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Abstract: The estuary ecosystem’s health and ecological integrity are essential for preserving en-
vironmental quality, habitats, and economic activity. The main objective of the present study is
to comprehend the wave hydrodynamic impact on the Oued Sebou estuary, which is situated in
the Kenitra region on Morocco’s north Atlantic coast in North Africa. Specifically, it focused on
the dredging effect (caused by sand extraction) on the wave motion and its impact on the estuary
environment. Different scenarios of wave-propagation simulations were carried out, varying the
significant wave height, in deep water (from 1.5 to 4 m), and considering the bathymetry before
and after two dredging cases of 2- and 4-m depths. The change of wave height at the Oued Sebou
estuary shoreline was simulated by using the third version of the Simulating Waves Nearshore Model
(SWAN). The SWAN model formulates the wave evolution in terms of a spectral energy balance on a
structured grid. The effect of dredging on the wave spreading in addition to the flow hydrodynamic
structures were extensively analyzed. According to the simulated results, the dredging activities in
the Oued Sebou estuary mainly affect the river mouth and the southern breakwater area, increasing
the potential erosive action. The areas at the northern coastal strip and near the northern breakwater
are subject to possible accumulation of sediments.

Keywords: Oued Sebou estuary; bathymetry; dredging; SWAN; wave spreading; flow hydrody-
namic structures

1. Introduction

Estuaries are one of the most important interconnections between land and sea. They
are frequently important areas for leisure and economic activities. Estuaries are also ecosys-
tems that are very susceptible to pollution and environmental disturbances and must be
adequately preserved. In estuaries, rivers and oceans interact through a number of intricate
phenomena: exchange of water of different densities, sediments, pollutants, nutrients,
organic matter, and biota. Therefore, it is necessary to have a better understanding of
the hydrodynamics of estuaries and coasts in order to effectively assess and monitor the
environment quality in these regions and to predict coastal evolution [1]. It takes appro-
priate methodologies combining theoretical analysis and modeling studies to anticipate
the hydrodynamics of estuaries and coasts, which are caused by complicated mechanisms
linking mass exchange to heat transfer processes [1].

Recently, several research studies were conducted to investigate the hydrodynamics of
estuaries [2–12]. Many driving conditions, such as river flow characteristics, tidal amplitude,
sediment properties, surges, waves, currents, and bathymetry, affect the dominant physical
processes in an estuary. The primary sources of energy input into estuaries are typically
tides, surges, and waves. Wave dispersion in shallow water is significantly impacted by the
change in bathymetry, leading to refraction, diffraction, reflection, and shoaling. Natural
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beaches and manmade coastal structures that reflect waves can have a significant impact
on the hydrodynamic structures and, consequently, the transport of sediment in front of
the reflector [13]. According to Chang and Hsu [13], the prediction of wave reflection
coefficients is still a challenging task. Before marine structures are created, wave reflection
at them is typically evaluated with physical models for engineering practice. Incident
waves are also reflected by the sloping bathymetry. The drag coefficient estimation is
complicated by the superposition of incident and reflected waves (due to the variation in
bathymetry and the existence of any natural or man-made structures). In their study, Chang
and Hsu [13] compiled many approaches for predicting the reflection coefficient of the
waves suggested in the literature and highlighted their limitations. Most of these methods,
according to the authors, are ineffective at predicting the reflection coefficients of waves
on a bed with arbitrary or natural bathymetry. Based on a linear wave shoaling theory
(without considering wave breaking), determining changes in wave height and phase
due to bathymetry variations, Chang and Hsu [13] proposed a simple frequency-domain
method for separating incident and reflected waves to account for normally incident linear
waves propagating on an inclined bed with arbitrary 2D bathymetry. According to the
authors, their method is applicable to both laboratory and field conditions predominantly
for normal shores on which deep-water waves are propagated.

In intermediate and shallow waters, waves from deep waters begin to interact with
the seabed, undergoing various transformations. These transitions are the results of many
phenomena, for example, refraction, diffraction, reflection, shoaling, breaking, and swash.
Wave prediction is of crucial importance to human activities as it provides useful informa-
tion for many coastal engineering applications such as the coastal protection, environmental
monitoring, navigation, safe port management, and good control of recreational activi-
ties in popular coastal areas [14]. Both observational and measurement data, as well as
physical and numerical models, are often used to assess extreme marine events around
the world [15]. Chi and Rong [15] confirmed that long-term in situ observations can accu-
rately estimate the sea level variation but are usually spatially limited. The authors also
indicated that many numerical models have been developed and validated to reproduce
the spatial and temporal variation of wave spreading and uncover the underlying dynam-
ics. The sea wave motion is strongly nonlinear and greatly influenced by many factors,
i.e., the seabed, wind velocity, current circulations, and induced radiation stress. The
interaction of the waves with different factors leads to complex hydrodynamic behaviors,
making their numerical simulation very uncertain, which always requires validations using
measured data.

The Simulating Waves Nearshore (SWAN) model is one of the most very popular
wind–wave models [16–27], used by many government organizations, research institutes
and consulting companies worldwide, to predict the size and forces of waves, allowing
for changes in wave propagation from deep water to the surf zone [14]. Based on SWAN
manuals and as outlined in Lin [14], the model’s primary function is to resolve the spectral
action balance equations, which represent the effects of spatial propagation, refraction,
shoaling, generation, dissipation and nonlinear wave–wave interactions, without imposing
any a priori constraints on the spectral evolution of wind waves. Hoque et al. [16] applied
the SWAN model to forecast storm wave conditions in the shallow nearshore region off the
Mackenzie Delta in the Canadian Beaufort Sea. The standard setup for the SWAN model
was implemented by the authors, comparing different methods for quantifying the wave
whitecapping dissipation. Hoque et al. [16] found that, after examining the bottom friction
effects and triad interactions in predicting shallow-water waves, the simulated results in
terms of significant wave heights and peak period are in good agreement with the observed
data. Amunugama et al. [17] analyzed wind waves with SWAN on structured mesh and
unstructured mesh during the arrival of a typhoon. After comparing the simulated results
with measured data, they confirmed that the wind–wave characteristics obtained by both
approaches (structured SWAN and unstructured SWAN) were substantially consistent
with some advantages of unstructured SWAN, especially in complex geometries. The
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authors recommended the combination of both approaches where necessary. Due to
a lack of time-series wave data, Gorman et al. [19] have used SWAN and wind data to
hindcast the generation and propagation of deep-water waves incident on the New Zealand
coast over a 20-year period (1979–1998). The SWAN model was also used to analyze
spatial and temporal variations in cold front events [20], predict waves generated by
cyclones [21], simulate wave characteristics at shorelines [22,24], and estimate wave energy
potential [23], etc.

This study aims at investigating the effect of extreme dredging depths (due to sand
extraction) on the wave characteristics in the Oued Sebou estuary, located in the Kenitra
region on the north Atlantic coast of Morocco by applying the SWAN model (Cycle III
version 41.20). The wave hydrodynamic characteristics around the river outlet were
examined. The dredging impact on wave dispersion, bottom friction velocity field, flow
agitation in the river, and stress on the structures housing the estuary and wave energy
budget (before breaking) were extensively analyzed.

2. Study Area

This study covers the Oued Sebou estuary area. The Sebou estuary is located on
the Atlantic coast in the Kenitra region of Morocco in North Africa. It is a region where
numerous coastal developments are located. Two concentrically spaced longitudinal
breakwaters channel the Oued Sebou over a distance of about 800 m, extending to a
bathymetric line of 7 m. The sandbar that prevents shipping in the canal was reduced by
the construction of the breakwaters in 1931 (Figure 1). During low tide, these structures
give the tidal current the ability (velocities and forces) to drive the sand along the shoreline
in either direction. Additionally, this river is controlled by water agencies that guarantee
its stability. The Mehdia beach (of the city side in the southern part of the river mouth)
is surrounded by a corniche composed of a wall with an average height of 1.50 m and
2 m for the northern and southern halves, respectively. In the southern and northern
beach zones, respectively, the wall’s height above sea water level (SWL) is nearly 11 and
13 m. It is also important to note that the Mehdia shoreline dune is occupied by various
manmade structures.

Dredging operations were carried out every year with an average volume of almost
460,000 m3/year. This makes it possible to ensure adequate depth, which is necessary for
the navigation of the fishing vessels and ships in direction of the Mehdia ports, located
inside the channel (Figure 1).
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3. Model Theoretical Formulation

The selected SWAN model is a spectral numerical model designed to simulate waves
evolving in coastal regions, lakes, and estuaries under defined wind, bathymetry, and
current conditions. It is based on the Energy Density Balance equation linking the advection
term to the source and sink terms. Therefore, the wave energy evolves in both geographic
and spectral space and changes its aspect due to the presence of wind at the surface, friction
with the bottom, or during the breaking of the waves. The SWAN model is a stable model
based on unconditionally stable numerical schemes (implicit schemes).

SWAN, in its third version, is in stationary mode (optionally non-stationary) and is
formulated in Cartesian or spherical coordinates. The unconditional numerical stability of
the SWAN model makes its application more effective in shallow water.

In SWAN, the waves are described with the two-dimensional spectrum of the wave
action density N,

N(x, y, σ, θ) =
E(x, y, σ, θ)

σ
(1)

where x and y are the horizontal components of geographic space, σ is the relative frequency,
θ is the wave direction, and E is the energy density.

The spectrum considered in the SWAN model is that of the wave action density N (σ,
θ) rather than the spectrum of the energy density E (σ, θ). This is because, in the presence
of currents, the wave action density is conserved while the energy density is not [27].

Because wave action propagates in both geographic and spectral space under the
influence of genesis and dissipation terms, wave characteristics are described in terms
of two-dimensional wave action density. The action density spectrum balance equation
relating the propagation term to the effects of the source and sink terms, in Cartesian
coordinates, is [28]

∂N
∂t

+
∂(Cx N)

∂x
+

∂
(
CyN

)
∂y

+
∂(Cσ N)

∂σ
+

∂(Cθ N)

∂θ
=

S
σ

. (2)
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On the left-hand side of Equation (2), the first term represents the local temporal
variation of the wave action density, the second and third terms represent the propagation
of wave action in the geographical space of velocities Cx and Cy, the fourth term represents
the shifting of the relative frequency due to variations in bathymetry (with propagation
velocity Cσ) and currents (with propagation velocity Cθ), and the fifth term represents the
refraction induced by the combined effects of depth and currents. It is worth mentioning
that Cx, Cy, Cσ, Cθ propagation velocities were obtained from linear wave theory. The
term in the right-hand side of Equation (2) represents processes that generate, dissipate, or
redistribute wave energy, and S can be expressed as [24]

S = Sin + Swc + Sbrk + Sbot + Sn14 + Sn13 , (3)

where Sin is the wind energy input. The dissipation term of wave energy is represented
by the contribution of three terms: the whitecapping Swc, bottom friction Sbot, and depth-
induced breaking Sbrk. Snl4 and Snl3 represent quadruplet interaction and triad
interactions, respectively.

Adopting a finite difference scheme for each of the five dimensions: time, geographic
space, and spectral space made the numerical implementation in SWAN effective. The
following guidelines must be followed in order to obtain the discretization adopted at
the SWAN model level for numerical computation: (i) time of a constant and identical
time step ∆t for the propagation term and the source term, (ii) geographical space of a
rectangular grid with constant spatial steps ∆x and ∆y, (iii) spectral space of a constant
directional step ∆θ and a constant relative frequency step ∆σ/σ; (iv) frequencies between a
fixed minimum maximum values of 0.04 Hz and 1 Hz, respectively, unlike the WAM and
WAVEWATCHIII models, which use dynamic values, and (v) as an option, the direction θ
can also be delimited by the minimum and maximum values θmin and θmax.

4. Model Forcing Data
4.1. Bathymetry

The bathymetry of the study area is generated by using the SHOM charts, SHOM7702
SHOM Nautical Charts—Morocco. Available online: https://www.nauticalchartsonline.
com/charts/SHOM/Morocco (accessed on 1 February 2021).

Figure 2a shows the bathymetry of the coarse grid domain, while Figure 2b illustrates
a more detailed bathymetry. The seabed zone is characterized by comparatively regular
isobaths parallel to the coastline. According to the bathymetry of the research region,
shallow water extends up to 550 m from the coast with a depth range between 2 and 3 m.
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Generally, for wave simulation, the research and commercial models use flexible grid
mesh (structured and unstructured grids). In previous studies [17,21], it was observed that
simulations with structured or unstructured grids were substantially consistent. In this
study, we use a nested regular grid with a resolution of approximately 25 m, as shown in
Figure 3. The bathymetry meshing was generated by using the BlueKenue software.
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4.2. Wind and Wave Fields

Because the accuracy of the wind field has a large impact on the predicted wave
fields [16], in this study, the main meteorological parameters were well analyzed. The
average annual values of the wind properties indicate that the study area is characterized
by: (i) a winter regime for which the dominant wind (or most frequent) mainly comes
from the eastern sector (onshore wind). During this period, the strongest wind speed
(>9 m/s) comes from the directions ranging between the southwest and west sectors, with
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an occurrence of almost 3%, (ii) a summer regime (from March to October), for which
the dominant wind comes mainly from the western sector (sea wind). In this period, the
strongest wind speed (>9 m/s) comes from the west and north sectors, with an occurrence
of almost 3%.

The meteorological data (Figure 4) were collected from the nearest weather station
to the study area. It is situated at the Kenitra airport, which is 8 km from the study
location. The collected measured data correspond to the period from 1990 to 2009. The
annual predominant wind direction is from the west and its speed range from 4 to 9 m/s
(Figure 4c).
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Figure 4 shows the annual wave rose of the significant wave heights (Figure 4a) and
their corresponding periods (Figure 4b). The dominant wave (the most frequent) comes
from the northwest (300 ◦N to 320 ◦N). Storm swells are more westerly and come from the
west–northwest sector (280 ◦N to 300 ◦N). Five significant wave heights were considered
in this study (results of 19-year data analysis), Hs0 = 1.5, 2, 2.5, 3, 3.5, and 4 m. Here, we
denote by Hs0 the significant wave height in deep water.

4.3. Tidal Current and Water Level

The average sea level in the region of Kenitra is almost equal to 2.17 m. The tide is
of semi-diurnal type with a period of 12 h 25 min. Previous studies confirmed that the
tidal current and water level significantly affect wave behaviors [24]. As a result, in this
study, the tidal forcing was also considered as SWAN mode input data l. Table 1 provides a
summary of the astronomical tide level values for the study area.

Table 1. Tidal levels in the study area.

Table Low Tide
(m)

High Tide
(m)

Tidal Range
(m)

Exceptional high water 0.50 3.90 3.40
Medium high water 0.80 3.50 2.70

M.M. (medium) 1.40 3.00 1.60
Medium still waters 1.50 2.70 1.20

4.4. Model Setup

The site of the Oued Sebou estuary is exposed to the west–northwest direction, which
is also the direction of the main dominant wave. Based on the layout of the coastline
and the regularity of the hydrodynamic solicitations, the main sediment transport occurs
along the channel profile. Monitoring of the estuary area shows that there is no significant
littoral transit.
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Regarding the primary swell direction (N300), the most exposed areas to wave ac-tion
are located downstream of the river. These locations have been given the labels A, B, C,
and D, as shown in Figure 5.
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After considering the wave and tidal conditions, we chose to proceed with a selection
of eight (8) modeling cases (see Table 2), combining the considered five significant wave
heights, indicated above, and different tide levels ranging between 0 and 3.4 m. The
selection of wave characteristics covers the most representative samples. The current
bathymetry (without dredging), the bathymetry with a dredged area of uniform extraction
depth of 2 m (with respect to the current bathymetry), and the dredged area of uniform
extraction depth of 4 m were all taken into consideration. Moreover, the SWAN model
was used with the following additional hydrodynamic parameters: energy spectral density
distribution (JONSWAP) of a spectrum width parameter at 3.3 and a low angular spread,
spectrum discretization of 36 angular sectors and 32 frequency intervals (between 4 and
20 s), the refraction and diffraction phenomena were considered, and the wind turbulence
effects were not considered.

Table 2. Specification of the hydrodynamic cases considered.

Wave Tide

Case Ref. Significant Height
Hs0 (s)

Period
Tp (m)

Level
(m)

1 4.0 12 0.0 (low tide)
2 2.0 10 0.0 (low tide)
3 1.5 8 0.0 (low tide)
4 1.5 6 0.0 (low tide)
5 4.0 12 2.2 (intermediate level)
6 2.0 10 2.2 (intermediate level)
7 1.5 8 2.2 (intermediate level)
8 4.0 12 3.8 (high tide)

5. Results and Discussion

As an illustration, Figure 6 depicts the simulated outcomes of the local significant
wave height (Hs) distribution, before (with current bathymetry), as shown in Figure 6a, and
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after dredging of 2 m, as shown in Figure 6b. The data illustrated in Figure 6 refer to case 3
(Table 2) of significant wave height in deep water Hs0 = 1.5 m and a period Tp = 8 s.
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The results show that the presence of the dredging affects the wave dispersion. There
was an increase in Hs in and at the edges of the dredging area, which can be explained
by the sudden increase in the water depth. In general, the simulations show a decrease
in the transfer of wave energy out of the extraction zone, causing a lateral energy flow
with respect to the excavation. The waves propagating across the excavation area tend
to refract toward the areas of shallow water along the edges, increasing the wave heights
(known as wave energy focusing). In terms of wave amplitude, there is a modest decrease
downstream (in the wave propagation direction) of the excavation and a slight increase
inside it and on its sides. This behavior is also confirmed with extreme waves, as shown
in Figure 7. In Figure 7, the data of Hs refer to case 8 (Table 2) of Hs0 = 4 m and a period
Tp = 12 s, simulated with and without the dredging of 2 m depth.
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To evaluate the impact of dredging on the estuary environment, two indicators have
been considered: (i) impact on sediment transport processes, where the analysis focuses on
the evolution of the bottom friction velocities, responsible for the movement of sediment
particles and proportional (velocity squared) to the erosion rate, and (ii) impact on struc-
tures, where the analysis focuses on the variation of the energy before the wave breaks, at
each concerned zone (Figure 5). For this final point, the impact of the significant heights
(squared), measured at the bathymetry of 10 m, and on each of the four selected areas
was integrated. In practice, the values of Hs

2 determined at different locations SA, SB, SC,
and SD (Figure 8), along the isobath of 10 m, were performed to indicate the wave energy
impact on the selected zones, as shown in Figure 5. A comparison was made between
relative configurations with and without dredging.
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Figure 8. Segmentation for the analysis of energy flows in the concerned zone. The contour lines
indicate the bathymetry values.

Figure 9 depicts examples of the relative bottom friction velocity (reflecting the bottom
resistance) distribution in the target area. The relative friction velocity is defined as the
difference between the simulated friction velocity with bathymetry with the dredged area
and that without dredging (current bathymetry). The data shown in Figure 9 refer to the
dredging of 2 m depth. Figure 9a shows the results of the relative friction velocity obtained
with the most frequent case (Hs0 = 1.5 m, Tp = 8 s) (see Table 2), whereas Figure 9b shows
that of the highest wave condition (Hs0 = 4 m, Tp = 12 s). Figure 9 shows the clear effects of
the dredging on the bottom friction velocity distribution.

The bottom friction velocity changes significantly as the wave gets closer to the
excavation site. Locally, around the borders of the excavation, a minor increase of bottom
resistance is noted, as demonstrated by the positive relative friction velocity values in
Figure 9. The bottom friction velocity significantly decreases inside the dredging area,
reaching maximum magnitudes (of negative values). The effect of the dredging area on the
friction velocities extends downstream of it, reaching zones C and D (Figure 5).

The variation of the bottom friction velocity due to the excavation certainly affects
the sediment transport potential [29–31] and the wave energy flux linked to the redirected
waves, particularly in zones C and D. Figure 9 indicates a clear increase in the bottom
friction velocity at the lateral sides (in the wave direction) of the excavation, which is more
pronounced with the high tide condition (Hs0 = 1.5 m, Tp = 8 s). The possibility for erosion
action increases as bottom shear stress increase. The friction velocity at the sea bottom
slightly decreases in zones C and D, which are located downstream of the extraction site.
This suggests that zones C and D are likely subject to sediment accumulation following
dredging activities. An excessive sediment buildup can cause several environmental
problems. It can reduce the seawater depth, preventing the passage of ships. It can also
lead to contamination that poses a threat to aquatic plants (Posidonia oceanica) and wildlife.
Zones A and B of the coastal area in the southern part (from breakwaters) are almost not
affected by the excavation site. Additionally, findings indicate that dredging up to 2 m
depth has no significant effect along the channel profile.
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Figure 10 shows the wave height, Hs (Figure 10a) and its relative velocity (Figure 10b)
distribution maps, with additional excavations up to 4 m deep. Figure 10a demonstrates
how waves propagating across the excavation area tend to refract toward the areas of
shallow water along the edges, increasing the wave heights (known as wave energy
focusing). This causes the amplification of Hs at the level of the river mouth, affecting
zone B (Figure 5). The increase in wave height at the mouth of the river continues to
propagate upstream along the channel. As a kind of obstruction, the excavation causes the
incident waves to converge and creates a wake region downstream of it where the wave
height decreases.

Similar behavior to the wave height distribution is shown in Figure 10b, where the
relative friction velocity oscillates near the bottom. The friction velocities increase along the
excavation’s lateral edges and decrease downstream of it. Compared to Figure 9a, dredging
up to 4 m deep has a greater impact on the estuary environment than dredging up to
2 m deep. With 4 m of dredging, the area is subject to increased erosion. Zones C and D,
however, are subject to sediment accumulation.

Estuary ecosystems are significantly impacted by wave energy. The bathymetry in
some coastal regions causes a concentration of wave energy, which raises wave height [32].
Figure 11 displays the fraction of wave relative energy percentage that corresponds to zones
A, B, C, and D (Figure 5). The energy was estimated at 10 m isobath, as shown in Figure 8,
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and the relative percentage of energy was determined as the difference between the energy
of the simulated wave with the excavation present and without it. The percentage is in
relation to the simulated wave energy without excavation. The data shown in Figure 11
relates to a 2 m-deep excavation.
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Figure 11 demonstrates that the cases 1, 5, and 8 (see Table 2), with the largest values of
Hs0 (4 m), undergo the greatest values of energy variations. The condition of the lowest sea
level (case 1), in the different zones from A to D, consistently exhibits the highest variation
in energy. The smallest variations in energy always appear in cases 4 and 7, with the lowest
values of Hs0 (1.5 m). Figure 11 further demonstrates that zone A, which has a maximum
variation value of order 4%, is the most affected zone by wave energy. The energy impact
gradually decreases in the order from zone A to zone D, which is especially prominent in
zones C and D. In general, it can be concluded that the dredging activities have a minimal
but noticeable impact on the estuary environment of Oued Sebou that is not significant.

The simulated results of wave dispersions and their hydrodynamic structures are
useful for estimating the sediment transport rates that will be an extension of this work.
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6. Conclusions

The SWAN model was used to simulate a large number of wave motions at the Kenitra
site in order to better understand the effects of dredging activities (due to sand extraction)
in the Oued Sebou estuary. In various meteorological conditions, comparisons between the
simulated results with and without dredging bathymetries were made. Eight configurations
that accurately reflected the actual hydrodynamic circumstances that characterize the study
area were tested.

The effects of the bathymetric changes, due to the sand extraction, on wave dispersion,
bottom friction velocity field, and energy budget (before breaking) were extensively analyzed.

The sharp variation of the bathymetry due to the dredging that increases water depth
causes an increase of the local significant wave height in and at the edges of the area
susceptible to sand extraction. According to the simulation results, the waves propagating
across the excavation area tend to refract toward the areas of shallow water along the
edges, increasing the wave heights (known as wave energy focusing). This causes the
amplification of Hs at the river mouth level and along the southern breakwater structure,
which is more pronounced with deeper dredging. The excavation plays the role of a kind
of obstacle, causing the incident waves to converge and creates a sort of wake region
downstream of it where the wave height decreases.

The results show that zones C (at the northern breakwater) and D (northern coastal
area) are subject to possible accumulation of sediments, whereas zones A (at the southern
breakwater) and B (river mouth) are subject to an increased potential for erosive action and
a risk of scouring processes at the southern breakwater.

Dredging activities in the Oued Sebou estuary mainly affect the river mouth (zone B)
and the southern breakwater area (zone A), which is very noticeable with dredging up to
4 m deep.

In general, it can be concluded that the dredging activities show a certain level of
impact on the estuary environment of Oued Sebou that is not very significant.

Despite the crucial role dredging plays in the nation’s economy and maritime en-
gineering management (i.e., it helps make the water navigable, removes contaminants
from seabeds and recreates damaged areas, maintains many marine infrastructures, and
many other advantages), dredging could have serious and long-lasting negative impacts on
the environment, leading to contamination that poses a threat to aquatic plants (Posidonia
oceanica) and wildlife

The simulation results, which will be validated by some measured wave characteristic
data, are useful for examining sediment variations along the estuary coastal area, a subject
we are currently working on.
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