Current Status of Drinking Water Quality in a Latin American Megalopolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantity Ranking
2.2. Quality Ranking
2.3. Remarks on the Quality Indicator
3. Results and Discussion
3.1. Four Groups of Cities in the SRJ
3.2. Cities outside the Water Quality Monitoring Program
3.3. Proposal for Water Quality Monitoring
3.4. Drinking Water Quality and Public Health
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gunnarsdottir, M.J.; Gardarsson, S.M.; Schultz, A.C.; Albrechtsen, H.J.; Hansen, L.T.; Bergkvist, K.S.G.; Rossi, P.M.; Klöve, B.; Myrmel, M.; Persson, K.M.; et al. Status of Risk-Based Approach and National Framework for Safe Drinking Water in Small Water Supplies of the Nordic Water Sector. Int. J. Hyg. Environ. Health 2020, 230, 113627. [Google Scholar] [CrossRef] [PubMed]
- Comissão Nacional sobre Determinantes Sociais da Saúde As Causas Sociais das Iniqüidades em Saúde no Brasil./Comissão Nacional sobre Determinantes Sociais da Saúde.–Rio de Janeiro: Editora Fiocruz, 2008. 220 p. il., tab., graf. Disponível em Portal FioCruz. Available online: http://portal.fiocruz.br/pt-br/content/causas-sociais-das-iniquidades-em-sa%C3%BAde-no-brasil (accessed on 3 December 2021).
- Moropeng, R.C.; Budeli, P.; Momba, M.N.B. An Integrated Approach to Hygiene, Sanitation, and Storage Practices for Improving Microbial Quality of Drinking Water Treated at Point of Use: A Case Study in Makwane Village, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6313. [Google Scholar] [CrossRef] [PubMed]
- Nienie, A.B.; Sivalingam, P.; Laffite, A.; Ngelinkoto, P.; Otamonga, J.P.; Matand, A.; Mulaji, C.K.; Biey, E.M.; Mpiana, P.T.; Poté, J. Microbiological Quality of Water in a City with Persistent and Recurrent Waterborne Diseases under Tropical Sub-Rural Conditions: The Case of Kikwit City, Democratic Republic of the Congo. Int. J. Hyg. Environ. Health 2017, 220, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Osiemo, M.M.; Ogendi, G.M.; M’Erimba, C. Microbial Quality of Drinking Water and Prevalence of Water-Related Diseases in Marigat Urban Centre, Kenya. Environ. Health Insights 2019, 13, 1178630219836988. [Google Scholar] [CrossRef] [Green Version]
- Kangmennaang, J.; Bisung, E.; Elliott, S.J. We Are Drinking Diseases’: Perception of Water Insecurity and Emotional Distress in Urban Slums in Accra, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 890. [Google Scholar] [CrossRef] [Green Version]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W.; et al. Drinking Water Quality Status and Contamination in Pakistan. BioMed Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef] [Green Version]
- Wolde, A.M.; Jemal, K.; Woldearegay, G.M.; Tullu, K.D. Quality and Safety of Municipal Drinking Water in Addis Ababa City, Ethiopia. Environ. Health Prev. Med. 2020, 25, 9. [Google Scholar] [CrossRef] [Green Version]
- Houck, K.M.; Terán, E.; Ochoa, J.; Zapata, G.N.; Gomez, A.M.; Parra, R.; Dvorquez, D.; Stewart, J.R.; Bentley, M.E.; Thompson, A.L. Drinking Water Improvements and Rates of Urinary and Gastrointestinal Infections in Galápagos, Ecuador: Assessing Household and Community Factors. Am. J. Hum. Biol. 2020, 32, e23358. [Google Scholar] [CrossRef] [Green Version]
- Sangma, N.; Vernette, R.; Rasania, S.K.; Prasuna, J.G.; Das, R.; Jais, M. Seasonal Variation of Diarrheal Diseases and Drinking Water Quality in Resettlement Colony in Delhi, India: A Community-Based Cross-Sectional Study. Indian J. Public Health 2021, 65, 387–390. [Google Scholar] [CrossRef]
- O'Reilly, C.E.; Bowen, A.B.; Perez, N.E.; Sarisky, J.P.; Shepherd, C.A.; Miller, M.D.; Hubbard, B.C.; Herring, M.; Buchanan, S.D.; Fitzgerald, C.C.; et al. A waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clin. Infect. Dis. 2007, 44, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Mian, H.R.; Hu, G.; Hewage, K.; Rodriguez, M.J.; Sadiq, R. Drinking Water Quality Assessment in Distribution Networks: A Water Footprint Approach. Sci. Total Environ. 2021, 775, 145844. [Google Scholar] [CrossRef]
- Beaudeau, P.; Schwartz, J.; Levin, R. Drinking Water Quality and Hospital Admissions of Elderly People for Gastrointestinal Illness in Eastern Massachusetts, 1998-2008. Water Res. 2014, 52, 188–198. [Google Scholar] [CrossRef]
- Dubravka, H.; Bezdan, A.; Marković, M.; Orkić, Ž.; Milostić-Srb, A.; Mikšić, Š.; Včev, A. The Association between Drinking Water Quality and Inflammatory Bowel Disease—A Study in Eastern Croatia. Int. J. Environ. Res. Public Health 2020, 17, 8495. [Google Scholar] [CrossRef]
- Joshi, Y.P.; Kim, J.H.; Kim, H.; Cheong, H.K. Impact of Drinking Water Quality on the Development of Enteroviral Diseases in Korea. Int. J. Environ. Res. Public Health 2018, 15, 2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacha, L.; Ventura, R.; Barrios, M.; Seabra, J.; Tschoeke, D.; Garcia, G.; Masi, B.; Macedo, L.; Godoy, J.M.D.O.; Cosenza, C.; et al. Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil). Microb. Ecol. 2022, 84, 314–324. [Google Scholar] [CrossRef]
- Prasad, D.V.V.; Venkataramana, L.Y.; Kumar, P.S.; Prasannamedha, G.; Harshana, S.; Srividya, S.J.; Harrinei, K.; Indraganti, S. Analysis and prediction of water quality using deep learning and auto deep learning techniques. Sci. Total Environ. 2022, 821, 153311. Available online: https://www.sciencedirect.com/science/article/pii/S004896972200403X (accessed on 1 February 2021). [CrossRef] [PubMed]
- Ribeiro, V.H.A.; Moritz, S.; Rehbach, F.; Reynoso-Meza, G. A novel dynamic multi-criteria ensemble selection mechanism applied to drinking water quality anomaly detection. Sci. Total Environ. 2020, 749, 142368. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720358976 (accessed on 7 February 2021). [CrossRef] [PubMed]
- Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral de Vigilância em Saúde Ambiental Programa nacional de vigilância em saúde ambiental relacionada à qualidade da água para consumo humano. Ministério da Saúde, Secretaria de Vigilância em Saúde.–Brasília: Ministério da Saúde. 2004, p. 43, Disponiível em. Available online: http://189.28.128.179:8080/pisast/saude-ambiental/vigiagua/programa-vigiagua (accessed on 5 July 2021).
- De Oliveira Júnior, A.; de Magalhães, T.B.; da Mata, R.N.; Santos, F.S.G.D.; de Oliveira, D.C.; de Carvalho, J.L.B.; de Araújo, W.N. Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano (Sisagua): Características, evolução e aplicabilidade. Epidemiol. E Serv. De Saude: Rev. Do Sist. Unico De Saude Do Bras. 2019, 28, e2018117. [Google Scholar] [CrossRef] [Green Version]
- Rohlfs, D.B.; Rangel, C.F.; Carmo, T. Vigilância em Saúde Ambiental No SUS: O Subsistema Nacional de Vigilância em Saúde Ambiental. Curso de Especialização em Vigilância em Saúde Ambiental; IESC/UFRJ: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Akter, T.; Jhohura, F.T.; Akter, F.; Chowdhury, T.R.; Mistry, S.K.; Dey, D.; Barua, M.K.; Islam, M.A.; Rahman, M. Water Quality Index for measuring drinking water quality in rural Bangladesh: A cross-sectional study. J. Health Popul. Nutr. 2016, 35, 4. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, R.; Haji, S.A.; Cool, G.; Rodriguez, M.J. Using penalty functions to evaluate aggregation models for environmental indices. J. Environ. Manag. 2010, 91, 706–716. [Google Scholar] [CrossRef]
- Salcedo-Sánchez, E.R.; Garrido Hoyos, S.E.; Esteller Alberich, M.; Martínez Morales, M. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico). Environ. Monit. Assess. 2016, 188, 573. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Portaria de Consolidação nº 5, de 28 de setembro de 2017, Anexo XX-Ministério da Saúde. Consolidação das Normas sobre as ações e os Serviços de saúde do Sistema Único de Saúde. Available online: http://www.saude.gov.br (accessed on 9 February 2021).
- Brasil. Ministério da Saúde. Portaria nº. 2914 de 12 de dezembro de 2011. Dispõe sobre os Procedimentos de Controle e de Vigilância da Qualidade da Água Para Consumo Humano e seu Padrão de Potabilidade. Available online: http://www.saude.gov.br (accessed on 9 February 2021).
- Ministério da Saúde. Secretaria de Vigilância em Saúde. Diretriz nacional do plano de amostragem da vigilância em saúde ambiental relacionada à qualidade da água para Consumo Humano/Ministério da Saúde, Secretaria de Vigilância em Saúde; Série A. Normas e Manuais Técnicos; Ministério da Saúde: Brasília, Brazil, 2006; 60p. Available online: http://portal.saude.gov.br/portal/arquivos/pdf/diretriz_nacional_plano_vigiagua.pdf (accessed on 7 February 2021).
- Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador. Diretriz nacional do plano de amostragem da vigilância em saúde ambiental relacionada à qualidade da água para consumo humano/[recurso eletrônico] Ministério da Saúde, Secretaria de Vigilância em Saúde; Ministério da Saúde: Brasília, Brazil, 2016; p. 51.
- Roquia, R.; Alameraw, M.; Rawash, M.A.; Juzsakova, T.; Domokos, E.; Hedfi, A.; Almalki, M. Does Lake Balaton Affected by Pollution? Assessment through Surface Water Quality Monitoring by Using Different Assessment Methods. Saudi J. Biol. Sci. 2021, 28, 5250–5260. [Google Scholar] [CrossRef]
- Ekaterina, S.; Ivarsson, O.; Lillieström, A.; Speicher, N.K.; Rydberg, H.; Bondelind, M. Data-Driven Models for Predicting Microbial Water Quality in the Drinking Water Source Using E. Coli Monitoring and Hydrometeorological Data. Sci. Total Environ. 2021, 802, 149798. [Google Scholar] [CrossRef]
- El, N.P.; Kassouf, A.; Probst, A.; Probst, J.L.; Ouaini, N.; Daou, C.; El Azzi, D. High-Frequency Monitoring of Surface Water Quality at the Outlet of the Ibrahim River (Lebanon): A Multivariate Assessment. Ecol. Indic. 2019, 104, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Nelson da, L.; Kumpel, E. Evaluating the Impact of Sampling Design on Drinking Water Quality Monitoring Program Outcomes. Water Res. 2020, 185, 116217. [Google Scholar] [CrossRef]
- CETESB. Qualidade das águas superficiais no estado de São Paulo 2015. Apêndice C-ìndice de Qualidade das Águas; CETESB: São Paulo, Brazil, 2016. Available online: http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios (accessed on 1 December 2020).
- da Luz, N.; Tobiason, J.E.; Kumpel, E. Water quality monitoring with purpose: Using a novel framework and leveraging long-term data. Sci. Total Environ. 2022, 818, 151729. Available online: https://www.sciencedirect.com/science/article/pii/S0048969721068054 (accessed on 15 December 2020). [CrossRef] [PubMed]
- Li, P.; Wu, J. Drinking Water Quality and Public Health. Expo. Health 2019, 11, 73–79. [Google Scholar] [CrossRef]
- Baum, R.; Bartram, J. A systematic literature review of the enabling environment elements to improve implementation of water safety plans in high-income countries. J. Water Health 2018, 16, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsdottir, M.J.; Gardarsson, S.M.; Bartram, J. Developing a national framework for safe drinking water-Case study from Iceland. Int. J. Hyg. Environ. Health 2015, 218, 196–202. [Google Scholar] [CrossRef]
- Baum, R.; Amjad, U.; Luh, J.; Bartram, J. An examination of the potential added value of water safety plans to the United States national drinking water legislation. Int. J. Hyg. Environ. Health 2015, 218, 677–685. [Google Scholar] [CrossRef]
- Goovaerts, P. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias? Sci. Total Environ. 2017, 590–591, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.G.F.; Sabogal-Paz, L.P.; Dodds, W.K. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecol. Eng. 2016, 94, 516–524. Available online: https://www.sciencedirect.com/science/article/pii/S0925857416303883 (accessed on 10 December 2020). [CrossRef]
- Huang, J.; Chen, S.; Ma, X.; Yu, P.; Zuo, P.; Shi, B.; Wang, H.; Alvarez, P.J. Opportunistic pathogens and their health risk in four full-scale drinking water treatment and distribution systems. Ecol. Eng. 2021, 160, 106134. Available online: https://www.sciencedirect.com/science/article/pii/S0925857420304225 (accessed on 5 December 2020). [CrossRef]
- Moreira, A.d.L.; de Campos Lobato, L.F.; de Lima Moreira, J.P.; Luiz, R.R.; Elia, C.; Fiocchi, C.; de Souza, H.S.P. Geosocial Features and Loss of Biodiversity Underlie Variable Rates of Inflammatory Bowel Disease in a Large Developing Country: A Population-Based Study. Inflamm. Bowel Dis. 2022, 28, 1696–1708. [Google Scholar] [CrossRef]
- Ministério da Saúde. Banco de dados do Sistema único de Saúde-DATASUS. 2021. Available online: http//datasus.gov.br (accessed on 15 June 2021).
2018 | 2019 | 2020 | 2021 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cities | N′ | QTI | QLI | QT Rank | QL Rank | QTI | QLI | QT Rank | QL Rank | QTI | QLI | QT Rank | QL Rank | QTI | QLI | QT Rank | QL Rank |
Angra dos Reis | 360 | 170.9 | 81.7 | 4 | 42 | 204.3 | 79.0 | 4 | 46 | 114.4 | 69.3 | 8 | 47 | 129.2 | 80.0 | 8 | 42 |
Aperibé | 120 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Araruama | 276 | 416.1 | 97.7 | 1 | 7 | 398.3 | 98.0 | 1 | 6 | 153.3 | 90.7 | 5 | 32 | 136.6 | 93.3 | 7 | 29 |
Areal | 120 | 131.4 | 91.0 | 10 | 27 | 111.1 | 91.3 | 13 | 29 | 116.9 | 96.3 | 7 | 15 | 25.8 | 96.8 | 49 | 17 |
Armação dos Búzios | 144 | 65.5 | 89.7 | 41 | 28 | 111.1 | 91.7 | 12 | 27 | 76.6 | 90.0 | 38 | 36 | 22.2 | 30.2 | 11 | 7 |
Arraial do Cabo | 144 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 1.2 | 6.7 | 17 | 17 |
Barra do Piraí | 240 | 115.8 | 79.3 | 20 | 45 | 161.3 | 85.0 | 7 | 44 | 134.9 | 71.3 | 6 | 46 | 151.0 | 67.2 | 4 | 48 |
Barra Mansa | 336 | 118.4 | 92.0 | 17 | 24 | 110.0 | 95.3 | 15 | 19 | 107.2 | 95.7 | 14 | 20 | 85.7 | 95.0 | 19 | 24 |
Belford Roxo | 540 | 23.1 | 29.3 | 10 | 5.0 | 27.5 | 27.7 | 10 | 10 | 26.8 | 29.3 | 10 | 11 | 19.8 | 33.2 | 12 | 1 |
Bom Jardim | 144 | 18.5 | 31.3 | 14 | 3.0 | 41.4 | 89.3 | 48 | 36 | 38.4 | 90.7 | 46 | 34 | 39.6 | 61.3 | 5 | 7 |
Bom Jesus do Itabapoana | 156 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 16.9 | 66.7 | 12 | 2 |
Cabo Frio | 372 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Cachoeiras de Macacú | 192 | 66.7 | 85.7 | 40 | 35 | 27.4 | 47.3 | 10 | 12 | 43.1 | 61.3 | 5 | 4 | 27.1 | 60.3 | 9 | 8 |
Cambuci | 120 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Campos dos Goytacazes | 540 | 102.6 | 84.0 | 25 | 39 | 101.2 | 86.7 | 25 | 42 | 101.1 | 92.7 | 22 | 28 | 79.3 | 95.7 | 24 | 22 |
Cantagalo | 132 | 110.4 | 92.0 | 23 | 25 | 86.1 | 93.3 | 38 | 24 | 102.3 | 92.7 | 20 | 27 | 90.9 | 96.4 | 15 | 19 |
Carapebus | 120 | 28.1 | 25.7 | 5 | 9 | 30.6 | 28.7 | 5 | 9 | 36.7 | 30.7 | 3 | 7 | 30.6 | 29.7 | 3 | 9 |
Cardoso Moreira | 120 | 91.1 | 82.3 | 28 | 41 | 96.4 | 78.0 | 32 | 47 | 88.6 | 89.3 | 29 | 38 | 55.8 | 94.5 | 43 | 26 |
Carmo | 132 | 26.8 | 48.0 | 10 | 9 | 50.5 | 89.0 | 47 | 38 | 104.5 | 80.0 | 16 | 44 | 84.1 | 85.9 | 21 | 40 |
Casimiro de Abreu | 168 | 40.5 | 65.3 | 7 | 2 | 28.2 | 31.3 | 9 | 4 | 36.5 | 32.0 | 4 | 4 | 27.8 | 33.1 | 4 | 3 |
Com. Levy Gasparian | 108 | 69.8 | 77.7 | 38 | 47 | 81.5 | 90.7 | 41 | 32 | 52.5 | 91.0 | 44 | 31 | 70.1 | 95.8 | 34 | 21 |
Conceição de Macabú | 132 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Cordeiro | 132 | 139.1 | 97.0 | 8 | 10 | 208.3 | 96.3 | 3 | 17 | 249.0 | 95.3 | 1 | 21 | 233.6 | 93.8 | 1 | 28 |
Duas Barras | 120 | 62.2 | 89.3 | 42 | 29 | 73.6 | 92.7 | 43 | 25 | 83.9 | 88.7 | 32 | 40 | 65.8 | 93.2 | 39 | 30 |
Duque de Caxias | 636 | 25.6 | 28.3 | 9 | 7 | 32.2 | 27.0 | 3 | 11 | 33.5 | 27.7 | 7 | 12 | 17.8 | 29.0 | 14 | 11 |
Eng. Paulo de Frontin | 120 | 22.8 | 15.3 | 11 | 17 | 32.8 | 26.3 | 1 | 13 | 2.8 | 30.0 | 16 | 9 | 19.2 | 30.0 | 13 | 8 |
Guapimirim | 192 | 69.6 | 60.0 | 4 | 4 | 107.5 | 92.3 | 16 | 26 | 94.1 | 98.0 | 25 | 9 | 68.9 | 98.5 | 36 | 5 |
Iguaba Grande | 144 | 28.0 | 29.3 | 6 | 4 | 32.6 | 56.0 | 8 | 9 | 68.1 | 49.7 | 4 | 8 | 77.8 | 73.2 | 27 | 45 |
Itaboraí | 384 | 26.7 | 18.3 | 8 | 16 | 32.5 | 21.0 | 2 | 17 | 39.2 | 21.7 | 2 | 16 | 32.1 | 19.4 | 2 | 15 |
Itaguaí | 276 | 0.0 | 0.0 | - | - | 3.6 | 30.0 | 17 | 6 | 65.0 | 30.7 | 1 | 6 | 116.5 | 87.0 | 9 | 39 |
Italva | 120 | 28.6 | 31.3 | 4 | 2 | 30.6 | 30.3 | 4 | 5 | 0.0 | 0.0 | - | - | 30.8 | 58.5 | 7 | 9 |
Itaocara | 132 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Itaperuna | 240 | 103.1 | 94.3 | 24 | 17 | 101.7 | 97.0 | 23 | 9 | 52.1 | 100.0 | 45 | 1 | 27.5 | 33.2 | 5 | 2 |
Itatiaia | 144 | 54.4 | 70.0 | 43 | 50 | 78.9 | 63.3 | 42 | 50 | 73.6 | 56.0 | 41 | 49 | 68.1 | 54.4 | 38 | 49 |
Japeri | 240 | 22.1 | 25.7 | 12 | 10 | 31.7 | 57.7 | 9 | 6 | 23.8 | 25.7 | 12 | 13 | 13.3 | 26.7 | 15 | 14 |
Laje do Muriaé | 108 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Macaé | 396 | 85.0 | 92.7 | 29 | 21 | 116.2 | 94.7 | 11 | 21 | 66.6 | 96.3 | 43 | 17 | 51.6 | 64.4 | 2 | 6 |
Macuco | 108 | 99.1 | 96.0 | 27 | 14 | 3.7 | 66.7 | 13 | 2 | 0.0 | 0.0 | - | - | 88.3 | 94.4 | 17 | 27 |
Magé | 384 | 148.3 | 47.3 | 1 | 10 | 104.9 | 56.0 | 2 | 7 | 111.5 | 57.3 | 1 | 7 | 101.0 | 90.0 | 11 | 35 |
Mangaratiba | 168 | 82.7 | 88.0 | 33 | 31 | 43.3 | 46.0 | 5 | 13 | 5.6 | 0.0 | - | - | 107.9 | 76.7 | 10 | 44 |
Maricá | 312 | 3.7 | 24.7 | 17 | 11 | 10.1 | 25.7 | 15 | 15 | 15.3 | 21.0 | 14 | 17 | 0.0 | 0.0 | - | - |
Mendes | 120 | 47.8 | 84.7 | 46 | 38 | 105.8 | 77.3 | 17 | 49 | 74.4 | 69.0 | 39 | 48 | 36.9 | 69.6 | 47 | 47 |
Mesquita | 336 | 35.1 | 28.3 | 2 | 6 | 30.1 | 29.7 | 7 | 7 | 36.3 | 29.3 | 5 | 10 | 24.1 | 28.1 | 10 | 12 |
Miguel Pereira | 144 | 11.8 | 98.7 | 51 | 5 | 18.5 | 29.3 | 13 | 8 | 0.0 | 0.0 | - | - | 24.8 | 64.9 | 10 | 5 |
Miracema | 132 | 62.9 | 59.3 | 5 | 6 | 40.4 | 66.3 | 6 | 3 | 11.6 | 32.7 | 15 | 3 | 24.2 | 32.6 | 9 | 4 |
Natividade | 120 | 37.5 | 31.7 | 1 | 1 | 88.1 | 97.0 | 36 | 11 | 83.1 | 97.3 | 34 | 13 | 68.3 | 98.4 | 37 | 6 |
Nilópolis | 312 | 27.8 | 24.3 | 7 | 12 | 24.9 | 26.0 | 11 | 14 | 30.9 | 24.0 | 9 | 15 | 26.4 | 18.3 | 7 | 16 |
Niterói | 540 | 42.8 | 100.0 | 47 | 1 | 15.7 | 100.0 | 50 | 1 | 7.5 | 100.0 | 10 | 2 | 13.8 | 66.7 | 13 | 3 |
Nova Friburgo | 348 | 79.0 | 99.3 | 35 | 3 | 103.1 | 98.7 | 20 | 3 | 102.3 | 98.3 | 19 | 7 | 74.8 | 98.6 | 31 | 4 |
Nova Iguaçu | 612 | 122.1 | 83.7 | 13 | 40 | 102.0 | 87.7 | 22 | 40 | 86.7 | 93.0 | 30 | 25 | 79.2 | 97.1 | 25 | 14 |
Paracambi | 180 | 76.5 | 81.3 | 36 | 44 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
Paraíba do Sul | 168 | 56.2 | 62.7 | 6 | 3 | 100.4 | 88.0 | 27 | 39 | 104.0 | 96.3 | 17 | 18 | 61.3 | 90.4 | 42 | 34 |
Parati | 168 | 235.5 | 75.0 | 2 | 48 | 118.1 | 51.7 | 1 | 10 | 31.0 | 66.0 | 7 | 2 | 32.5 | 31.7 | 1 | 5 |
Paty do Alferes | 144 | 49.8 | 91.7 | 45 | 26 | 100.0 | 94.0 | 28 | 22 | 101.4 | 92.3 | 21 | 29 | 86.1 | 92.7 | 18 | 31 |
Petrópolis | 420 | 230.7 | 85.7 | 3 | 33 | 189.8 | 82.3 | 5 | 45 | 90.9 | 88.0 | 26 | 41 | 99.6 | 89.8 | 12 | 36 |
Pinheiral | 132 | 23.2 | 100.0 | 49 | 2 | 103.0 | 96.7 | 21 | 14 | 81.1 | 97.7 | 35 | 10 | 41.7 | 99.4 | 45 | 2 |
Piraí | 144 | 120.8 | 92.3 | 15 | 23 | 90.0 | 93.7 | 35 | 23 | 104.6 | 99.0 | 15 | 5 | 65.3 | 95.6 | 40 | 23 |
Porciúncula | 120 | 123.3 | 95.7 | 11 | 15 | 101.1 | 96.7 | 26 | 13 | 78.3 | 99.7 | 37 | 3 | 69.7 | 98.1 | 35 | 8 |
Porto Real | 132 | 69.4 | 86.0 | 39 | 32 | 54.8 | 62.3 | 3 | 4 | 72.7 | 57.7 | 3 | 6 | 72.2 | 78.7 | 32 | 43 |
Quatis | 120 | 74.7 | 70.0 | 37 | 49 | 28.3 | 24.3 | 8 | 16 | 31.9 | 25.3 | 8 | 14 | 25.0 | 29.6 | 8 | 10 |
Queimados | 300 | 99.2 | 88.3 | 26 | 30 | 93.1 | 90.0 | 33 | 33 | 80.3 | 88.0 | 36 | 42 | 96.2 | 91.6 | 13 | 33 |
Quissamã | 132 | 118.4 | 96.0 | 16 | 13 | 136.1 | 96.7 | 8 | 12 | 114.1 | 95.3 | 10 | 22 | 90.4 | 98.7 | 16 | 3 |
Resende | 276 | 122.7 | 97.3 | 12 | 8 | 110.3 | 95.3 | 14 | 18 | 114.3 | 97.0 | 9 | 14 | 83.2 | 97.4 | 23 | 10 |
Rio Bonito | 192 | 41.5 | 97.0 | 48 | 12 | 83.3 | 91.0 | 39 | 31 | 101.0 | 93.0 | 23 | 24 | 75.3 | 94.9 | 29 | 25 |
Rio Claro | 120 | 137.5 | 94.0 | 9 | 18 | 99.7 | 89.3 | 29 | 35 | 85.0 | 93.0 | 31 | 26 | 84.4 | 91.8 | 20 | 32 |
Rio das Flores | 108 | 82.1 | 85.0 | 34 | 36 | 104.6 | 91.7 | 19 | 28 | 96.0 | 89.3 | 24 | 37 | 75.3 | 83.4 | 30 | 41 |
Rio das Ostras | 300 | 0.0 | 0.0 | - | - | 10.2 | 31.7 | 14 | 3 | 35.0 | 33.0 | 6 | 2 | 39.4 | 65.6 | 6 | 4 |
Rio de Janeiro | 2028 | 116.6 | 85.7 | 18 | 34 | 127.9 | 85.3 | 9 | 43 | 164.6 | 88.7 | 4 | 39 | 174.1 | 89.8 | 2 | 37 |
Santa Maria Madalena | 108 | 50.9 | 94.0 | 44 | 19 | 34.6 | 61.0 | 7 | 5 | 82.1 | 63.3 | 2 | 3 | 77.8 | 66.7 | 1 | 1 |
Santo Antônio de Pádua | 168 | 13.7 | 85.0 | 50 | 37 | 0.0 | 0.0 | - | - | 0.2 | 33.3 | 17 | 1 | 0.0 | 0.0 | - | - |
São Fidélis | 156 | 17.9 | 24.3 | 15 | 13 | 19.0 | 32.0 | 12 | 1 | 22.9 | 32.0 | 13 | 5 | 11.5 | 31.5 | 16 | 6 |
São Fran. de Itabapoana | 168 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - |
São Gonçalo | 684 | 31.6 | 27.7 | 3 | 8 | 30.3 | 27.0 | 6 | 12 | 41.4 | 48.3 | 6 | 9 | 42.1 | 50.8 | 4 | 13 |
São João da Barra | 156 | 32.3 | 49.0 | 9 | 8 | 14.1 | 49.3 | 11 | 11 | 26.1 | 54.7 | 8 | 50 | 8.3 | 53.5 | 14 | 12 |
São João de Meriti | 528 | 114.6 | 98.0 | 21 | 6 | 38.6 | 96.3 | 49 | 16 | 74.1 | 94.3 | 40 | 23 | 45.5 | 97.1 | 44 | 13 |
São José de Ubá | 108 | 71.3 | 66.7 | 3 | 1 | 101.5 | 98.7 | 24 | 4 | 89.5 | 99.3 | 28 | 4 | 71.0 | 99.7 | 33 | 1 |
São J. do Val. do R Preto | 132 | 11.4 | 20.7 | 16 | 14 | 55.1 | 87.0 | 45 | 41 | 22.2 | 98.3 | 9 | 8 | 31.8 | 98.0 | 48 | 9 |
São Pedro da Aldeia | 240 | 83.5 | 81.7 | 31 | 43 | 98.2 | 89.3 | 30 | 37 | 108.2 | 77.0 | 13 | 45 | 91.9 | 73.1 | 14 | 46 |
São Sebastião do Alto | 108 | 150.6 | 95.3 | 7 | 16 | 91.7 | 97.0 | 34 | 10 | 164.8 | 97.3 | 3 | 12 | 145.7 | 98.1 | 6 | 7 |
Sapucaia | 120 | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 0.0 | 0.0 | - | - | 21.4 | 37.2 | 11 | 14 |
Saquarema | 228 | 19.7 | 20.3 | 13 | 15 | 60.5 | 99.7 | 44 | 2 | 109.1 | 98.3 | 11 | 6 | 174.1 | 97.3 | 3 | 11 |
Seropédica | 228 | 115.9 | 99.0 | 19 | 4 | 86.8 | 96.7 | 37 | 15 | 103.9 | 96.3 | 18 | 16 | 78.1 | 96.8 | 26 | 18 |
Silva Jardim | 132 | 121.7 | 59.0 | 14 | 51.0 | 105.1 | 90.0 | 18 | 34 | 108.3 | 91.7 | 12 | 30 | 83.8 | 97.0 | 22 | 15 |
Sumidouro | 120 | 83.3 | 93.0 | 32 | 20 | 54.4 | 98.3 | 46 | 5 | 71.7 | 97.7 | 42 | 11 | 61.9 | 96.9 | 41 | 16 |
Tanguá | 156 | 0.0 | 0.0 | - | - | 6.0 | 32.0 | 16 | 2 | 0.0 | 0.0 | - | - | 27.4 | 26.8 | 6 | 13 |
Teresópolis | 336 | 121.9 | 50.3 | 2 | 7 | 243.7 | 91.0 | 2 | 30 | 22.8 | 59.0 | 8 | 5 | 28.8 | 55.5 | 8 | 11 |
Trajano de Moraes | 108 | 155.9 | 92.3 | 6 | 22 | 124.7 | 95.0 | 10 | 20 | 83.6 | 90.7 | 33 | 33 | 37.0 | 97.3 | 46 | 12 |
Três Rios | 216 | 84.4 | 97.3 | 30 | 9 | 83.0 | 97.3 | 40 | 8 | 23.8 | 30.7 | 11 | 8 | 47.1 | 56.7 | 3 | 10 |
Valença | 216 | 158.8 | 77.7 | 5 | 46 | 166.7 | 77.3 | 6 | 48 | 168.2 | 87.3 | 2 | 43 | 150.0 | 88.4 | 5 | 38 |
Varresai | 108 | 0.0 | 0.0 | - | - | 10.2 | 66.7 | 12 | 1 | 12.3 | 66.7 | 9 | 1 | 0.0 | 0.0 | - | - |
Vassouras | 156 | 33.8 | 59.7 | 8 | 5 | 45.5 | 56.0 | 4 | 8 | 35.5 | 90.3 | 47 | 35 | 0.0 | 0.0 | - | - |
Volta Redonda | 408 | 111.4 | 97.0 | 22 | 11 | 97.3 | 98.0 | 31 | 7 | 90.5 | 96.0 | 27 | 19 | 77.0 | 96.2 | 28 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacha, L.; da Silva Bandeira, M.; Lima, V.S.; Ventura, R.; de Rezende, C.E.; Ottoni, A.B.; Tschoeke, D.; Cosenza, C.; Thompson, C.; Thompson, F. Current Status of Drinking Water Quality in a Latin American Megalopolis. Water 2023, 15, 165. https://doi.org/10.3390/w15010165
Bacha L, da Silva Bandeira M, Lima VS, Ventura R, de Rezende CE, Ottoni AB, Tschoeke D, Cosenza C, Thompson C, Thompson F. Current Status of Drinking Water Quality in a Latin American Megalopolis. Water. 2023; 15(1):165. https://doi.org/10.3390/w15010165
Chicago/Turabian StyleBacha, Leonardo, Márcio da Silva Bandeira, Vinícius Santos Lima, Rodrigo Ventura, Carlos E. de Rezende, Adacto B. Ottoni, Diogo Tschoeke, Carlos Cosenza, Cristiane Thompson, and Fabiano Thompson. 2023. "Current Status of Drinking Water Quality in a Latin American Megalopolis" Water 15, no. 1: 165. https://doi.org/10.3390/w15010165
APA StyleBacha, L., da Silva Bandeira, M., Lima, V. S., Ventura, R., de Rezende, C. E., Ottoni, A. B., Tschoeke, D., Cosenza, C., Thompson, C., & Thompson, F. (2023). Current Status of Drinking Water Quality in a Latin American Megalopolis. Water, 15(1), 165. https://doi.org/10.3390/w15010165