 | 2.40 | 2.55 | 2.53 | 3.54 | 3.72 | 1.80 | 1.89 |
River Name | Country | Dioxins Concentration | TEQ | References |
---|---|---|---|---|
Estuary of Yangtze | China | 62–171 | 0.29–0.78 | [19] |
Xiangjiang River | China | 876–497,759 | 21.5 | [20] |
Peal River | China | 472–2582 | 0.6–10.2 | [21] |
Kanzaki River | Japan | 930–8200 | 41 | [22] |
Saginaw River | USA | 55,200 | 3–3820 | [23] |
Detroit River | Canada | 200–1600 | 2.30–306 | [24] |
Saigon River | Vietnam | 250–1800 | 0.73−17 | [25] |
Elbe River | German | 169,610–507,060 | 2290–7680 | [26] |
Xiangxi River | China | 20.10–70.07 | 0.15–0.98 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Zhu, K.; Bi, Y.; Henkelmann, B.; Bernhöft, S.; Mi, W.; Schramm, K.-W. Distribution Pattern of Dioxins in Sediment Cores from the Xiangxi River, a Tributary of Three Gorges Reservoir, China. Water 2023, 15, 57. https://doi.org/10.3390/w15010057
Zhou B, Zhu K, Bi Y, Henkelmann B, Bernhöft S, Mi W, Schramm K-W. Distribution Pattern of Dioxins in Sediment Cores from the Xiangxi River, a Tributary of Three Gorges Reservoir, China. Water. 2023; 15(1):57. https://doi.org/10.3390/w15010057
Chicago/Turabian StyleZhou, Bei, Kongxian Zhu, Yonghong Bi, Bernhard Henkelmann, Silke Bernhöft, Wujuan Mi, and Karl-Werner Schramm. 2023. "Distribution Pattern of Dioxins in Sediment Cores from the Xiangxi River, a Tributary of Three Gorges Reservoir, China" Water 15, no. 1: 57. https://doi.org/10.3390/w15010057
APA StyleZhou, B., Zhu, K., Bi, Y., Henkelmann, B., Bernhöft, S., Mi, W., & Schramm, K.-W. (2023). Distribution Pattern of Dioxins in Sediment Cores from the Xiangxi River, a Tributary of Three Gorges Reservoir, China. Water, 15(1), 57. https://doi.org/10.3390/w15010057