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Abstract: The Latent Heat Flux (LE) is an important component of surface water heat transfer and 

hydrological cycle, and monitoring it is of great value for water resource management and crop 

water demand estimation. The Heihe River Basin has complex topography, which ensures better 

variable control in LE analysis. In this paper, the time series analysis and statistics of LE under 

different underlying surface conditions in summer were carried out by using the eddy correlation 

observation data in the Heihe River Basin, and the regression factors were analyzed. The results 

show that when the underlying surface types are greatly different, there are obvious differences in 

the daily distribution of LE, the daily variation trend of LE and the influencing factors. The range of 

diurnal distribution of LE in dune, Gobi and desert from −50 W/m2 to 100 W/m2. The diurnal LE 

distribution of vegetable fields, cornfields and wetlands were about 55% concentrated between −50 

W/m2 and 100 W/m2. Temperature and carbon dioxide concentration (CO2) are the dominant fac-

tors affecting latent heat flux. Further analysis of temperature and CO2 is carried out by stepwise 

regression analysis, and multiple regression models are established. In terms of correlation and 

confidence, the results are better than the single factor fitting, which can better reflect the syner-

gistic effect of temperature and CO2 on LE. 
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1. Introduction 

Latent heat flux (LE), as the energy expression of Evapotranspiration (ET), is an 

important link and key component of surface water heat transfer, hydrologic prediction, 

and hydrological cycle [1–5]. Latent heat of evapotranspiration is a primary process 

driving the energy and water exchange between the hydrosphere, atmosphere, and bi-

osphere [6,7]. It is an important element of the hydrological cycle in reflecting the max-

imum water demand of the environment to maintain water balance [8,9]. The water re-

quirement of crops is reflected by evapotranspiration, but it is difficult to accurately 

measure evapotranspiration, and the LE can better reflect the evapotranspiration. From 

the perspective of meteorological and environmental factors, the climate and environ-

mental factors affecting LE typically include net radiation, relative humidity, air tem-

perature, and leaf area index. 

Although many scholars and researchers have studied and discussed the response 

relationship between LE and its drivers on the space-time scale, the conclusions are not 

completely consistent, especially when sorting the sensitivity of meteorological factors 

[10–12]. It indicates that when studying the response relationship between LE and its 

drivers, the control of climate, environment and other variables has a certain 

one-sidedness. In previous studies, there was often only a single underlying surface, or 
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there was a large spatial difference between various underlying surfaces, which made the 

analysis results subject to geographical space and it was difficult to form a robust inves-

tigation. Therefore, it is necessary to carry out further work to systematically study the 

characteristics of the latent heat flux of different underlying surface types and their rela-

tionship with the drivers. 

The estimation and measurement methods of LE have always been a hot topic for 

many scholars. Commonly used evapotranspiration measurement methods include the 

Bowen ratio energy balance method, the remote sensing method, the in situ measure-

ment method, the hydrologic method and the eddy correlation method [13–19]. The 

Bowen ratio-energy balance method has limitations in accuracy under complex geo-

morphological conditions. The hydrology method, based on the principle of water bal-

ance, measures the total evapotranspiration in the study area. The method has the defects 

of a large time scale (water balance method) or a small spatial scale (vaporation method) 

[20,21]. Remote sensing is suitable for large-scale long-term observations, but it is not 

continuous due to the limitation of satellite operating cycle and short transit time. The 

applicable conditions, theoretical basis and measurement scale of different methods are 

various. Eddy correlation has the advantages of fewer theoretical assumptions, high ac-

curacy, short measurement period, and high temporal resolution, which can obtain a 

large amount of evapotranspiration and environmental change information in a short 

time. [22]. The method provides a direct verification for the material-energy exchange 

model between soil-vegetation atmosphere, which is widely used at present. The eddy 

covariance (EC) system of the “Joint Experiment on Integrated Remote Sensing Observa-

tion of Eco-Hydrological Processes in the Heihe River Basin” [23] is applied in the study. 

The complex terrain of the Heihe River Basin, including sand dunes, Gobi, vegetable 

fields, corn fields, and deserts, ensures variable control during LE analysis. Based on the 

EC system observation data of the “Integrated Remote Sensing Observation Joint Ex-

periment of Eco-Hydrological Processes in the Heihe River Basin”, this paper focuses on 

typical desert oases landform characteristics in the middle reaches of the Heihe River 

[14], and from the perspectives of LE daily frequency distribution, LE daily variation 

curve and correlation analysis, etc. The characteristics of latent heat flux and the response 

relationship of its influencing factors are discussed when considering spatio-temporal 

variation and land cover type. 

2. Materials and Methods 

2.1. Research Area 

The research area is located in Zhangye City, Gansu Province, which is the core oasis 

in the middle reaches of the Heihe River Basin (HRB) (100.104~100.853° E, 38.549~39.399° 

N). The climate type is semi-arid and arid in the middle temperate zone, with an average 

altitude of 1474 m. The annual average temperature is 7.3 °C, the monthly average 

maximum temperature is 29.3 °C (July), and the monthly average minimum temperature 

is −16.2 °C (January). The average annual precipitation is 130.44 mm, the average annual 

precipitation days are 51.6 days, and the average monthly precipitation days are 9.4 days 

(July). The area receives plenty of sunshine, evaporation is strong, the annual average 

evaporation is 2000~3500 mm, and the temperature difference between day and night is 

very large. 

In this paper, six stations were selected. Daman superstation is located in the Daman 

irrigation district, Zhangye city, Gansu province. The underside of encryption station 1 is 

vegetable field, the underside of encryption station 12 is cornfield, and the Huazhaizi 

station is a typical desert subsurface with sparse red sand and pearl sand growing on the 

surface. In the Bajitan station, the surface is mainly coarse sand and gravel, the surface is 

short of water and plants are scarce, and only some drought-tolerant plants such as 

tamarisk and camel thorn grow. The Shenshawo station is a barren area mainly covered 

by sand with rare plants and dry air; in the Wetland station, the underlying surface is 
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wetland with adequate moisture and dense vegetation. The information of these stations 

in this paper was collected from a large station in the Heihe Hydrological Remote Sens-

ing Experiment, in which vegetable fields and cornfields are subsite stations of the 

Daman Super Station. These sites are complete and informative and suitable for research. 

The specific information and distribution of sites in the research area is shown in Table 1 

and Figure 1. The land cover of the Heihe River Basin is shown in Figure 2 [24]. 

Table 1. Site name and related information of the research area. 

Site Name Type of Underlay Surface Altitude(m) Data Start and End Time 

station 1 Vegetable ground 1552.8 5 June – 31 August 

station 12 Cornfield 1559.3 1 June – 31 August 31 

Shenshawo station Dune 1562.6 1 June – 31 August (data unavailable on August 2) 

Bajitan station Gobi 1731.0 7 June – 31 August 

Huazhaizi station Desert 1549.4 2 June – 30 August 

Wetland station Wetland 1460.0 26th June to 30th August 

 

Figure 1. Geographical location and site distribution map of the research area. 
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Figure 2. Land cover map of the Heihe River Basin. 
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2.2. Instrument and Test Content 

An imaging spectrometer, a light detection and ranging (lidar) system, a 

charge-coupled device (CCD), a multi-angle thermal infrared camera, and a microwave 

radiometer were used in the test. In the whole HRB, the ordinary automatic meteorolog-

ical station (AMS) measures the radiation, precipitation, air pressure, wind speed and 

direction, air temperature, humidity, soil moisture and temperature profiles, and soil 

heat flux. The superstation was outfitted with an EC system, a Bowen ration energy 

balance system, an LAS (large aperture scintillometer), and a lysimeter (optional) to 

measure fluxes at multiple scales. In addition, the standard observations performed in 

an ordinary station, photosynthetically active radiation (PAR) and land surface temper-

ature (LST) are measured at a superstation. Detailed instrument introduction can be 

found in Li’s article [25,26]. 

2.3. Research Data 

The data needed in this paper are from the thematic test of evapotranspiration over 

non-uniform surface in the combined experiment of integrated remote sensing observa-

tion of ecohydrological processes in the Heihe River Basin (referred to as “Joint telemetry 

Experimental Study in the Heihe River Basin”, HiWATER [23,26,27]). Six stations were 

selected for this study, namely, Bajitan station, Huazhaizi station, Shenshawo station, 

wetland station in the middle reaches of the Heihe River (Gobi, desert, dune and wetland 

will be used in the following) and two encrypted stations 1 and 12 in the Daman irriga-

tion area (vegetable field and cornfield will be used in the following). EC observation 

data of horizontal wind velocity, air temperature, water vapor density, carbon dioxide 

concentration and latent heat flux were selected and obtained from Heihe Plan Data 

Management Center Network (http://westdc.westgis.ac.cn accessed on: 1 September 

2022). The data averaging interval was 30 min, among which the data before June 25 in 

wetland station and August 2 in Bajitan Station were missing. The start and end times of 

research area sites and data are shown in Table 1. 

2.4. Data Processing 

There are a small number of missing values in the EC observations. The 

interpolation data is mainly LE, and the missing part is mainly concentrated in the early 

and late time periods. The trend of LE in these two time periods is not obvious, and it has 

no influence on the analysis. Data is complemented by linear interpolation. 

Stepwise regression analyses considered the contribution of independent variables 

and introduced screening results in descending order. Model identification only needs to 

optimize the coefficients of each input, and then uses AIC (Akaike information criterion) 

criterion to realize the automatic optimization of parameters, so it has been widely used 

[28]. 

In this paper, correlation coefficients (R) and stepwise regression methods need to 

be applied in the analysis of LE and its drivers. Related introductions are as follows: 

The R has been widely used to measure the average discrepancy between models, 

though they are oversensitive to high extreme values (outliers) [29,30]. R is defined as: 
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(1)

Akaike’s information criterion (AIC) is based on the information-theoretic ap-

proaches [31]. It is a standard for assessing the complexity of statistical models and 

measuring the goodness of statistical model fitting. When performing model training, the 

complexity of the model tends to increase with increased amount of data. At the same 
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time, it is difficult to avoid over-fitting problems. In order to avoid over-fitting of the 

model, AIC and BIC (Bayesian Information Criterion) methods are often used. The pen-

alty term of the BIC method is larger than the AIC method, so that in the case of a large 

sample size, a more desirable result is obtained [32]. When we use AIC to evaluate the 

model fit, we should give priority to models with the lowest AIC value to avoid over fit-

ting [33]. 

In the general case, AIC can be expressed as: 

2 2 ln( )AIC k L   (2)

where k is the number of parameters and L is the likelihood function. 

The model’s error is subject to an independent normal distribution: 

2 ln( / )AIC k n RSS n   (3)

where n is observation number and RSS (Residual Sum of Squares) is the sum of the 

residuals. 

In view of the multiple impact factors often involved in multiple regression analysis, 

the computing cost can be very high to obtain the full set of parameters [34]. Using 

stepwise regression is a robust method [35]. The stepwise regression model in accordance 

with the quadratic response surface model is given as: 

2
0

1 1 1

( )
n n n

i i ii i ji j i
i i j

y x a a x a x a x x
  

     
 

(4)

The stepwise regression method introduces the significant independent variables 

into the regression equation according to the order of the independent variables in the 

model. It re-examines the significance level test at the pre-specified F or AIC level and 

eliminates variables that are not significantly affected by the dependent variable, until 

the variables are not able to make the model better by reintroducing the independent 

variables, that is, completing the regression process and obtaining the optimal regression 

equation [34,35]. According to Equation (4), the objects of stepwise regression can be 

linear or nonlinear relations among factors, and the interaction between factors can be 

considered. Calculation flow chart is shown in Figure 3. 

 

Figure 3. Stepwise regression calculation flow chart. 
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3. Results 

3.1. Analysis of LE Variation Trend under Different Underlying Surface Types 

LE data of June, July and August 2012 are selected to draw LE time series diagram 

according to different underlying surface types. As can be seen from Figure 3, the current 

underlying surface conditions (soil moisture content and vegetation coverage) are simi-

lar, and LE has a similar trend over time; in combination with the historical weather in 

Zhangye city in June, July and August 2012, the fluctuation of LE trend line is further 

obtained, which is roughly consistent with the sunny and rainy changes in the weather. 

In this paper, with sunny days taken as a control variable, station data (vertical line 

marker) with weather conditions as sunny days within three months were selected to 

further analyze the characteristics and distribution rules of LE days. 

Taking sunny days as a control condition and according to different sites, we se-

lected 9-day LE data of 8 June, 19 June, 29 June, 9 July, 13 July, 31 July, 2 August, 21 

August, and  27 August 2012, and respectively mapped the nine days of LE intraday 

frequency distribution histogram. LE days statistical results are also given. From Figure 

4 and Table 2, it can be seen that the peak value and standard deviation of each site are 

significantly different, and the difference is closely related to the type of underlying sur-

face. The peak value of LE was 661.3 W/m2 for vegetable land, and the minimum value 

was 201.2 W/m2 for dune. The maximum LE standard deviation is cornfield, with a val-

ue of 180.8W/m2; the minimum is dune, with a value of 39.3 W/m2. The standard devia-

tion can reflect the degree of dispersion of the research object, and the kurtosis can re-

flect the steepness and slowness of distribution pattern, that is, the distribution of LE 

value in vegetable field, cornfield and wetland is relatively discrete and slow, while that 

in Gobi, dune and desert is relatively concentrated and steep. At the same time, the cu-

mulative values of Gobi, dune and desert on the −50~100 W/m2 interval are 92.4%, 89.5% 

and 94.1%, respectively, and the cumulative values of vegetable land, corn land and 

wetland on the −50~100 W/m2 interval are 53.8%, 54% and 57.7%, respectively, which can 

also reflect that the dispersion degree and standard deviation of diurnal distribution of 

LE are consistent. 

Although the underlying surface conditions of each site are different, they can be 

roughly divided into two types by analyzing the above data comprehensively: dry (Go-

bi, dune, desert) and wet (vegetable, corn, and wetland). LE value of underlying surface 

is concentrated in the range of −50~100 W/m2 under the dry environment. Under the 

humid environment of the underlying surface, the LE value is also concentrated in 

−50~100 W/m2, but with a high degree of dispersion, 42.2~46.2% of LE value is distrib-

uted over 100 W/m2. Evapotranspiration requires three driving factors: energy supply, 

adequate vegetation water supply, high summer temperatures and surface temperature. 

At the same time, the water vapor flowing upward diffusion and evaporation quantity 

increase [36], relatively humid environment, vegetation coverage in the dry environ-

ment, lack of soil moisture, plant transpiration and soil evaporation lead to lack of cor-

responding water supply, and the evaporation quantity is very low [37]. Therefore, 

compared with the dry-land environment, the latent heat flux of wetland environment 

has a large change range, which can also be confirmed in the results of the study [38]. 
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Figure 4. Frequency distribution within LE days under different underlying surface types. 

Table 2. LE statistical results of 9 days were synthesized under different types of underlying sur-

faces. 

Site Name 

Standard 

Deviation 

/(W/m2) 

Average 

/(W/m2) 

Maximum 

/(W/m2) 

Minimum 

/(W/m2) 
Kurtosis 

Partial  

Degrees 

station 1 162.35 154.12 661.32 −67.13 −0.28 0.91 

station 12 180.83 164.91 627.27 −75.64 −0.69 0.23 

Bajitan station 40.98 29.6 205.03 −56.5 2.99 1.6 

Huazhaizi station 56.45 46.26 292.91 −71.79 2.34 1.55 

Shenshawo  

station 
39.28 29.90 201.23 −95.75 2.68 1.11 

Wetland station 168.83 152.44 636.53 −23.52 −0.4 0.13 

3.2. Analysis of Intraday Variation Trend of LE on Different Underlying Surfaces 

For different sites, the variation trend of the same site within LE days at different 

times was analyzed. Figure 5 shows that the variation trend of different sites within LE 

days was mostly the same. According to the climatic conditions at different times in June, 

July and August, the lack of EC observation data is based on sunny days and less data 

loss.  29 June, 13 July, and 27 August were selected as typical days to further study the 

variation trend of LE intraday at different sites on the same time scale (see Figure 6 for 

details). 

On 29 June, the LE intraday trend lines of all stations were significantly affected by 

the underlying surface. At 9:30, the LE intraday trend lines of all stations showed scat-

tered changes. At this time, the LE intraday trend lines of vegetable fields, cornfields and 

wetlands continued to rise. At 12:00, vegetable and cornfields showed maximum value, 

and then the upward trend slowed down. The minimum value appeared at 12:30 and 

13:00, respectively. From 12:00 to 15:00, the overall horizontal vibration of vegetable field 

and cornfield presented a multi-peak situation. The intraday trend line of wetland was 

slightly different from that of cornfield and wetland, reaching the maximum at 13:00, and 

then showing a tendency of oscillation and decline. Within LE days, the trend lines of 

Gobi, desert and dune were relatively flat. The internal trend line of the dune is the gen-

tlest, with the lowest peak. There was no significant change throughout the day, and the 

desert was between the Gobi and the dune. The multi-peak trend of LE intraday trend 

line in vegetable and corn fields was mainly due to the obvious phenomenon of midday 

depression of crop, when vegetation stomata was closed and transpiration was weak-

ened. From 15:00 to 16:00, solar radiation decreased, leaf water potential gradually rose, 

and vegetation transpiration recovered, which agrees with the law of evapotranspiration 

rate change previously reported in the literature [39]. 

Ju
n 

1

Ju
n 

4

Ju
n 

7

Ju
n 

10

Ju
n 

13

Ju
n 

16

Ju
n 

19

Ju
n 

22

Ju
n 

25

Ju
n 

28

Ju
l 1

Ju
l 4

Ju
l 7

Ju
l 1

0

Ju
l 1

3

Ju
l 1

6

Ju
l 1

9

Ju
l 2

2

Ju
l 2

5

Ju
l 2

8

Ju
l 3

1

A
ug

 3

A
ug

 6

A
ug

 9

A
ug

 1
2

A
ug

 1
5

A
ug

 1
8

A
ug

 2
1

A
ug

 2
4

A
ug

 2
7

A
ug

 3
0

0

50

100

150

200

250

 Bajitan station

 Huazhaizi station

 Shenshawo station

L
E

/(
W
m

-2
)

Time



Water 2022, 14, 3514 9 of 19 
 

 

  

  

 

 

Figure 5. Histogram of LE frequency distribution for 9 days under different underlying surface 

types. 

On July 13, the patterns of LE intraday trend lines at each site were slightly different. 

The average value of LE in wetlands, vegetable fields and cornfields were at the highest 

level in three months, reaching the peak value within LE days from 14:00 to 15:00, and the 

peak form was a single peak. However, the average LE value of dune, desert and Gobi 

was at the lowest level in three months, and the trend line tends to be stable with little 
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fluctuation. The daily average LE value was only 33.69 W/m2, 56.16 W/m2 and 34.83 

W/m2. 

The diurnal variation trend of LE at all stations on August 27 was basically con-

sistent with that on July 13 [40]. The peak values of vegetable land, corn land and wetland 

decreased slightly from July to the lowest level in three months, among which the peak 

values of vegetable land decreased significantly [41]. 

After comprehensive analysis of the three days’ data, it is not difficult to find that 

there is little change in the daily LE trend line of each site on June 29, July 13, and August 

27, but there is significant difference in the daily LE trend of different sites compared 

with the other sites. 
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Figure 6. LE intraday variation trend of nine days under different underlying surface types. 
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3.3. Analysis of LE Drivers for Different Underlying Surface Types 

This part analyzes the correlation between LE and its driving factors under different 

underlying surface types. According to Table 3 and the correlation coefficient statistics of 

each driving factor, the LE of this site has a strong correlation with the two driving fac-

tors: temperature and CO2. According to the ranking of stations in Table 2, the correlation 

coefficients between temperature and LE were 0.72, 0.70, 0.31, 0.45, 0.39 and 0.68, respec-

tively, and the correlation was extremely significant (p < 0.01). The correlation coefficients 

of CO2 and LE were 0.64, 0.64, 0.28, 0.34, 0.18, 0.65, respectively, and the correlation was 

very significant (p < 0.01). The correlation between water vapor density and LE was pos-

itive or negative, depending on the site. From the regression curve of Figure 7, it is con-

cluded that in the case of abundant soil moisture, LE and temperature rise rapidly 

through exponential relationship, and the rising speed is significantly greater than when 

soil moisture is missing. LE and CO2 have similar trends with temperature [42]. It is 

noteworthy that the underlying surface of the sand dune is the Shenshawo station, and 

the increase of LE with CO2 does not immediately show a downward trend, but has a 

turning point, which is obviously different from the monotonous change of CO2 on the 

LE. In this paper, two drivers (air temperature and CO2) with high correlation at each site 

were further selected for stepwise regression analysis, and multiple regression equations 

were established, as shown in Table 4. 
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Figure 7. LE intraday variation trend under different pad types on June 29, July 13 and August 27. 

Table 3. The correlation coefficients of LE and influencing factors under different underlying sur-

face types. 

Impact Factor 

Site Name 

Wind Speed 

/(m/s) 

Temperature 

/℃ 

Water Vapor 

Density/(g/m3) 

Carbon Di-

ox-

ide/(mg/m3) 

station 1 0.38 ** 0.72 ** −0.12 −0.64 ** 

station 12 0.38 ** 0.70 ** −0.13 ** −0.64 ** 

Bajitan station 0.20 ** 0.31 ** 0.16 ** −0.28 ** 

Huazhaizi station 0.22 ** 0.45 ** 0.10 * −0.34 ** 

Shenshawo station 0.08 0.39 ** 0.18 0.18 ** 

Wetland station 0.13 * 0.68 ** −0.14 ** −0.65 ** 

Note: ** and * passed the significance test of 0.05 and 0.1 respectively. 

Table 4. The multiple regression analysis of temperature and CO2 on LE under different underly-

ing surface types. 

Site Name. Station 1 Station 12 Wetland Station 

Fitting coefficient 

Intercept item 519.66 −58.56 245.80 ** 

T 49.57 ** 51.96 ** -- 

CO2 −2.39 −0.83 0.002 ** 

T&CO2 −0.07 ** −0.07 ** -- 

(CO2)2 0.002 ** 0.001 * 0.004 ** 

(T)2 -- -- 0.20 ** 

R2 0.59 0.56 0.51 

Note: * indicates that the relationship is significant at the level of 0.1 by T-test.** indicates that the 

relationship is significant at the level of 0.05 by T-test. T & CO2 represents the interaction between 

temperature and CO2. -- denotes that the data is empty. 

Figure 8 shows there is a positive correlation between air temperature and LE, be-

cause the altitude of Zhangye city is relatively high and the sunlight is sufficient, and the 

solar radiation will cause the temperature rise [43,44]. The opening and closing degree of 

plant stomata is closely related to the temperature, and the solar radiation provides an 

energy supply for the transpiration of plants, so LE increases with the temperature rise. 

There is a significant negative correlation between CO2 and LE, which is because the in-

crease of CO2 concentration, the decrease of stomatal opening and stomatal conductance 

increases the resistance of water vapor transportation, leading to the decrease of tran-
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spiration and latent heat flux. The correlation between water vapor density and LE is 

positive or negative. It can be considered that under the type of underlying surface with 

high vegetation coverage of vegetable land, corn land and wetland, soil moisture content 

is high, and the size of surface LE is mainly contributed by plant transpiration. In Gobi, 

dune and desert, the influence of temperature and CO2 on LE is greatly reduced, and the 

correlation between water vapor density and LE changes from negative to positive. This 

is mainly because the underlying surface is composed of sand and gravel, and its parti-

cle size is large, and the contact area with air is also large relative to the soil, and the 

water is more likely to evaporate. At the same time, the specific heat capacity of sand is 

relatively small. This is mainly because the underlying surface is composed of sand and 

gravel. At the same time, due to the high temperature in summer, the soil water poten-

tial drops sharply, and the transpiration and respiration of plants are restricted. At this 

time, LE is mainly provided by soil evaporation. Currently, soil evaporation leads to LE 

as well. As can be seen from Table 4, the correlation and credibility of the model estab-

lished by considering the dual factors of temperature and CO2 on LE have been im-

proved, indicating that the influences of temperature and CO2 on LE are mutually com-

plementary and affect each other through the transpiration and respiration of plants. 
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Figure 8. Regression analysis curves of LE and influencing factors under different underlying sur-

face types. 

3.4. Deficiencies and Discussions 

Based on the EC observation data of the HiWATER test, this study discussed and 

analyzed the characteristics of evapotranspiration and the impact of various drivers on 

LE fluxes under different underlying surface types. Studies have shown that different 

conditions of dry (dune, desert, Gobi) and wet (vegetable land, corn land, wetland) un-

derlying surface, latent heat flux distribution and intradernal variation trend are differ-

ent, and vegetation cover has a greater impact on latent heat flux. Due to the limited ob-

servation time of this experiment, the corresponding hydrological annual frequency is 

single, which may be affected by the uneven distribution of rainfall in the year. In 

densely vegetated areas, precipitation is often more abundant. Because the plant roots 

store water, soil moisture is retained, so soil/plant moisture content is not the main rea-

son for limiting evapotranspiration. In sparsely vegetated areas, precipitation is relatively 

low After precipitation occurs, soil water is rapidly replenished, but at the same time it 

also rapidly evaporates, soil water is difficult to retain, and soil/plant water content will 

limit the generation of evapotranspiration [45]. Therefore, in this study, it was found that 

in arid regions, evapotranspiration has no obvious correlation with each influencing 

factor, and the regularity of the corresponding data is even worse, so the evapotranspi-

ration model estimation featuring vegetation cover has more potential [46–48]. Through 

the analysis of climate, environment and geomorphology, the conclusions obtained are 

more referential, which can provide a reliable reference for the study of drivers affecting 

farmland irrigation, drainage and evapotranspiration [49]. 

The drivers of latent heat flux under different underlying surface types are various, 

as well as the degree of correlation. There is not a simple linear relationship between the 

drivers and latent heat flux, and there is a turning point in the influence of CO2 on latent 

heat flux under dry conditions. The weather on the research day selected in this paper 

was sunny. The diurnal variation of ET is prone to obvious mutation within a certain 

time after the occurrence of precipitation. However, due to the great influence of rainfall 

on EC observation instrument [50], the variation trend of latent heat flux under different 

weather conditions of sunny and rainy months in June, July and August in summer was 

not  studied [27,51]. In addition, studies on latent heat flux and other meteorological 

factors have not been introduced [52]. 
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4. Conclusions 

Different underlying surface types will affect the distribution characteristics of latent 

heat flux, and the difference of latent heat flux is small under the condition of small dif-

ference in surface vegetation coverage and soil moisture. 

In the same season, the diurnal variation trend of latent heat flux under the same 

underlying surface type was not significantly different, but the diurnal variation trend of 

LE under different underlying surface types was significantly different. When soil 

moisture is sufficient, latent heat flux will be affected by the midday depression of crop, 

and the change range is large. When soil moisture is deficient, latent heat flux fluctuates 

gently. 

When the soil water supply is sufficient, the correlation between temperature and 

CO2 and latent heat flux is strong. As air temperature rises, soil evaporation and plant 

transpiration strengthen, and latent heat flux increases; CO2 concentration affects sto-

matal resistance, so that latent heat flux decreases with increasing CO2 concentration; 

when soil water supply is sufficient, the synergistic effect of temperature and CO2 has a 

great impact on latent heat flux through transpiration and respiration of plants. 

This paper only compared and analyzed the relationship between influence factors 

and latent heat flux of all stations in the middle reaches of the Heihe River in June, July, 

and August 2012, which was limited in terms of time scale. Therefore, more studies are 

needed to reveal the role and influence of evapotranspiration in surface energy trans-

mission and water circulation. 

Author Contributions: J.H. and Q.-m.L. were responsible for the original concept and writing the 

paper. W.-c.W. and Y.-r.W. processed the data and conducted the program design. D.-m.X. revised 

the manuscript and shared numerous comments and suggestions to improve the study quality. All 

authors have read and agreed to the published version of the manuscript. 

Funding: The authors are grateful to acknowledge the funding support from the Project of Key 

Science and Technology of the Henan Province (No: 202102310259; No: 202102310588), Henan 

Province University scientific and technological innovation team (No: 18IRTSTHN009). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare that they have no conflict of interest. 

References 

1. Chau, K. Use of Meta-Heuristic Techniques in Rainfall-Runoff Modelling. Water 2017, 9, 186. https://doi.org/10.3390/w9030186. 

2. Zhang, Z.; Qin, H.; Yao, L.; Liu, Y.; Jiang, Z.; Feng, Z.; Ouyang, S. Improved Multi-objective Moth-flame Optimization Algo-

rithm based on R-domination for cascade reservoirs operation. J. Hydrol. 2020, 581, 124431. 

https://doi.org/10.1016/j.jhydrol.2019.124431. 

3. Feng, F.; Li, X.; Yao, Y.; Liang, S.; Chen, J.; Zhao, X.; Jia, K.; Pintér, K.; McCaughey, J.H. An empirical orthogonal function-based 

algorithm for estimating terrestrial latent heat flux from eddy covariance, meteorological and satellite observations. PLoS ONE 

2016, 11, e0160150. https://doi.org/10.1371/journal.pone.0160150. 

4. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic 

variability. Rev. Geophys. 2012, 50, RG2005. https://doi.org/10.1029/2011RG000373. 

5. Wang, M.; Zhang, Y.; Lu, Y.; Gong, X.; Gao, L. Detection and attribution of reference evapotranspiration change (1951–2020) in 

the upper Yangtze River Basin of China. J. Water Clim. Chang. 2021, 12, 2624–2638. https://doi.org/10.2166/wcc.2021.011. 

6. Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. 

Weather. Rev. 1972, 100, 81–92. https://doi.org/10.1175/1520-0493(1972)100<0081:Otaosh>2.3.Co;2. 

7. Talsma, C.J.; Good, S.P.; Jimenez, C.; Martens, B.; Fisher, J.B.; Miralles, D.G.; McCabe, M.F.; Purdy, A.J. Partitioning of evapo-

transpiration in remote sensing-based models. Agric. For. Meteorol. 2018, 260–261, 131–143. 

https://doi.org/10.1016/j.agrformet.2018.05.010. 

8. Yin, Y.; Wu, S.; Chen, G.; Dai, E. Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. 

Appl. Climatol. 2010, 101, 19–28. https://doi.org/10.1007/s00704-009-0197-7. 

9. Moazenzadeh, R.; Mohammadi, B.; Shahaboddin, S.; Chau, K.-W. Coupling a firefly algorithm with support vector regression 

to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. 

https://doi.org/10.1080/19942060.2018.1482476. 



Water 2022, 14, 3514 18 of 19 
 

 

10. Wang, Z.; Ye, A.; Wang, L.; Liu, K.; Cheng, L. Spatial and temporal characteristics of reference evapotranspiration and its cli-

matic driving factors over China from 1979–2015. Agric. Water Manag. 2019, 213, 1096–1108. 

https://doi.org/10.1016/j.agwat.2018.12.006. 

11. Zhang, R.; Xu, X.; Liu, M.; Zhang, Y.; Xu, C.; Yi, R.; Luo, W. Comparing evapotranspiration characteristics and environmental 

controls for three agroforestry ecosystems in a subtropical humid karst area. J. Hydrol. 2018, 563, 1042–1050. 

https://doi.org/10.1016/j.jhydrol.2018.06.051. 

12. Zhang, Y.; Kang, S.; Ward, E.J.; Ding, R.; Zhang, X.; Zheng, R. Evapotranspiration components determined by sap flow and 

microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agric. Water Manag. 2011, 98, 

1207–1214. https://doi.org/10.1016/j.agwat.2011.03.006. 

13. Barraza Bernadas, V.; Grings, F.; Restrepo-Coupe, N.; Huete, A. Comparison of the performance of latent heat flux products 

over southern hemisphere forest ecosystems: Estimating latent heat flux error structure using in situ measurements and the 

triple collocation method. Int. J. Remote Sens. 2018, 39, 6300–6315. https://doi.org/10.1080/01431161.2018.1458348. 

14. Barraza, V.; Grings, F.; Franco, M.; Douna, V.; Entekhabi, D.; Restrepo-Coupe, N.; Huete, A.; Gassmann, M.; Roitberg, E. Esti-

mation of latent heat flux using satellite land surface temperature and a variational data assimilation scheme over a eucalypt 

forest savanna in Northern Australia. Agric. For. Meteorol. 2019, 268, 341–353. https://doi.org/10.1016/j.agrformet.2019.01.032. 

15. Eswar, R.; Sekhar, M.; Bhattacharya, B.K. Comparison of three remote sensing based models for the estimation of latent heat 

flux over India. Hydrol. Sci. J.-J. Des Sci. Hydrol. 2017, 62, 2705–2719. https://doi.org/10.1080/02626667.2017.1404067. 

16. Evett, S.R.; Schwartz, R.C.; Howell, T.A.; Baumhardt, R.L.; Copeland, K.S. Can weighing lysimeter ET represent surrounding 

field ET well enough to test flux station measurements of daily and sub-daily ET. Adv. Water Resour. 2012, 50, 79–90. 

https://doi.org/10.1016/j.advwatres.2012.07.023. 

17. Maltese, A.; Awada, H.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G. On the Use of the Eddy Covariance Latent Heat Flux 

and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model. Remote Sens. 2018, 10, 195. 

https://doi.org/10.3390/rs10020195. 

18. Swinbank, W.C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 

1951, 8, 135–145. https://doi.org/10.1175/1520-0469(1951)008<0135:Tmovto>2.0.Co;2. 

19. Todd, R.W.; Evett, S.R.; Howell, T.A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa 

evaluated in a semi-arid, advective environment. Agric. For. Meteorol. 2000, 103, 335–348. 

https://doi.org/10.1016/S0168-1923(00)00139-8. 

20. Wang, X.; Wang, C.; Bond-Lamberty, B. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy co-

variance, biometric and chamber methods: A global synthesis. Agric. For. Meteorol. 2017, 247, 93–103. 

https://doi.org/10.1016/j.agrformet.2017.07.023. 

21. Ghorbani, M.A.; Kazempour, R.; Chau, K.-W.; Shamshirband, S.; Ghazvinei, P.T. Forecasting pan evaporation with an inte-

grated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. 

Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. https://doi.org/10.1080/19942060.2018.1517052. 

22. Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining 

forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. 

Agric. For. Meteorol. 2001, 106, 153–168. https://doi.org/10.1016/S0168-1923(00)00199-4. 

23. Li, X.; Liu, S.; Ma, M.; Xiao, Q.; Liu, Q.; Jin, R.; Che, T.; Wang, W.; Qi, Y. HiWATER: An Integrated Remote Sensing Experiment 

on Hydrological and Ecological Processes in the Heihe River Basin. Adv. Earth Sci. 2012, 27, 481–498. 

https://doi.org/10.1007/s11783-011-0280-z. 

24. Wang, J.; Zhao, J.; Wang, X. Landscape types of the Heihe River Basin (2000). Natl. Tibet. Plateau Data Center 2013. 

https://doi.org/10.3972/heihe.031.2013.db. 

25. Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and large aperture 

scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. 

https://doi.org/10.5194/hess-15-1291-2011. 

26. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry 

Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. 

https://doi.org/10.1175/bams-d-12-00154.1. 

27. Yu, L.-P.; Huang, G.-H.; Liu, H.-J.; Wang, X.-P.; Wang, M.-Q. Experimental Investigation of Soil Evaporation and Evapotran-

spiration of Winter Wheat under Sprinkler Irrigation. Agric. Sci. China 2009, 8, 1360–1368. 

https://doi.org/10.1016/S1671-2927(08)60348-X. 

28. Wu, C.L.; Chau, K.W. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J. 

Hydrol. 2011, 399, 394–409. https://doi.org/10.1016/j.jhydrol.2011.01.017. 

29. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model vali-

dation. Water Resour. Res. 1999, 35, 233–241. https://doi.org/10.1029/1998WR900018. 

30. Wang, W.-C.; Chau, K.-W.; Cheng, C.-T.; Qiu, L. A comparison of performance of several artificial intelligence methods for 

forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. https://doi.org/10.1016/j.jhydrol.2009.06.019. 

31. Shibata, R. Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 1976, 63, 117–126. 

https://doi.org/10.1093/biomet/63.1.117. 



Water 2022, 14, 3514 19 of 19 
 

 

32. Yafune, A.; Narukawa, M.; Ishiguro, M. A Note on Sample Size Determination for Akaike Information Criterion (AIC) Ap-

proach to Clinical Data Analysis. Commun. Stat. Theory Methods 2005, 34, 2331–2343. https://doi.org/10.1080/03610920500257295. 

33. Arnold, T.W. Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. J. Wildl. Manag. 2010, 74, 

1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x. 

34. Liao, X.; Li, Q.; Yang, X.; Zhang, W.; Li, W. Multiobjective optimization for crash safety design of vehicles using stepwise re-

gression model. Struct. Multidiscip. Optim. 2008, 35, 561–569. https://doi.org/10.1007/s00158-007-0163-x. 

35. Krishnaiah, P.R. 37 Selection of variables under univariate regression models. In Handbook of Statistics; Elsevier: Amsterdam, 

The Netherlands, 1982; Volume 2, pp. 805–820. 

36. Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Net-

work: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 180072. 

https://doi.org/10.2136/vzj2018.04.0072. 

37. Zhang, D.; Liu, X.; Zhang, Q.; Liang, K.; Liu, C. Investigation of factors affecting intra-annual variability of evapotranspiration 

and streamflow under different climate conditions. J. Hydrol. 2016, 543, 759–769. https://doi.org/10.1016/j.jhydrol.2016.10.047. 

38. Harmel, R. Daren.; Patricia, K. Smith. "Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hy-

drologic and water quality modeling." Journal of Hydrology.2007, 337.3-4, 326-336. https://doi.org/10.1016/j.jhydrol.2007.01.043 

39. Reddy, K.S.; Maruthi, V.; Pankaj, P.K.; Kumar, M.; Pushpanjali; Prabhakar, M.; Reddy, A.G.K.; Reddy, K.S.; Singh, V.K.; Kora-

dia, A.K. Water Footprint Assessment of Rainfed Crops with Critical Irrigation under Different Climate Change Scenarios in 

SAT Regions. Water 2022, 14, 1206. https://doi.org/10.3390/w14081206. 

40. Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. 

Hydrol. 2011, 399, 422–433. https://doi.org/10.1016/j.jhydrol.2011.01.021. 

41. Chaouche, K.; Neppel, L.; Dieulin, C.; Pujol, N.; Ladouche, B.; Martin, E.; Salas, D.; Caballero, Y. Analyses of precipitation, 

temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geosci. 

2010, 342, 234–243. https://doi.org/10.1016/j.crte.2010.02.001. 

42. Chen, Y.; Xue, Y.; Hu, Y. How multiple factors control evapotranspiration in North America evergreen needleleaf forests. Sci. 

Total Environ. 2018, 622–623, 1217–1224. https://doi.org/10.1016/j.scitotenv.2017.12.038. 

43. Wang, K.; Wang, P.; Li, Z.; Cribb, M.; Sparrow, M. A simple method to estimate actual evapotranspiration from a combination 

of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos. 2007, 112. https://doi.org/10.1029/2006jd008351. 

44. Zhang, K.; Wang, R.Y.; Li, Q.Z.; Wang, H.L.; Zhao, H.; Yang, F.L.; Zhao, F.N.; Qi, Y. Effects of elevated CO2 concentration on 

production and water use efficiency of spring wheat in semi-arid area. Ying Yong Sheng Tai Xue Bao 2018, 29, 2959–2969. 

https://doi.org/10.13287/j.1001-9332.201809.028. 

45. Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J.; Wu, Z.; Mo, Y. Effects of film mulching on evapotranspiration, yield and water use 

efficiency of a maize field with drip irrigation in Northeastern China. Agric. Water Manag. 2018, 205, 90–99. 

https://doi.org/10.1016/j.agwat.2018.04.029. 

46. Hu, X.; Lei, H. Evapotranspiration partitioning and its interannual variability over a winter wheat-summer maize rotation 

system in the North China Plain. Agric. For. Meteorol. 2021, 310, 108635. https://doi.org/10.1016/j.agrformet.2021.108635. 

47. Liu, Y.; Luo, Y. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North 

China Plain. Agric. Water Manag. 2010, 97, 31–40. https://doi.org/10.1016/j.agwat.2009.07.003. 

48. Zhao, N.; Liu, Y.; Cai, J.; Paredes, P.; Rosa, R.D.; Pereira, L.S. Dual crop coefficient modelling applied to the winter wheat–

summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water 

Manag. 2013, 117, 93–105. https://doi.org/10.1016/j.agwat.2012.11.008. 

49. Shahrokhnia, M.H.; Sepaskhah, A.R. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a 

semi-arid region. Theor. Appl. Climatol. 2013, 114, 495–510. https://doi.org/10.1007/s00704-013-0848-6. 

50. Ding, R.; Kang, S.; Li, F.; Zhang, Y.; Tong, L.; Sun, Q. Evaluating eddy covariance method by large-scale weighing lysimeter in 

a maize field of northwest China. Agric. Water Manag. 2010, 98, 87–95. https://doi.org/10.1016/j.agwat.2010.08.001. 

51. Afzal, M.; Ragab, R. Assessment of the potential impacts of climate change on the hydrology at catchment scale: Modelling 

approach including prediction of future drought events using drought indices. Appl. Water Sci. 2020, 10, 215. 

https://doi.org/10.1007/s13201-020-01293-1. 

52. Zhang, Y.-K.; Schilling, K. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A 

field observation and analysis. J. Hydrol. 2006, 319, 328–338. https://doi.org/10.1016/j.jhydrol.2005.06.044. 

 


