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Abstract: Groundwater monitoring networks represent the main source of information about water
levels and water quality within aquifers. In this paper, a method is proposed for the optimal design
of monitoring networks to obtain groundwater-level data of high spatial relevance at a low cost. It
uses the estimate error variance reduction obtained with the static Kalman filter as optimization
criteria, while simultaneously evaluating the optimal routes to follow through the traveling sales-
man problem. It was tested for a network of 49 wells in the Calera aquifer in Zacatecas, Mexico. The
study area was divided into three zones, and one working day (8 h) was taken to visit each one,
with an average speed of 40 km/h and a sampling time of 0.5 h. An optimal network of 26 wells was
obtained with the proposal, while 21 wells should be monitored if the optimal routing is neglected.
The average standard error using 49 wells of the original network was 35.01 m, an error of 38.35 m
was obtained for 21 wells (without optimal routing) and 38.36 m with the 26 wells selected using
the proposal. However, the latter produce estimates closer to those obtained with the 49 wells. Fol-
lowing the proposal, more field data can be acquired, reducing costs.

Keywords: groundwater; monitoring networks; geostatistics; Kalman filter; the traveling salesman
problem

1. Introduction

Groundwater represents 96.3% of the total freshwater on Earth. It is the principal
source of water, and necessary for the survival and development of humanity. Around
69% of the extracted groundwater is used for agricultural activities, 19% is required by
the industrial sector, and the remaining 12% is used for domestic purposes [1,2]. Accord-
ing to the National Water Commission (CONAGUA in Spanish) of the Mexican govern-
ment, the water that is available to exploit without altering its natural balance is 451,585
hm3; 39% of it corresponds to groundwater, while 61% corresponds to surface waters [3].

For adequate groundwater management, it is necessary to implement monitoring
schemes in a set of piezometers or wells that allow for spatial and temporal information
on the quality and levels of groundwater to be obtained by carrying out field campaigns.
These networks represent the main source of information needed to make inferences
about the hydrological behavior of water in the subsoil [4], which is of vital importance
since the extraction of considerable volumes of groundwater has caused adverse effects
on water levels, as well as quality [5].

The groundwater data collected in space and time are useful for the construction of
numerical models that allow for a simulation of the evolution of groundwater levels and
quality [6]. These models represent robust tools supporting water management policies.
There are monitoring networks in several parts of the world at present, where the level
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and quality of groundwater and springs are measured at the regional level. The pro-
cessing and representation of this information is carried out in Geographic Information
Systems (GIS).

In many regions, the adequate management and assessment of water is difficult to
achieve due to the limited monitoring the groundwater. To overcome this situation, the
International Center for the Assessment of Groundwater Resources (IGRAC) belonging
to the United Nations Educational, Scientific and Cultural Organization (UNESCO)
founded the Global Groundwater Monitoring Network (GGMN). This network is based
on a catalog of 166 parameters/variables included in a GIS, with the aim of facilitating
access and updating information to gaining broader knowledge about the functioning of
water in subsoil with the aim of its sustainable management [7].

In Mexico, a total of 1118 groundwater monitoring stations were reported in 2017
(1096 of them were wells). These were used for the surveillance of the 653 administrative
aquifers defined by CONAGUA. The annual monitoring of groundwater quality has been
carried out since 2005, especially in the central and northern regions, due to its relevant
role in the country’s economic activities. The data obtained from this monitoring program
were used to evaluate compliance with the Official Mexican Standard (NOM-127-SSA1-
1994), which establishes the permissible limits of groundwater quality parameters for hu-
man consumption and agricultural purposes [3]. These networks must be designed by
following the criteria that allow for the greatest amount of information to be obtained at
the lowest possible cost. Accordingly, several researchers have developed methods for the
optimal design of monitoring networks by looking at one or several variables, in space or
space—time [8,9]. Some designs aim to minimize the error in the estimation of the hydrau-
lic head in space and over time with the lowest possible number of wells, to reduce the
cost of exploration. The estimation method that is usually used is kriging, although other
works propose the use of the Kalman filter [10,11]. Bierkens et al. [12] use an autoregres-
sive exogenous (ARX) model to estimate changes in groundwater levels. Geostatistical
techniques are used to calculate the ARX parameters at unmonitored sites. The regional-
ized model was incorporated into a spatiotemporal Kalman filter for the optimal predic-
tion of water level variation.

Different methods for the optimal design of groundwater quality and groundwater-
level monitoring networks used an extended, non-dominated classification genetic algo-
rithm in the optimization [9,10]. Luo et al. [13] sought to optimize a long-term monitoring
network of a contaminant concentration where there is a scarcity of hydraulic conductiv-
ity data through a method that incorporates total sampling costs and estimation errors for
a mass contaminant. Several researchers designed optimal monitoring networks for the
study and treatment of groundwater contamination [14-18].

Other works were developed for the estimation and the optimal design of ground-
water-level monitoring networks using artificial neural networks [19], or multicriteria
analysis implemented in a geographic information system (GIS) [20]. However, the most
popular approach for the design of groundwater-level monitoring networks (GLMN) is
the application of geostatistical interpolation techniques [4,21-24].

On the other hand, few works have considered the routes that should be followed in
sampling campaigns to obtain field data. One alternative is to solve the traveling salesman
problem (TSP) to optimize the route and visit several sites of interest [25-29]. Nunes et al.
[30] proposed optimal well subsets that will form part of a groundwater-level monitoring
network, incorporating the TSP. They built an objective function (OF) that evaluates the
reduction in the spatial variance, temporal redundancy and exploration costs (travel and
monitoring) for a previously defined fixed number of wells. Simulated annealing (SA)
was used to optimize the OF. The problem described is of a combinatorial type and in-
volves a cost-benefit analysis, which guarantees quality information at low cost. With this
method, the selected wells vary depending on the size of the network that was set prior
to optimization.
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The aim of this paper is to present a new method for the design of groundwater-level
monitoring networks, to select the maximum number of wells that can be visited with a
predefined budget, minimizing travel distances and maximizing the amount of infor-
mation that can be provided. The objective function considers both the order of priority
assigned to each well, according to the reduction in the estimate error variances of the
groundwater levels, obtained by means of the static Kalman filter and the order of priority
from an analysis of the optimal route, solving the TSP. This proposal was developed based
on [30], which incorporates exploration times in the objective function, and [31], which
employs a Kalman filter-based method to evaluate the reduction in the total estimate error
variance.

2. Materials and Methods
2.1. Location of the Study Area

The method was tested to redesign the Calera aquifer monitoring network located in
Zacatecas, Mexico, between parallels 22°41" and 23°24’ north latitude and meridians
102°33" and 103°01" west longitude, with an area of 2226 km? (Figure 1). The municipalities
within the aquifer are: Gral. Enrique Estrada and Morelos, and part of the municipalities
of Calera, Fresnillo, Panuco, Veta Grande and Zacatecas. Most of the population lives in
the municipalities of Morelos, Calera, Gral. Enrique Estrada and Fresnillo [32], with a total
of 306,142 inhabitants [33].

Calera Aquifer

Legend

Calera Aquifer
- Zacatecas
:| Mexico

0 125 250 500 750 1000
Km

Figure 1. State of Zacatecas, Mexico, and location of the study area (Calera aquifer).

According to the 2010 census in Mexico, within the Calera aquifer, there are 1417
wells, from which a total volume of 176.5 hm? of water is extracted annually. Of this, 159.2
hm? is used in the agricultural sector, 11.1 hm? for drinking water supply, 1.1 hm? for
livestock and domestic use, and 5.1 hm? for industrial use. The Calera aquifer is of an
unconfined, heterogeneous and anisotropic type. Its thickness is approximately 400 m, the
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hydraulic conductivity values vary from 0.22 to 2.2 m/day, and it has an average specific
yield of 0.13. Geologically speaking, its upper layer largely consists of alluvial material,
conglomerate and rhyolite-acid tuff. The underlying layers are composed of volcanic
(acid tuffs, rhyolites and ignimbrites) and sedimentary (limestone, shale and sandstone)
rocks. In the area of interest, a semidry climate was identified. The rainy season occurs
more frequently in the summer. For the 1980-2009 period, the mean annual values for
rainfall, temperature, and potential evaporation were 425 mm, 16.3 °C, and 2263 mm, re-
spectively [32]. The most important crops in the region are green chili, beans, corn for
grain, onion, garlic and alfalfa, and they are produced with irrigated agriculture, which
occupies four times less surface than rainfed agriculture [34].

2.1.1. Existing Groundwater-Level Monitoring Network

There are no piezometers built within the Calera aquifer, so the monitoring network
is made up of abandoned wells enabled for this purpose; the existing monitoring network
(MN) comprises a total of 49 wells.

The groundwater levels in these wells are measured annually with the use of water
level meters. Additionally, water samples are obtained to analyze their quality in the la-
boratory. Since the monitoring is carried out in this way, a design that considers ways to
reduce the costs in the acquisition of piezometric data is needed. For the redesign, ground-
water-level data for the year 2017 were used, since this was the most sampled year in
recent times. These data were provided by the Department of Groundwater of CONA-
GUA in Zacatecas (Table Al), which is shown in Appendix A.

2.1.2. Estimation Grid and Monitoring Zones

An estimation grid was defined in the study area, with nodes separated by 2 km in
longitude and 2 km in latitude (291). The financial budget for monitoring was sufficient
for three working days (8 h each). It was decided to divide the study area into three zones,
investing one working day for each of them. A total of 84 nodes of the estimation grid
corresponded to Zone C1, 140 to Zone C2, and 143 to Zone C3 (Figure 2).

The matrix of route distances between all the sites (including the base and all the
monitoring wells) was built using the measurement tool incorporated in the digital map
of the National Institute of Statistics and Geography (INEGI in Spanish), which includes
the roads and paths that connect the different communities of Mexico [35].
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Figure 2. Monitoring sites, estimation grid, and zones C1, C2 and C3 considered in the application.

2.2. Geostatistical Analysis

at unsampled sites or times [36].

Geostatistics is composed of techniques to obtain minimum variance estimate values

A classical geostatistical analysis consists of three steps: an exploratory analysis

(identification of outliers and evaluation of the data distribution function), the structural
analysis (calculation of the sample variogram and the adjustment of a valid variogram
model), and the kriging estimation. For the proposed method, the exploratory and struc-
tural analyses of a geostatistical procedure were used to derive a variogram model and its
corresponding covariance matrix, but the Kalman filter was selected for the optimization
estimation method instead of kriging to reduce computational efforts.

To complete the exploratory analysis, the histogram of data must approximate a

gauss bell. Within the structural analysis, a theoretical variogram model is fitted to the
sample variogram.
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To select the variogram model, a cross-validation is carried out using the procedure
called leave one out, in which each data are individually removed, and the others are used
to estimate or predict at that site or time. The entire geostatistical procedures were per-
formed in the R free software [37].

Finally, the covariance matrix was constructed with the parameters of the variogram
model [38].

To evaluate the selected variogram model, the mean squared error (MSE), Equation
(1), and the standard mean squared error (SMSE), Equation (2), were used.

The MSE is the average value of the square differences between the measured and
estimated values.

MSE =1 (126x) = 2 GO 0

The SMSE measures the consistency between the calculated variances and the esti-
mate error variance (7). It is defined as the average of the square of the differences be-
tween the measured and estimated values over the estimate error variance, at the point of
observation. A value close to one indicates that the model is adequate.

e ([2(x) = 20 (x)]2
SMSE = ;Z { p } 2)

i=1
where n is the number of observations, Z(x;) is the value of the property at point x;,
Z*(x;) is the estimated value at point x;, and o; is the estimated standard deviation.

2.3. Kalman Filter

The Kalman filter (KF) is an algorithm based on a set of mathematical expressions to
obtain unbiased linear recursive estimates of minimum variance for a system with noise.
The recursive term refers to the fact that the filter recalculates the solution each time a new
value or measurement is included [31]. The static Kalman filter version used in this paper
is implemented with the following equations:

Measurement model: This links the measurement vector z,, which is presented in
Equation (3), with the current state of the system C,, through the measurement matrix H,
and a Gaussian white noise v,, with covariance matrix R,,.

z, = H,C, + v, 3)

where v,,~N(0,R,).
In the update phase, the Kalman gain (Equation (4)) is calculated to obtain the new

state vector C"*1 (Equation (5)) and its covariance matrix P/1 (Equation (6)):
Kpni1 = PioiHyoy(Hog o PRya Hiey + Ryg) 4)
Chii=Cra+ Kn+1(zn+1 - Hn+1EZ+1) ®)
Prﬁ-ll = (I = Knt1Hny 1) Priyq (6)

where the subscripts with n are the initial arrays and vectors, the subscripts n + 1 are the
arrays and vectors resulting from the first calculation, and the superscripts are the arrays
of the current operation.

2.4. Traveling Salesman Problem (TSP)

Ouaarab et al. [25] define the TSP as the shortest journey for a seller visiting different
cities, adding the distance between them and visiting each one, before returning to the
place of departure.

Following Cardenas-Montes [26], the TSP (Equation (7)) can be expressed as:
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o {1 the route goes from city i to city j. %

Y 0 another route.

where x;; = 1 if city i is connected to city j; x;; = 0 otherwise.
For i =0,...,n, take ¢;; as the distance from city i to city j. Then, TSP can be repre-

sented as shown in Equation (8):

n n
mlnz Z Cl'jxij
i=0 j#i,j=0
0<x;<1 i,j=0,..,n
n
, 8
Z xij=1 j=0,..,n (8)
i=0,i#]
xij=1 i=0,...,n
i=0,j=i

The optimal monitoring route, obtained through the implementation of the TSP, is
determined with the Branch and Bound method [39]. This method contributes to the de-
sign of monitoring networks where it is necessary to visit each monitoring network in situ
for data acquisition.

Branch and Bound

This algorithm generates subsets of solutions (branching), which are pruned or dis-
carded if they do not meet the values of the limits established to delimit the problem, until
the optimal solution is found [39].

This can be used to solve an optimization problem c°(x) with an acceptable optimi-
zation domain *,%"0, as seen in Equation (9).

Minimize (%)
g7(x) =0,
0
subjected to 92 (X‘)'.Z 0, ©)
gm(x) =0
and Ry .,%.0,

where x represents a vector (Xy,Xj, ..., X,). The solution is said to be optimal if x satisfies
all the constraints and belongs to #° and ¢° (x) is the minimum. However, if the problem
c®(x) is very complicated, it can be broken down into simpler problems p; (branching)
whose optimal solutions are x;. It is necessary to include bounded problems p;. The
number of restrictions (1) changes according to the problem. This is represented as Equa-
tion (10), proposed by Lawler and Wood [40].
c/ (%),
91() 20,
g3(x) =0, (10)

ghx) =0

x
ek,

2.5. Objective Function for the Design of the Monitoring Network

The proposed objective function (OF) represented in Equation (11) considers two var-
iables and their respective weight, which can vary depending on the importance given to
each variable. These variables are the priorities of the monitoring wells based on their
contribution to reducing the total estimate error variance for the groundwater levels (ob-
tained with the KF) and the optimal sampling route (solving the TSP).

OF = w,PV; + w,PR; (11)
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where w,, and w, are the weights assigned to the variables PV; (the priority assigned to
well i based on the reduction in the total estimate variance it produces) and PR; (priority
given to well i based on the optimal distance to visit it and return to the starting point).
The priority PV; assigned to each well was obtained with the static Kalman filter, follow-
ing the method proposed by Junez-Ferreira [31]: a PV; equal to one will be assigned to
the well that produces the largest reduction in the total estimate error variance, while a
N — npmy; value (N is the total number of wells available for the MN design and npuy; is
the number of wells included in the optimal monitoring network (MN) will correspond
to the last selected well). The TSP was used to obtain the optimal route to visit well i and
returning to the starting point (the base). A PR; equal to one will be assigned to the well
for which the minimum distance is required, while a priority equal to N — nyyy; will be
assigned to the well with the longest route.

The first well selected for the monitoring network will correspond to the position i
for which the lowest OF value was obtained. For those cases where the sum is the same
for two positions, then the well that provides more information in terms of the total esti-
mate error variance reduction (with a lower PV; value) is selected. Each time a new well
is included in the network, the covariance matrix is updated, and the method is applied
to test the remaining positions (at this stage, the TSP includes visiting the previously se-
lected wells and the one that is being tested).

The sampling time considered at each visited site was 0.5 h. An average speed of 40
km/h was also taken to travel through the communication routes. The wells to be moni-
tored in a predefined region will correspond to those where the necessary time for moni-
toring (the sum of sampling and travel times) is lower than or equal to 8 h (a working
day). If there is additional budget to invest in another working day, the method was re-
peated, starting with the final covariance matrix of the previous day, and a new routing
was initiated. In cases where all the wells of the MN have already been integrated to the
MN and the working day has not finished, the method stops when a priority is assigned
to each of them. The TSP is solved with the Branch and bound technique [39], using the
network modeling (NET) version 1 module of the WinQSB software [41] through a Win-
dows XP virtual machine [42]. The OF was evaluated using Microsoft Excel Version 2021
[43].

The proposed method is explained in the flow diagram of Figure 3. To fully under-
stand this, it is necessary to declare the following elements: i is the number assigned to
each well that is tested (i = 1, ..., N), n is the sum of the wells included in [MN] plus the i
well with the minimum OF, 1 is the distance of the optimal route to visit the wells that
were already included in [MN] and the i well with the minimum OF, the vector [MN]
includes the wells of the optimal monitoring network and [MN] is the vector with the
wells of the optimal monitoring network ordered following the optimal route determined
with the TSP.
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( Start )

Y

OF - objective function, TSP - traveling salesman problem, MN — monitoring network, N — total

number of wells available for the MN design, i — is the number assigned to each well that is tested,

PR;i — priority given to well i based on the optimal distance to visit it and return to the starting point,

PV — the priority assigned to well i based on the reduction in the total estimate variance it produces,

wv — weight assigned to the variable PVi , wr — weight assigned to the variable PR, [MN] - includes
the wells of the optimal monitoring network, r» — distance of the optimal route to visit the wells that

were already included in [MN], n = sum of the wells included in MN, [MN]: - vector with the wells of
the optimal monitoring network ordered following the optimal route determined with the TSP, n = 0.
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Figure 3. Diagram of the proposed method.

Process 1, included in Figure 3, consists of the following steps:

1. For each i well that is not yet part of the [MN], the TSP is applied (including the
previously selected wells) to compute the optimal route (ri) from the starting point
and back.

2. A PR; is assigned to each well that is not part of the [MN], PR; =1 for the i well
with minimum ri, PR; = N — nyy; for the i well with maximum r.

3. A PV; is assigned to each well that is not part of the [MN] following the Jiinez-Fer-
reira method [31]; PV; = 1 for the i well that produces the largest reduction in the
total estimate error variance, and PV; = N —nyyy; for the i well that was last se-
lected.

3. Results and Discussions

The method was applied to the existing monitoring network of the study area, which
consists of 49 wells. Evidently, a frequent visit to all the wells of the existing monitoring
network would be time-consuming and would lead to high costs. The proposed method
was designed to reduce the number of wells selected in monitoring schemes without los-
ing valuable information and reducing costs.

Although the optimization was performed for separate zones, the variogram was
constructed with all the available groundwater-level data for a better representation of the
spatial correlation for the groundwater levels in the study zone. Finally, a global model is
preferred to estimate the groundwater levels within the aquifer to maximize the contribu-
tion of all the data collected at the selected monitoring sites (not only those located within
a zone). Furthermore, the calculation of separate variograms for each zone could lead to
a poor representation of the spatial correlation due to the limited number of data available
for each of them [44].

The method was applied by assigning a w;,, = 0.5 and w,. = 0.5, which means that it
was given the same importance to the reduction in the estimate error variance and the
traveled distances.

As part of the geostatistical analysis, the available groundwater-level data were nor-
malized. Statistics for these transformed data are shown in Table 1.

Table 1. Statistics of groundwater levels and standardized groundwater levels data.

Statistics Groundwater-Level Standardized Groundwater-Level
Number of data 49 49
Minimum (m) 1988.44 -2.32
Maximum (m) 2272.53 2.32
Mean (m) 2081.9 0
Median (m) 2071.4 0
Standard deviation (m) 59.452 0.9974
Skewness 0.8647 0
Kurtosis 3.5552 2.7255

Figure 4 shows the values of the adjusted variogram model and its parameters (nug-
get, sill and range) that allowed for the lowest value of the MSE and an acceptable SMSE
value (close to one) to be obtained. The large value in the range reflects the strong corre-
lation between the normalized data.

The sample variogram was computed for a lag size of 1800 m, a spherical variogram
model was fitted to the sample variogram, and the model parameters (sill, nugget and
range) were used to build the covariance matrix. A cross-validation (CV) (Figure 5) was
used to evaluate the selected variogram model.
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Variable Model | Nugget (u?) | Sill (u?) | Range(m)

Normalized
groundwater level

Spherical 0.12 153 37819.6

Semivariance (u2)
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Figure 4. Sample variogram and adjusted model.

The value of the model range reflects that the correlation between the normalized
data remains at large distances (almost reaching the extent of the estimation grid); how-
ever, the contribution of distant wells in the node estimation will be low, due to the screen-

ing effect.
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Figure 5. Cross-validation results.

Monitoring Network Optimization

Figures 6-8 show the final route to follow to monitor the njyy; wells included in the

[MN]s vector when applying the proposed method for zones C1, C2 and C3, separately
(the label in these wells includes the well number and the route priority). Likewise, the
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route segments to visit each well are presented in different colors. For each zone, the be-
ginning and the end of the route is the base (UAZ campus).

Monitoring Schemes for Zones C1, C2 and C3

According to the proposed method, seven wells of Zone C1 were selected to be vis-
ited within an estimated time of 7.78 h. The selected wells following the optimal route are:
47,6, 2,4, 48,9 and 8, as shown in Figure 6.
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Figure 6. Monitoring wells with their visit priorities for Zone C1, the monitoring route begins and
ends at the UAZ (Base).

For Zone C2, it is possible to visit nine wells with a calculated time of 7.77 h. The
sequence for visiting these selected wells was 43, 18, 32, 13, 11, 12, 17, 15 and 16, as pre-
sented in Figure 7.

When applying the proposed method for Zone C3, nine wells were selected to be
visited in 6.92 h; visiting 10 wells leads to a routing of 8.07 h, exceeding the restriction of
8 h (a working day). However, since the extra time corresponds to only 4 min, the latter
case was accepted. The chosen wells following the optimal monitoring route are 40, 31,
28, 29, 26, 27, 25, 24, 23 and 49, as illustrated in Figure 8.

For the same case study, the Junez-Ferreira method was applied (considering only
the estimate error variance reduction), which resulted in the monitoring scheme presented
in Figure 9a—c for zones C1, C2 and C3, respectively.

Table 2 shows a comparison between the monitoring routes in the different zones,
applying both methods. Following the proposed method, the travel distance was reduced
by 28.95 km, 33.98 km and 18.96 km, in zones C1, C2 and C3, respectively, compared to
the distances obtained with the Jinez-Ferreira method. An average reduction of 27.63 km
was achieved; furthermore, more wells are visited when the proposed method is applied,
which offers the advantage of collecting a higher number of field data with a lower cost.

Considering a vehicle performance of 6 km/L and a fuel cost of 0.99 USD per liter,
visiting the 26 wells selected with the proposed method represents a total cost in trans-
portation of 70.15 USD. This increases up to 83.66 USD for visiting the 21 wells selected
without optimal routing. The total travel distance for visiting the 21 wells in three working
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days was 507.07 km, whereas 425.18 km was necessary to visit the 26 wells selected with
the proposal.
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Figure 7. Monitoring wells with their visit priorities for Zone C2; the monitoring route begins and
ends at the UAZ (Base).
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Figure 8. Monitoring wells with their visit priorities for Zone C3; the monitoring route begins and
ends at the UAZ (Base).
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