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Abstract: Groundwater monitoring networks represent the main source of information about water 
levels and water quality within aquifers. In this paper, a method is proposed for the optimal design 
of monitoring networks to obtain groundwater-level data of high spatial relevance at a low cost. It 
uses the estimate error variance reduction obtained with the static Kalman filter as optimization 
criteria, while simultaneously evaluating the optimal routes to follow through the traveling sales-
man problem. It was tested for a network of 49 wells in the Calera aquifer in Zacatecas, Mexico. The 
study area was divided into three zones, and one working day (8 h) was taken to visit each one, 
with an average speed of 40 km/h and a sampling time of 0.5 h. An optimal network of 26 wells was 
obtained with the proposal, while 21 wells should be monitored if the optimal routing is neglected. 
The average standard error using 49 wells of the original network was 35.01 m, an error of 38.35 m 
was obtained for 21 wells (without optimal routing) and 38.36 m with the 26 wells selected using 
the proposal. However, the latter produce estimates closer to those obtained with the 49 wells. Fol-
lowing the proposal, more field data can be acquired, reducing costs. 

Keywords: groundwater; monitoring networks; geostatistics; Kalman filter; the traveling salesman 
problem 
 

1. Introduction 
Groundwater represents 96.3% of the total freshwater on Earth. It is the principal 

source of water, and necessary for the survival and development of humanity. Around 
69% of the extracted groundwater is used for agricultural activities, 19% is required by 
the industrial sector, and the remaining 12% is used for domestic purposes [1,2]. Accord-
ing to the National Water Commission (CONAGUA in Spanish) of the Mexican govern-
ment, the water that is available to exploit without altering its natural balance is 451,585 
hm3; 39% of it corresponds to groundwater, while 61% corresponds to surface waters [3]. 

For adequate groundwater management, it is necessary to implement monitoring 
schemes in a set of piezometers or wells that allow for spatial and temporal information 
on the quality and levels of groundwater to be obtained by carrying out field campaigns. 
These networks represent the main source of information needed to make inferences 
about the hydrological behavior of water in the subsoil [4], which is of vital importance 
since the extraction of considerable volumes of groundwater has caused adverse effects 
on water levels, as well as quality [5]. 

The groundwater data collected in space and time are useful for the construction of 
numerical models that allow for a simulation of the evolution of groundwater levels and 
quality [6]. These models represent robust tools supporting water management policies. 
There are monitoring networks in several parts of the world at present, where the level 
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and quality of groundwater and springs are measured at the regional level. The pro-
cessing and representation of this information is carried out in Geographic Information 
Systems (GIS). 

In many regions, the adequate management and assessment of water is difficult to 
achieve due to the limited monitoring the groundwater. To overcome this situation, the 
International Center for the Assessment of Groundwater Resources (IGRAC) belonging 
to the United Nations Educational, Scientific and Cultural Organization (UNESCO) 
founded the Global Groundwater Monitoring Network (GGMN). This network is based 
on a catalog of 166 parameters/variables included in a GIS, with the aim of facilitating 
access and updating information to gaining broader knowledge about the functioning of 
water in subsoil with the aim of its sustainable management [7]. 

In Mexico, a total of 1118 groundwater monitoring stations were reported in 2017 
(1096 of them were wells). These were used for the surveillance of the 653 administrative 
aquifers defined by CONAGUA. The annual monitoring of groundwater quality has been 
carried out since 2005, especially in the central and northern regions, due to its relevant 
role in the country’s economic activities. The data obtained from this monitoring program 
were used to evaluate compliance with the Official Mexican Standard (NOM-127-SSA1-
1994), which establishes the permissible limits of groundwater quality parameters for hu-
man consumption and agricultural purposes [3]. These networks must be designed by 
following the criteria that allow for the greatest amount of information to be obtained at 
the lowest possible cost. Accordingly, several researchers have developed methods for the 
optimal design of monitoring networks by looking at one or several variables, in space or 
space–time [8,9]. Some designs aim to minimize the error in the estimation of the hydrau-
lic head in space and over time with the lowest possible number of wells, to reduce the 
cost of exploration. The estimation method that is usually used is kriging, although other 
works propose the use of the Kalman filter [10,11]. Bierkens et al. [12] use an autoregres-
sive exogenous (ARX) model to estimate changes in groundwater levels. Geostatistical 
techniques are used to calculate the ARX parameters at unmonitored sites. The regional-
ized model was incorporated into a spatiotemporal Kalman filter for the optimal predic-
tion of water level variation. 

Different methods for the optimal design of groundwater quality and groundwater-
level monitoring networks used an extended, non-dominated classification genetic algo-
rithm in the optimization [9,10]. Luo et al. [13] sought to optimize a long-term monitoring 
network of a contaminant concentration where there is a scarcity of hydraulic conductiv-
ity data through a method that incorporates total sampling costs and estimation errors for 
a mass contaminant. Several researchers designed optimal monitoring networks for the 
study and treatment of groundwater contamination [14–18]. 

Other works were developed for the estimation and the optimal design of ground-
water-level monitoring networks using artificial neural networks [19], or multicriteria 
analysis implemented in a geographic information system (GIS) [20]. However, the most 
popular approach for the design of groundwater-level monitoring networks (GLMN) is 
the application of geostatistical interpolation techniques [4,21–24]. 

On the other hand, few works have considered the routes that should be followed in 
sampling campaigns to obtain field data. One alternative is to solve the traveling salesman 
problem (TSP) to optimize the route and visit several sites of interest [25–29]. Nunes et al. 
[30] proposed optimal well subsets that will form part of a groundwater-level monitoring 
network, incorporating the TSP. They built an objective function (𝑂𝐹) that evaluates the 
reduction in the spatial variance, temporal redundancy and exploration costs (travel and 
monitoring) for a previously defined fixed number of wells. Simulated annealing (SA) 
was used to optimize the 𝑂𝐹. The problem described is of a combinatorial type and in-
volves a cost–benefit analysis, which guarantees quality information at low cost. With this 
method, the selected wells vary depending on the size of the network that was set prior 
to optimization. 
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The aim of this paper is to present a new method for the design of groundwater-level 
monitoring networks, to select the maximum number of wells that can be visited with a 
predefined budget, minimizing travel distances and maximizing the amount of infor-
mation that can be provided. The objective function considers both the order of priority 
assigned to each well, according to the reduction in the estimate error variances of the 
groundwater levels, obtained by means of the static Kalman filter and the order of priority 
from an analysis of the optimal route, solving the TSP. This proposal was developed based 
on [30], which incorporates exploration times in the objective function, and [31], which 
employs a Kalman filter-based method to evaluate the reduction in the total estimate error 
variance. 

2. Materials and Methods 
2.1. Location of the Study Area 

The method was tested to redesign the Calera aquifer monitoring network located in 
Zacatecas, Mexico, between parallels 22°41′ and 23°24′ north latitude and meridians 
102°33′ and 103°01′ west longitude, with an area of 2226 km2 (Figure 1). The municipalities 
within the aquifer are: Gral. Enrique Estrada and Morelos, and part of the municipalities 
of Calera, Fresnillo, Pánuco, Veta Grande and Zacatecas. Most of the population lives in 
the municipalities of Morelos, Calera, Gral. Enrique Estrada and Fresnillo [32], with a total 
of 306,142 inhabitants [33]. 

 
Figure 1. State of Zacatecas, Mexico, and location of the study area (Calera aquifer). 

According to the 2010 census in Mexico, within the Calera aquifer, there are 1417 
wells, from which a total volume of 176.5 hm3 of water is extracted annually. Of this, 159.2 
hm3 is used in the agricultural sector, 11.1 hm3 for drinking water supply, 1.1 hm3 for 
livestock and domestic use, and 5.1 hm3 for industrial use. The Calera aquifer is of an 
unconfined, heterogeneous and anisotropic type. Its thickness is approximately 400 m, the 
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hydraulic conductivity values vary from 0.22 to 2.2 m/day, and it has an average specific 
yield of 0.13. Geologically speaking, its upper layer largely consists of alluvial material, 
conglomerate and rhyolite–acid tuff. The underlying layers are composed of volcanic 
(acid tuffs, rhyolites and ignimbrites) and sedimentary (limestone, shale and sandstone) 
rocks. In the area of interest, a semidry climate was identified. The rainy season occurs 
more frequently in the summer. For the 1980–2009 period, the mean annual values for 
rainfall, temperature, and potential evaporation were 425 mm, 16.3 °C, and 2263 mm, re-
spectively [32]. The most important crops in the region are green chili, beans, corn for 
grain, onion, garlic and alfalfa, and they are produced with irrigated agriculture, which 
occupies four times less surface than rainfed agriculture [34]. 

2.1.1. Existing Groundwater-Level Monitoring Network 
There are no piezometers built within the Calera aquifer, so the monitoring network 

is made up of abandoned wells enabled for this purpose; the existing monitoring network 
(MN) comprises a total of 49 wells. 

The groundwater levels in these wells are measured annually with the use of water 
level meters. Additionally, water samples are obtained to analyze their quality in the la-
boratory. Since the monitoring is carried out in this way, a design that considers ways to 
reduce the costs in the acquisition of piezometric data is needed. For the redesign, ground-
water-level data for the year 2017 were used, since this was the most sampled year in 
recent times. These data were provided by the Department of Groundwater of CONA-
GUA in Zacatecas (Table A1), which is shown in Appendix A. 

2.1.2. Estimation Grid and Monitoring Zones 
An estimation grid was defined in the study area, with nodes separated by 2 km in 

longitude and 2 km in latitude (291). The financial budget for monitoring was sufficient 
for three working days (8 h each). It was decided to divide the study area into three zones, 
investing one working day for each of them. A total of 84 nodes of the estimation grid 
corresponded to Zone C1, 140 to Zone C2, and 143 to Zone C3 (Figure 2). 

The matrix of route distances between all the sites (including the base and all the 
monitoring wells) was built using the measurement tool incorporated in the digital map 
of the National Institute of Statistics and Geography (INEGI in Spanish), which includes 
the roads and paths that connect the different communities of Mexico [35]. 
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Figure 2. Monitoring sites, estimation grid, and zones C1, C2 and C3 considered in the application. 

2.2. Geostatistical Analysis 
Geostatistics is composed of techniques to obtain minimum variance estimate values 

at unsampled sites or times [36]. 
A classical geostatistical analysis consists of three steps: an exploratory analysis 

(identification of outliers and evaluation of the data distribution function), the structural 
analysis (calculation of the sample variogram and the adjustment of a valid variogram 
model), and the kriging estimation. For the proposed method, the exploratory and struc-
tural analyses of a geostatistical procedure were used to derive a variogram model and its 
corresponding covariance matrix, but the Kalman filter was selected for the optimization 
estimation method instead of kriging to reduce computational efforts. 

To complete the exploratory analysis, the histogram of data must approximate a 
gauss bell. Within the structural analysis, a theoretical variogram model is fitted to the 
sample variogram. 
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To select the variogram model, a cross-validation is carried out using the procedure 
called leave one out, in which each data are individually removed, and the others are used 
to estimate or predict at that site or time. The entire geostatistical procedures were per-
formed in the R free software [37]. 

Finally, the covariance matrix was constructed with the parameters of the variogram 
model [38]. 

To evaluate the selected variogram model, the mean squared error (MSE), Equation 
(1), and the standard mean squared error (SMSE), Equation (2), were used. 

The MSE is the average value of the square differences between the measured and 
estimated values. 

𝑀𝑆𝐸 = 1𝑛 ෍ሼ[𝑍ሺ𝐱௜) − 𝑍∗ሺ𝐱௜)]ଶሽ௡
௜ୀଵ  (1)

The SMSE measures the consistency between the calculated variances and the esti-
mate error variance (𝜎௜ଶ). It is defined as the average of the square of the differences be-
tween the measured and estimated values over the estimate error variance, at the point of 
observation. A value close to one indicates that the model is adequate. 

𝑆𝑀𝑆𝐸 = 1𝑛 ෍ ቊ[𝑍ሺ𝐱௜) − 𝑍∗ሺ𝐱௜)]ଶ𝜎௜ଶ ቋ௡
௜ୀଵ  (2)

where 𝑛 is the number of observations, 𝑍ሺ𝐱௜) is the value of the property at point 𝐱௜, 𝑍∗ሺ𝐱௜) is the estimated value at point 𝐱௜, and 𝜎௜ is the estimated standard deviation. 

2.3. Kalman Filter 
The Kalman filter (KF) is an algorithm based on a set of mathematical expressions to 

obtain unbiased linear recursive estimates of minimum variance for a system with noise. 
The recursive term refers to the fact that the filter recalculates the solution each time a new 
value or measurement is included [31]. The static Kalman filter version used in this paper 
is implemented with the following equations: 

Measurement model: This links the measurement vector 𝒛𝒏, which is presented in 
Equation (3), with the current state of the system 𝑪𝒏 through the measurement matrix 𝐻௡ 
and a Gaussian white noise 𝒗𝒏 with covariance matrix 𝑅௡. 𝒛𝒏 = 𝐻௡𝑪𝒏 + 𝒗𝒏 (3) 

where 𝒗𝒏~𝑁ሺ0, 𝑅௡). 
In the update phase, the Kalman gain (Equation (4)) is calculated to obtain the new 

state vector 𝑪෡𝒏ା𝟏𝒏ା𝟏 (Equation (5)) and its covariance matrix 𝑃௡ାଵ௡ାଵ (Equation (6)): 𝑲𝒏ା𝟏 = 𝑃௡ାଵ௡ 𝐻௡ାଵ் ሺ𝐻௡ାଵ𝑃௡ାଵ௡ 𝐻௡ାଵ் + 𝑹𝒏ା𝟏) (4) 

𝑪෡𝒏ା𝟏𝒏ା𝟏 = 𝐶መ௡ାଵ௡ + 𝐾௡ାଵ൫𝒛𝒏ା𝟏 − 𝐻௡ାଵ𝑪෡𝒏ା𝟏𝒏 ൯ (5) 

𝑃௡ାଵ௡ାଵ = ሺ𝐼 − 𝐾௡ାଵ𝐻௡ାଵ)𝑃௡ାଵ௡  (6) 

where the subscripts with n are the initial arrays and vectors, the subscripts n + 1 are the 
arrays and vectors resulting from the first calculation, and the superscripts are the arrays 
of the current operation. 

2.4. Traveling Salesman Problem (TSP) 
Ouaarab et al. [25] define the TSP as the shortest journey for a seller visiting different 

cities, adding the distance between them and visiting each one, before returning to the 
place of departure. 

Following Cárdenas-Montes [26], the TSP (Equation (7)) can be expressed as: 
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𝑥௜௝ = ቄ1 the route goes from city 𝑖 to city  𝑗.0 another route.  (7)

where 𝑥௜௝ = 1 if city 𝑖 is connected to city j; 𝑥௜௝ = 0 otherwise. 
For 𝑖 = 0, … , 𝑛, take 𝑐௜௝ as the distance from city 𝑖 to city 𝑗. Then, TSP can be repre-

sented as shown in Equation (8): 𝑚𝑖𝑛 ෍ ෍ 𝑐௜௝𝑥௜௝௡
௝ஷ௜,௝ୀ଴

௡
௜ୀ଴  0 ≤ 𝑥௜௝ ≤ 1                 𝑖, 𝑗 = 0, … , 𝑛 ෍ 𝑥௜௝ = 1௡

௜ୀ଴,௜ஷ௝           𝑗 = 0, … , 𝑛 

෍ 𝑥௜௝ = 1௡
௝ୀ଴,௝ஷ௜           𝑖 = 0, … , 𝑛 

(8)

The optimal monitoring route, obtained through the implementation of the TSP, is 
determined with the Branch and Bound method [39]. This method contributes to the de-
sign of monitoring networks where it is necessary to visit each monitoring network in situ 
for data acquisition. 

Branch and Bound 
This algorithm generates subsets of solutions (branching), which are pruned or dis-

carded if they do not meet the values of the limits established to delimit the problem, until 
the optimal solution is found [39]. 

This can be used to solve an optimization problem 𝑐଴ሺ𝐱) with an acceptable optimi-
zation domain �0, as seen in Equation (9). 

Minimize 𝑐଴ሺ𝐱) 

(9) subjected to 

𝑔ଵ଴ሺ𝐱) ≥ 0, 𝑔ଶ଴ሺ𝐱) ≥ 0, ⋯ 𝑔௠଴ ሺ𝐱) ≥ 0 
and � ∈ �0, 

where x represents a vector ሺ𝐱ଵ, 𝐱ଶ, … , 𝐱௡). The solution is said to be optimal if x satisfies 
all the constraints and belongs to �0 and 𝑐଴ሺ𝐱) is the minimum. However, if the problem 𝑐଴ሺ𝐱) is very complicated, it can be broken down into simpler problems 𝑝௝ (branching) 
whose optimal solutions are 𝐱௝ . It is necessary to include bounded problems 𝑝௞ . The 
number of restrictions (m) changes according to the problem. This is represented as Equa-
tion (10), proposed by Lawler and Wood [40]. 𝑐௝ሺ𝐱),𝑔ଵ௝ሺ𝐱) ≥ 0,𝑔ଶ௝ሺ𝐱) ≥ 0,⋯𝑔௠௝ ሺ𝐱) ≥ 0

� ∈ ��, ⎭⎪⎪
⎬⎪⎪
⎫

 (10) 

2.5. Objective Function for the Design of the Monitoring Network 
The proposed objective function (𝑂𝐹) represented in Equation (11) considers two var-

iables and their respective weight, which can vary depending on the importance given to 
each variable. These variables are the priorities of the monitoring wells based on their 
contribution to reducing the total estimate error variance for the groundwater levels (ob-
tained with the KF) and the optimal sampling route (solving the TSP). 𝑂𝐹 = 𝑤௩𝑃𝑉௜ + 𝑤௥𝑃𝑅௜ (11) 
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where 𝑤௩ and 𝑤௥ are the weights assigned to the variables 𝑃𝑉௜ (the priority assigned to 
well 𝑖 based on the reduction in the total estimate variance it produces) and 𝑃𝑅௜ (priority 
given to well i based on the optimal distance to visit it and return to the starting point). 
The priority 𝑃𝑉௜ assigned to each well was obtained with the static Kalman filter, follow-
ing the method proposed by Júnez-Ferreira [31]: a 𝑃𝑉௜ equal to one will be assigned to 
the well that produces the largest reduction in the total estimate error variance, while a 𝑁 − n[𝐌𝐍] value (𝑁 is the total number of wells available for the MN design and n[𝐌𝐍] is 
the number of wells included in the optimal monitoring network (MN) will correspond 
to the last selected well). The TSP was used to obtain the optimal route to visit well 𝑖 and 
returning to the starting point (the base). A 𝑃𝑅௜ equal to one will be assigned to the well 
for which the minimum distance is required, while a priority equal to 𝑁 − n[𝐌𝐍] will be 
assigned to the well with the longest route. 

The first well selected for the monitoring network will correspond to the position 𝑖 
for which the lowest 𝑂𝐹 value was obtained. For those cases where the sum is the same 
for two positions, then the well that provides more information in terms of the total esti-
mate error variance reduction (with a lower 𝑃𝑉௜ value) is selected. Each time a new well 
is included in the network, the covariance matrix is updated, and the method is applied 
to test the remaining positions (at this stage, the TSP includes visiting the previously se-
lected wells and the one that is being tested). 

The sampling time considered at each visited site was 0.5 h. An average speed of 40 
km/h was also taken to travel through the communication routes. The wells to be moni-
tored in a predefined region will correspond to those where the necessary time for moni-
toring (the sum of sampling and travel times) is lower than or equal to 8 h (a working 
day). If there is additional budget to invest in another working day, the method was re-
peated, starting with the final covariance matrix of the previous day, and a new routing 
was initiated. In cases where all the wells of the MN have already been integrated to the 
MN and the working day has not finished, the method stops when a priority is assigned 
to each of them. The TSP is solved with the Branch and bound technique [39], using the 
network modeling (NET) version 1 module of the WinQSB software [41] through a Win-
dows XP virtual machine [42]. The 𝑂𝐹 was evaluated using Microsoft Excel Version 2021 
[43]. 

The proposed method is explained in the flow diagram of Figure 3. To fully under-
stand this, it is necessary to declare the following elements: 𝑖 is the number assigned to 
each well that is tested (𝑖 = 1, … , 𝑁), n is the sum of the wells included in [MN] plus the 𝑖 
well with the minimum 𝑂𝐹, rn is the distance of the optimal route to visit the wells that 
were already included in [MN] and the 𝑖 well with the minimum 𝑂𝐹, the vector [MN] 
includes the wells of the optimal monitoring network and [MN]f is the vector with the 
wells of the optimal monitoring network ordered following the optimal route determined 
with the TSP. 
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Figure 3. Diagram of the proposed method. 

Process 1, included in Figure 3, consists of the following steps: 
1. For each 𝑖 well that is not yet part of the [MN], the TSP is applied (including the 

previously selected wells) to compute the optimal route (ri) from the starting point 
and back. 

2. A 𝑃𝑅௜ is assigned to each well that is not part of the [MN], 𝑃𝑅௜ = 1 for the 𝑖 well 
with minimum ri, 𝑃𝑅௜ = 𝑁 − 𝑛[𝑴𝑵] for the i well with maximum ri. 

3. A 𝑃𝑉௜ is assigned to each well that is not part of the [MN] following the Júnez-Fer-
reira method [31]; 𝑃𝑉௜ = 1 for the 𝑖 well that produces the largest reduction in the 
total estimate error variance, and 𝑃𝑉௜ = 𝑁 − 𝑛[𝑴𝑵] for the 𝑖 well that was last se-
lected. 

3. Results and Discussions 
The method was applied to the existing monitoring network of the study area, which 

consists of 49 wells. Evidently, a frequent visit to all the wells of the existing monitoring 
network would be time-consuming and would lead to high costs. The proposed method 
was designed to reduce the number of wells selected in monitoring schemes without los-
ing valuable information and reducing costs. 

Although the optimization was performed for separate zones, the variogram was 
constructed with all the available groundwater-level data for a better representation of the 
spatial correlation for the groundwater levels in the study zone. Finally, a global model is 
preferred to estimate the groundwater levels within the aquifer to maximize the contribu-
tion of all the data collected at the selected monitoring sites (not only those located within 
a zone). Furthermore, the calculation of separate variograms for each zone could lead to 
a poor representation of the spatial correlation due to the limited number of data available 
for each of them [44]. 

The method was applied by assigning a 𝑤௩ = 0.5 and 𝑤௥ = 0.5, which means that it 
was given the same importance to the reduction in the estimate error variance and the 
traveled distances. 

As part of the geostatistical analysis, the available groundwater-level data were nor-
malized. Statistics for these transformed data are shown in Table 1. 

Table 1. Statistics of groundwater levels and standardized groundwater levels data. 

Statistics Groundwater-Level Standardized Groundwater-Level 
Number of data 49 49 
Minimum (m) 1988.44 −2.32 
Maximum (m) 2272.53 2.32 

Mean (m) 2081.9 0 
Median (m) 2071.4 0 

Standard deviation (m) 59.452 0.9974 
Skewness 0.8647 0 
Kurtosis 3.5552 2.7255 

Figure 4 shows the values of the adjusted variogram model and its parameters (nug-
get, sill and range) that allowed for the lowest value of the MSE and an acceptable SMSE 
value (close to one) to be obtained. The large value in the range reflects the strong corre-
lation between the normalized data. 

The sample variogram was computed for a lag size of 1800 m, a spherical variogram 
model was fitted to the sample variogram, and the model parameters (sill, nugget and 
range) were used to build the covariance matrix. A cross-validation (CV) (Figure 5) was 
used to evaluate the selected variogram model. 
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Figure 4. Sample variogram and adjusted model. 

The value of the model range reflects that the correlation between the normalized 
data remains at large distances (almost reaching the extent of the estimation grid); how-
ever, the contribution of distant wells in the node estimation will be low, due to the screen-
ing effect. 

 
Figure 5. Cross-validation results. 

Monitoring Network Optimization 
Figures 6–8 show the final route to follow to monitor the n[𝐌𝐍] wells included in the 

[MN]f vector when applying the proposed method for zones C1, C2 and C3, separately 
(the label in these wells includes the well number and the route priority). Likewise, the 
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route segments to visit each well are presented in different colors. For each zone, the be-
ginning and the end of the route is the base (UAZ campus). 

Monitoring Schemes for Zones C1, C2 and C3 
According to the proposed method, seven wells of Zone C1 were selected to be vis-

ited within an estimated time of 7.78 h. The selected wells following the optimal route are: 
47, 6, 2, 4, 48, 9 and 8, as shown in Figure 6. 

 
Figure 6. Monitoring wells with their visit priorities for Zone C1, the monitoring route begins and 
ends at the UAZ (Base). 

For Zone C2, it is possible to visit nine wells with a calculated time of 7.77 h. The 
sequence for visiting these selected wells was 43, 18, 32, 13, 11, 12, 17, 15 and 16, as pre-
sented in Figure 7. 

When applying the proposed method for Zone C3, nine wells were selected to be 
visited in 6.92 h; visiting 10 wells leads to a routing of 8.07 h, exceeding the restriction of 
8 h (a working day). However, since the extra time corresponds to only 4 min, the latter 
case was accepted. The chosen wells following the optimal monitoring route are 40, 31, 
28, 29, 26, 27, 25, 24, 23 and 49, as illustrated in Figure 8. 

For the same case study, the Júnez-Ferreira method was applied (considering only 
the estimate error variance reduction), which resulted in the monitoring scheme presented 
in Figure 9a–c for zones C1, C2 and C3, respectively. 

Table 2 shows a comparison between the monitoring routes in the different zones, 
applying both methods. Following the proposed method, the travel distance was reduced 
by 28.95 km, 33.98 km and 18.96 km, in zones C1, C2 and C3, respectively, compared to 
the distances obtained with the Júnez-Ferreira method. An average reduction of 27.63 km 
was achieved; furthermore, more wells are visited when the proposed method is applied, 
which offers the advantage of collecting a higher number of field data with a lower cost. 

Considering a vehicle performance of 6 km/L and a fuel cost of 0.99 USD per liter, 
visiting the 26 wells selected with the proposed method represents a total cost in trans-
portation of 70.15 USD. This increases up to 83.66 USD for visiting the 21 wells selected 
without optimal routing. The total travel distance for visiting the 21 wells in three working 
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days was 507.07 km, whereas 425.18 km was necessary to visit the 26 wells selected with 
the proposal. 

 
Figure 7. Monitoring wells with their visit priorities for Zone C2; the monitoring route begins and 
ends at the UAZ (Base). 

 
Figure 8. Monitoring wells with their visit priorities for Zone C3; the monitoring route begins and 
ends at the UAZ (Base). 
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Figure 9. Routes and monitoring order of the wells selected when applying the Júnez-Ferreira 
method for zones C1 (a), C2 (b) and C3 (c). 

Figure 10 shows the maps of groundwater-level estimates for the complete network 
(49 wells), the network obtained with the proposed method (26 wells), and the network 
obtained using the Júnez-Ferreira method (21 wells). 

As expected, a more detailed description of the spatial configuration of groundwater 
levels within the study zone was obtained for an estimation using all the data collected 
with the complete network (Figure 10a). It also provides the lower estimated error vari-
ances. The estimation using the groundwater-level data for the wells selected with the 
proposed method (Figure 10b) reflects this flow pattern better than the estimates using 
the wells selected using the Júnez-Ferreira method (Figure 10c). Notably, the extended 
drawdown cone at the northeast area is not visible when the latter monitoring network is 
used. These differences are due to the different numbers and location of groundwater-
level data used for each case; however, in the case of the northwest and southeast areas, 
the estimates produce similar spatial configurations for this variable. 

Table 2. Comparison between the different routes for the optimal Calera aquifer monitoring net-
work, selected with the proposed and the Júnez-Ferreira methods. 

Concept Zone C1 Zone C2 Zone C3 

Methods 
Proposed 
Method 

Júnez-Ferreira 
Method 

Proposed 
Method 

Júnez-Ferreira 
Method 

Proposed 
Method 

Júnez-Ferreira 
Method 

Monitoring 
route 

UAZ (Base)-Base 
C1-47-6-2-4-48-9-
8-Base C1-UAZ 

(Base) 

UAZ (Base)-Base 
C1-6-38-4-1-46-9-

Base C1-UAZ 
(Base) 

UAZ (Base)-Base 
C2-43-18-32-13-
11-12-17-15-16-
Base C2-UAZ 

(Base) 

UAZ (Base)-Base-
43-14-11-39-15-16-
10-Base C2-UAZ 

(Base) 

UAZ (Base)-40-
31-28-29-26-27-

25-24-23-49-
UAZ (Base) 

UAZ (Base)-40-
28-29-26-49-33-

24-23-UAZ 
(Base) 

Travel dis-
tance (km) 

171.27 200.22 131.1 165.08 122.81 141.77 
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Total time 
(h) 

7.78 8.01 7.77 7.63 8.07 7.54 

Number of 
wells visi-

ted per wor-
king day 

7 6 9 7 10 8 

 
Figure 10. Groundwater-level estimations considering complete network (a), with the proposed 
method (b), and with the Júnez-Ferreira method (c). 

The estimate error variance maps for the complete network (49 wells), the network 
with the proposed method (26 wells), and the network with the Júnez-Ferreira method (21 
wells), are displayed in Figure 11a–c. The variances obtained with the estimation using 
the wells for the three cases are very similar, which shows that the monitoring networks 
selected with the optimization methods are very effective. 

The higher density of wells selected with the monitoring network obtained with the 
proposed method considerably reduces the estimation error variances in the valleys of the 
study zone (the middle strip that goes from south to north). These values are larger for 
the estimation using the data for the wells selected with the Júnez-Ferreira method. How-
ever, lower values are obtained around some wells located at peripheral areas of the esti-
mation grid. These wells were discarded with the 𝑂𝐹 of the proposed method due to the 
increase in travel distance they produced. 

 
Figure 11. Estimate error variances for groundwater levels considering: (a) the complete network, 
(b) the proposed method, and (c) the Júnez-Ferreira method. 
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Table 3 shows the statistics for the estimates using the selected monitoring networks 
for both approaches, and their comparisons with the estimates using the complete moni-
toring network. Taking the estimates using the complete monitoring network as a refer-
ence, the results show that the root of the total estimate error variance (the average stand-
ard error) increases up to 3.34 m when using the Júnez-Ferreira method and 3.35 m for the 
proposed method. The differences between both monitoring options for this value are 
negligible. 

The mean difference, the mean square difference (MSD) and the root of the MSD val-
ues reflect the advantage of using a higher number of wells in the optimal monitoring 
network (26 vs. 21). Although, for the case of 26 wells, the maximum difference is larger 
than that obtained for the other monitoring option, the minimum and maximum values 
are more balanced. 

Table 3. Statistics of the groundwater-level estimates in the Calera aquifer. 

Statistics 
Complete Monitor-

ing Network (49 
Wells) 

Selected Monitor-
ing Network with 

the Proposed 
Method (26 

Wells) 

Selected Monitor-
ing Network with 
the Júnez-Ferreira 
Method (21 Wells) 

Average standard error 
(m) 

35.01 38.36 38.35 

Mean difference (m) ------- 5.76 12.46 
Mean Square difference 

(m2) 
------ 179.76 394.68 

Root of the Mean Square 
Difference (m) 

------ 13.41 19.87 

Maximum difference (m) ------ 74.92 86.63 
Minimum difference (m) ------ −57.38 −19.83 

The maps of the differences between the groundwater-level estimates using the mon-
itoring networks of 26 (proposed method) and 21 (neglecting optimal routes) wells, and 
the estimates obtained with the complete monitoring network of 49 wells are shown in 
Figure 12a,b, respectively. A larger area with low differences (between −10 and 10 m) was 
obtained for the monitoring network selected with the proposed method (26 wells). 

For the monitoring network of 26 wells, the < −10 m differences cover a slightly larger 
area than that for the monitoring network of 21 wells. The extreme negative differences (< 
−19.83) that only exist for the monitoring network of 26 wells represent small portions of 
the southern, central and northwest. On the other hand, the areas for positive differences 
> 20 m are much larger when using the monitoring network of 21 wells. This result con-
firms the advantage of the proposed method in increasing the amount of collected data 
(five additional wells) to obtain a better spatial configuration of the groundwater levels. 

These differences are associated with the coverage achieved by the wells selected for 
each monitoring scheme. Negative differences reflect that at least one well with a higher 
value than its neighbors was not included in the monitoring network (for example, well 1 
is absent in Figure 12a). Conversely, positive values indicate that at least one well with a 
lower value than its neighbors was not included in the monitoring network (for example, 
well 31 in Figure 12b). 
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Figure 12. Differences between the groundwater-level estimates using the complete monitoring net-
work: (a) the network selected with proposed method, and (b) the network selected with the Júnez-
Ferreira method. 

4. Conclusions 
The proposed method allows for the design of groundwater-level monitoring net-

works based simultaneously on spatial estimation and the routes to follow for data collec-
tion; it considers the contribution of the available wells in the reduction in the total esti-
mate error variance over a study zone, while looking for the minimum travel distance, 
thus reducing monitoring costs. This method could be adapted to the design of ground-
water quality monitoring networks by simultaneously using the covariance matrices of 
the groundwater quality parameters considered within the optimization procedure. 

The obtained results show that a monitoring network designed with the proposed 
method considerably reduces the monitoring costs (visiting 26 wells in three working 
days) without a significant loss of the amount of information that is obtained with respect 
to the reference monitoring network (49 wells). Neglecting the travel distances in the op-
timization procedure leads to the selection of only 21 wells to be monitored over three 
working days, which implies that the proposal allows more field data to be obtained at 
the same cost. Furthermore, the higher number of sampling wells selected with the pro-
posal produces a spatial configuration of groundwater levels that are more similar to those 
obtained with the reference monitoring network. 

An important feature of the proposed method is its additive nature, which means 
that new wells can be incorporated into the monitoring network if the budget increases 
without eliminating the previously selected monitoring sites, favoring the continuity of 
the groundwater-level time series that is collected with them. 

For the case study, it is assumed that the routes to follow correspond to the same type 
of communication route, in which a constant speed of the vehicle can be maintained dur-
ing travel. Additionally, the same sampling time was considered for each visited well. 
Future works to improve the method could integrate specific aspects that produce varia-
tions in monitoring conditions, such as traveling on dirt roads, highways, ease of measur-
ing, well depth, dead times, lunch time, etc. Another interesting option is the inclusion of 
the temporal component in the objective function, using time series information. 

The monitoring network selected with the proposal very slightly increases the total 
estimate error variance compared to the case when the travel distances are neglected dur-
ing the optimization, but produces estimates that are closer to the complete monitoring 
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network. Additionally, the efficiency in the travel distance allows more wells to be visited 
in a working day, which implies a greater amount of direct (field) information at the same 
cost. 

Future work should be oriented toward the development of a user-friendly software 
that integrates the different routines that are necessary for the optimization of the moni-
toring network, including a procedure to automatically generate the route matrix from a 
map with the different roads connecting the tested monitoring sites. 
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Appendix A 

Table A1. Location of the monitoring network and groundwater levels for the Calera aquifer 
(2017). 

Well Number Well Name UTM X UTM Y Water Level 
(masl) 

1 N-5 722,350.43 2,566,447.24 2193.86 
2 N-6 727,635.07 2,569,112.14 2071.40 
3 N-6′ 729,084.62 2,567,334.11 2049.09 
4 S/N 734,491.45 2,567,581.45 2046.78 
5 N-9 726,766.72 2,565,433.71 2082.56 
6 N-11 726,794.37 2,564,738.64 2179.70 
7 N-12 733,473.68 2,561,912.06 2015.18 
8 N-13 740,173.85 2,561,855.34 2042.99 
9 N-14 745,805.00 2,562,445.68 2061.46 

10 N-16 725,781.34 2,556,285.20 2045.21 
11 N-19 741,341.57 2,557,223.85 2033.42 
12 N-22 728,225.67 2,553,180.33 2021.23 
13 N-23 740,152.13 2,551,689.60 2018.38 
14 N-24 745,389.30 2,550,835.77 2014.00 
15 N-25 725,838.04 2,546,666.41 2150.80 
16 N-26 732,058.87 2,544,305.51 2146.40 
17 N-27 736,679.40 2546,528.74 2046.46 
18 N-28 741,053.95 2,546,610.64 2058.50 
19 N-30 A 746,475.09 2,548,025.16 2034.61 
20 N-30 C 734,125.96 2,543,297.39 2120.39 
21 N-31 734,994.10 2,541,532.17 2103.91 
22 N-33 739,935.57 2,542,607.28 2089.70 
23 SUST. 725,659.20 2,536,936.50 2088.52 
24 N-35′ 735,102.00 2,534,064.90 2100.25 
25 N-37 737,337.29 2,536,060.23 2103.44 
26 S/N 735,770.90 2,529,933.11 2183.58 
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27 S/N 739,406.11 2,533,240.06 2099.34 
28 N-41 738,287.73 2,524,768.56 2155.56 
29 N-42 732,387.85 2,520,864.15 2141.80 
30 S/N 739,167.82 2,521,061.75 2135.57 
31 C.P 4 734,931.70 2,523,728.33 2088.81 
32 SN RAFAEL 741,669.08 2,551,221.58 2010.96 
33 S/N 741,082.87 2,537,692.27 2080.30 
34 S/N 743,570.81 2,548,288.58 2039.11 
35 S/N 743,557.28 2,554,902.28 2037.05 
36 TALANCON 739,107.71 2,559,477.68 2037.95 
37 N-15 741,398.13 2,527,950.69 2138.17 
38 VIVERO 736,282.30 2,570,173.41 2030.83 
39 S/N 736,794.51 2,548,441.69 2070.49 
40 S/N 739,850.11 2,518,333.57 2128.86 
41 S/N 734,796.27 2,527,680.68 2073.10 
42 S/N 737,430.66 2,519,920.46 2160.77 
43 S/N 738,393.26 2,541,570.25 2113.20 
44 S/N 738,409.40 2,549,529.02 2046.07 
45 S/N 736,172.37 2,559,163.21 1988.44 
46 S/N 734,674.42 2,560,296.74 2011.40 
47 S/N 736,874.70 2,562,436.55 2011.59 
48 S/N 731,673.45 2,564,949.14 2038.76 
49 JESUS LOPEZ 744,739.46 2,529,823.22 2272.53 
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