Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography, Cathodoluminescence, SEM, and Stable Isotopes (δ18O and δ13C)
4.2. Petrography of Fluid Inclusions
4.3. Fluid Inclusion Microthermometry
4.3.1. Saddle Dolomite SD2
4.3.2. Saddle Dolomite SD3
4.3.3. Blocky Calcites (CI and CII)
4.4. U-Pb Dating of the Calcrete
5. Interpretation and Discussion
5.1. Fluid Inclusion Petrography and Composition of Fluid Flow
5.2. Thermal Re-Equilibrium, Paleotemperatures in Repeated Hydrothermal Fluids
5.3. Cold Meteoric Waters’ Origin Associated with Hydrothermal Products
5.4. Radiogenic Isotopes Data Scanning
5.4.1. Timing of Diagenetic Events Utilizing U-Pb Dating
5.4.2. Timing of Non-Diagenetic and Diagenetic Carbonate Rocks
6. Conclusions
- An early entrapment episode of fluid inclusions in HT dolomite cements exhibited a range of homogenization temperatures with (i) a first population of Th values between 83 °C and 120 °C and (ii) a second population with Th values between 130 °C and 160 °C. Both populations showed an overlap in their salinity (mainly between 15.8–25 eq. wt.% NaCl). Their salinity and Th values indicated an episodic upward migration of HT fluids related to tectonic activity;
- The late entrapment episode of fluid inclusions was associated with secondary monophasic FIs, and recorded a diluted fluid (up to 2.6 eq. wt.% NaCl) under low temperature conditions, which coincided with a calcretization of the carbonate rock;
- The early migration of high temperature fluids possibly occurred during the Late Cretaceous HT, while the second migration of low saline fluids of meteoric origin was associated with and uplifted during Pliocene times. These two periods of fluid migration provide new insight into the geology of the area studied, i.e., contributing to the relationship between fluid flow and the tectonic movements during the Zagros Orogeny;
- The two episodes are further supported by LA ICP-MS U-Pb dating. The numerical results indicated an absolute age of the pedogenic calcrete, associated with abundant alveolar textures and other microbial activities, which gave a U-Pb age of ~70 Ma which is close to the period that the Bekhme formation was deposited. This paragenetic sequence ended by the uplift of the Spelek-Sulauk areas during the Pliocene, which caused calcrete formation. In the case of the U-Pb age dating of the laminar and pisolitic textures, an age of 3.8 Ma was established for the end of the diagenetic event when this sequence was exposed to the surface.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardie, L.A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 1996, 24, 279–283. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Morad, D.; Othman, R.; Morad, S.; Ceriani, A.; Al-Aasm, I.; Kolo, K.; Spirov, P.; Proust, J.N.; Preat, A.; et al. Hydrothermal dolomitization of the Bekhme formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation. Sediment. Geol. 2016, 341, 147–162. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Préat, A. Geochemical and Dynamic Model of Repeated Hydrothermal Injections in Two Mesozoic Successions, Provençal Domain, Maritime Alps, SE-France. Minerals 2020, 10, 775. [Google Scholar] [CrossRef]
- Yoshimura, T.; Wakaki, S.; Ishikawa, T.; Gamo, T.; Araoka, D.; Ohkouchi, N.; Kawahata, H. A Systematic Assessment of Stable Sr Isotopic Compositions of Vent Fluids in Arc/Back-Arc Hydrothermal Systems: Effects of Host Rock Type, Phase Separation, and Overlying Sediment. Front. Earth Sci. 2020, 8, 595711. [Google Scholar] [CrossRef]
- Chi, G.; Larryn, W.D.; Huanzhang, L.; Jianqing, L.; Haixia, C. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Farsang, S.; Louvel, M.; Zhao, C.; Mezouar, M.; Rosa, A.D.; Widmer, R.N.; Feng, X.; Liu, J.; Redfern, S.A. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Gerdes, A.; Préat, A. In situ U-Pb dating of hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Int. Geol. Rev. 2019, 62, 2261–2279. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Préat, A. Hydrothermal Carbonate Mineralization, Calcretization, and Microbial Diagenesis Associated with Multiple Sedimentary Phases in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Geosciences 2019, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.A.; Eberli, G.P.; Swart, P.K.; Smith, L.B. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming. AAPG Bull. 2006, 90, 1803–1841. [Google Scholar] [CrossRef] [Green Version]
- Jack, S.; Cathy, H.; Hilary, C.; Ardiansyah, K. Burial dolomitization driven by modified seawater and basal aquifer-sourced brines: 562 Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Res. 2020, 33, 648–680. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, Q.; Zhang, J.; Ding, Q.; He, Z.; Zhang, X. Types of Fluid Alteration and Developing Mechanism of Deep Marine Carbonate Reservoirs. Geofluids 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Lonnee, J.; Machel, H.G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bull. 2006, 90, 1739–1761. [Google Scholar] [CrossRef]
- Bellen, V.; Dunnington, H.; Wetzel, R.; Morton, D. Lexique stratigraphique international Asie. Iraq 1959, 3C, 333. [Google Scholar]
- English, J.; Lunn, G.A.; Ferreira, L.; Yacu, G. Geologic evolution of the Iraqi Zagros, and its influence on the distribution of hydrocarbons in the Kurdistan region. AAPG Bull. 2015, 99, 231–272. [Google Scholar] [CrossRef]
- Ismail, S.; Kettanah, Y.; Chalabi, S.; Ahmed, A.; Arai, S. Petrogenesis and PGE distribution in the Al-and Cr-rich chromites of the Qalander ophiolite, northeastern Iraq: Implications for the tectonic environment of the Iraqi Zagros Suture Zone. Lithos 2014, 202, 21–36. [Google Scholar] [CrossRef]
- Ballato, P.; Uba, C.; Landgraf, A.; Strecker, M.; Sudo, M.; Stockli, D.; Friedrich, A.; Tabatabaei, S. Arabia-Eurasia continental 501 collision: Insights from late Tertiary foreland basin evolution in the Alborz Mountains, northern Iran. Geol. Soc. Am. Bull. 2011, 123, 106–131. [Google Scholar] [CrossRef] [Green Version]
- Homke, S.; Vergés, J.; Serra-Kiel, J.; Bernaola, G.; Sharp, I.; Garcés, M.; Montero-Verdú, I.; Karpuz, R.; Goodarzi, M.H. Late Cretaceous-Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geol. Soc. Am. Bull. 2009, 121, 963–978. [Google Scholar] [CrossRef]
- Muchez, P.; Marshall, J.D.; Touret, J.L.R.; Viaene, W.A. Origin and migration of palaeofluids in the Upper Visean of the Campine Basin, northern Belgium. Sedimentology 1994, 41, 133–145. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an American metasediment in central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Zircon formation versus zircon alteration—New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 2009, 261, 230–243. [Google Scholar] [CrossRef]
- Ludwig, L. Isoplot 3.7: A Geochronological Toolkit for Microsoft Excel; Special Publication 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2008; pp. 1–77. [Google Scholar]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 646. [Google Scholar]
- Goldstein, H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- Bodnar, R. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Goldstein, R.H. Petrographic and geochemical evidence for origin of paleospeleothems, New Mexico: Implications for the application of fluid inclusions to studies of diagenesis. J. Sediment. Petrol. 1990, 60, 282–292. [Google Scholar]
- Muchez, P.; Slobodnik, M. Recognition and significance of multiple fluid inclusion generations in telogenetic calcites. Min.-Alogical Mag. 1996, 60, 813–819. [Google Scholar]
- Bodnar, J. Reequilibration of fluid inclusions. In Fluid Inclusions—Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Short Course Series; Mineralogical Association of Canada: Quebec City, QC, Canada, 2003; Volume 32, pp. 213–231. [Google Scholar]
- Goldstein, H.; Reynolds, J. Systematics of fluid inclusions in diagenetic minerals. SEPM Soc. Sediment. Geol. 1994, 545, 31. [Google Scholar]
- Middleton, J.; Parnell, J.; Green, F.; Xu, G.; McSherry, M. Hot Fluid Flow Events in Atlantic Margin Basins: An Example from the Rathlin Basin; Special Publications 188; Geological Society: London, UK, 2001; pp. 91–105. [Google Scholar]
- Hiemstra, J.; Goldstein, H. Repeated Injection of Hydrothermal Fluids into Downdip Carbonates: A Diagenetic and Stratigraphic Mechanism for Localization of Reservoir Porosity, Indian Basin Field, New Mexico, USA; Special Publications 406; Geological Society: London, UK, 2015; pp. 141–177. [Google Scholar]
- Tobin, C.; Claxton, L. Multidisciplinary thermal maturity studies using vitrinite reflectance and fluid inclusion microthermom-601 etry, A new calibration of old techniques. Am. Assoc. Pet. Geol. Bull. 2000, 84, 1647–1665. [Google Scholar]
- Dewit, J.; Foubert, A.; Desouky, E.A.; Muchez, P.; Hunt, D.; Vanhaecke, F.; Swennen, R. Characteristics, genesis and parame-ters controlling the development of a large stratabound HTD body at Matienzo (Ramales Platform, Basque Cantabrian Basin, northern Spain). Mar. Pet. Geol. 2014, 55, 6–25. [Google Scholar] [CrossRef]
- Alonso-Zarza, M.; Tanner, H. Carbonates in Continental Setting: Facies, Environments and Processes, Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 225–267. [Google Scholar]
- Gradstein, M.; Ogg, G.; Schmitz, M.; Ogg, G. The Geologic Time Scale 2012; Elsevier: Boston, MA, USA, 2012; p. 1176. [Google Scholar]
- Lawa, F.A.; Koyi, H.; Ibrahim, A. Tectono-stratigraphic evolution of the NW segment of the Zagros Fold-Thrust Belt, Kurdistan, NE. J. Pet. Geol. 2012, 36, 75–96. [Google Scholar] [CrossRef]
Location | Sample | Rock Phase | Th (°C) | Tf (°C) | Tfm (°C) | Tmice (°C) | Salinity% |
---|---|---|---|---|---|---|---|
Spelek | Sp.16 | Saddle Dolomite (SD2) | 96 | −82 | - | −22.3 | 24.7 |
100 | −76 | - | −20.5 | 22.7 | |||
100 | −76 | - | −21.8 | 23.5 | |||
102 | −58 | - | −11.9 | 15.9 | |||
150 | −67 | - | −23.5 | 24.7 | |||
150 | −65 | - | −22.0 | 23.7 | |||
113 | −66 | - | −22.4 | 24 | |||
102 | −69 | - | −22.2 | 23.9 | |||
110 | −74 | - | −23.0 | 24.3 | |||
116 | −66 | - | −21.1 | 23.8 | |||
86 | −74 | - | - | - | |||
120 | −69 | - | - | - | |||
121 | - | - | - | - | |||
125 | - | - | - | - | |||
99 | - | - | - | - | |||
141 | - | - | - | - | |||
Sp.19 | Saddle Dolomite (SD2) | 96 | −71 | - | −19.7 | 22.2 | |
92 | −75 | −48.6 | −20.2 | 22.5 | |||
94 | −74 | −45.7 | −20.3 | 22.6 | |||
140 | −69 | - | −20.3 | 22.6 | |||
94 | - | - | - | - | |||
94 | - | - | - | - | |||
103 | - | - | - | - | |||
110 | - | - | - | - | |||
>150 | - | - | - | - | |||
94 | - | - | - | - | |||
116 | - | - | - | - | |||
99 | - | - | - | - | |||
99 | - | - | - | - | |||
102 | - | - | - | - | |||
95 | −75 | - | −19.3 | 21.7 | |||
86 | - | - | - | - | |||
99 | −68 | - | - | - | |||
100 | −68 | - | - | - | |||
Sulauk | Sub.2 | Late saddle dolomite (SD3) | 109 | −60 | - | −14.0 | 17.8 |
>122 | - | - | - | ||||
110 | - | - | - | ||||
98 | - | - | - | ||||
118 | −82 | - | −19.8 | 22.2 | |||
116 | −78 | - | −18.8 | 21.5 | |||
118 | −82 | - | −18.8 | 21.5 | |||
118 | −86 | - | −21.5 | 23.4 | |||
119 | −83 | - | −21.8 | 23.5 | |||
99 | - | - | - | ||||
94 | - | - | - | - | |||
96 | - | - | - | - | |||
122 | - | - | - | - | |||
98 | - | - | - | - | |||
98 | - | - | - | - | |||
99 | - | - | - | - | |||
95 | - | - | - | - | |||
109 | - | - | - | - | |||
99 | - | - | - | - | |||
104 | - | - | - | - | |||
122 | - | - | - | - | |||
96 | - | - | - | - | |||
Sua.3 and Sua.5 | Saddle dolomite (SD3) | 107 | −71 | - | −20.2 | 22.5 | |
100 | −74 | - | −20.3 | 22.6 | |||
106 | −72 | - | −20.5 | 22.7 | |||
117 | - | - | - | - | |||
108 | −62 | - | −11.8 | 15.8 | |||
108 | −62 | - | −12.2 | 16.2 | |||
118 | −62 | −39.8 | −12.2 | 16.2 | |||
109 | −62 | - | −11.9 | 15.9 | |||
96 | - | - | - | - | |||
110 | - | - | - | - | |||
86 | −63 | - | −15.2 | 18.8 | |||
97 | - | - | - | - | |||
109 | - | - | - | - | |||
110 | −60 | - | −17.8 | 20.8 | |||
113 | - | - | - | - | |||
104 | −70 | - | −20.5 | 22.7 | |||
102 | −73 | - | −20.5 | 22.7 | |||
100 | −62 | - | - | - | |||
100 | −62 | - | - | - | |||
110 | −62 | - | −13.7 | 17.5 | |||
110 | −62 | - | −13.8 | 17.6 | |||
110 | −62 | - | −13.8 | 17.6 | |||
128 | −62 | - | −16.8 | 20.1 | |||
86 | −82 | −41.1 | −21.5 | 23.4 | |||
91 | −79 | −41.8 | −21.6 | 23.4 | |||
91 | −81 | - | −21.9 | 23.6 | |||
86 | −78 | −41.4 | −16.6 | 19.9 | |||
88 | −81 | - | −20.8 | 22.9 | |||
92 | −75 | - | −17.9 | 20.9 | |||
106 | −79 | - | −20.8 | 22.9 | |||
92 | −80 | - | 23.5 | 24.7 | |||
90 | −81 | - | −17.6 | 20.7 | |||
90 | −79 | - | −22.1 | 23.8 | |||
102 | −77 | - | −22.1 | 23.8 | |||
92 | −74 | - | −18.6 | 21.5 | |||
94 | −77 | - | −16.9 | 20.2 | |||
108 | −79 | - | −22.2 | 23.8 | |||
108 | −80 | - | −22.2 | 23.8 | |||
110 | - | - | - | - | |||
103 | - | - | - | - | |||
102 | - | - | - | - | |||
88 | - | - | - | - | |||
93 | - | - | - | - | |||
92 | - | - | - | - | |||
91 | - | - | - | - | |||
90 | - | - | - | - | |||
85 | - | - | −21.6 | 23.4 | |||
92 | - | - | −21.9 | 23.6 | |||
93 | −85 | - | - | - | |||
Spelek | Sp. 10 | Blocky calcite | Monophase | −39.8 | −0.2 | 0.35 | |
−37.9 | −0.7 | 1.22 | |||||
−39.8 | −0.5 | 0.88 | |||||
−37.7 | −1.5 | 2.57 | |||||
−39.8 | −1.4 | 2.41 | |||||
−39.9 | −0.9 | 1.57 | |||||
−39.8 | −0.1 | 0.18 | |||||
−37.3 | −1.4 | 2.41 | |||||
−39.8 | −1.2 | 2.07 | |||||
−41.8 | −0.6 | 1.05 | |||||
−39.8 | −0.2 | 0.35 | |||||
−40.8 | −0.2 | 0.35 |
Grain | 206Pb a | U b | Pb b | Th b | 238U c | ±2 s | 207Pb c | ±2 s |
---|---|---|---|---|---|---|---|---|
(cps) | (ppm) | (ppm) | U | 206Pb | (%) | 206Pb | (%) | |
NIST-SRM 614 | ||||||||
NIST614 01 | 151223 | 0.81 | 2.37 | 0.96 | 1.241 | 1.8 | 0.8714 | 0.6 |
NIST614 02 | 152109 | 0.82 | 2.40 | 0.97 | 1.230 | 1.9 | 0.8711 | 0.6 |
Nist614 33 | 153445 | 0.81 | 2.37 | 0.93 | 1.240 | 1.8 | 0.8662 | 0.5 |
Nist614 34 | 150955 | 0.81 | 2.36 | 0.92 | 1.244 | 1.8 | 0.8730 | 0.6 |
Nist614 69 | 150536 | 0.81 | 2.36 | 0.93 | 1.246 | 1.9 | 0.8700 | 0.6 |
Nist614 70 | 154694 | 0.82 | 2.43 | 0.93 | 1.226 | 1.9 | 0.8705 | 0.5 |
Nist614 102 | 148233 | 0.80 | 2.34 | 0.94 | 1.237 | 1.8 | 0.8696 | 0.5 |
Nist614 103 | 149396 | 0.81 | 2.36 | 0.90 | 1.238 | 1.8 | 0.8714 | 0.6 |
Nist614 146 | 146500 | 0.80 | 2.33 | 0.96 | 1.240 | 1.9 | 0.8728 | 0.6 |
Nist614 147 | 149092 | 0.81 | 2.36 | 0.91 | 1.241 | 1.8 | 0.8693 | 0.5 |
Nist614 194 | 150754 | 0.82 | 2.42 | 0.91 | 1.234 | 1.8 | 0.8734 | 0.6 |
Nist614 193 | 144523 | 0.81 | 2.35 | 0.95 | 1.247 | 1.8 | 0.8766 | 0.6 |
Nist614 238 | 146867 | 0.81 | 2.39 | 0.88 | 1.232 | 1.8 | 0.8709 | 0.5 |
Nist614 237 | 147231 | 0.82 | 2.39 | 0.91 | 1.230 | 1.8 | 0.8651 | 0.6 |
NIST614 283 | 145071 | 0.82 | 2.40 | 0.90 | 1.237 | 1.8 | 0.8670 | 0.6 |
Nist614 282 | 144885 | 0.82 | 2.40 | 0.90 | 1.236 | 1.8 | 0.8719 | 0.6 |
NISt614 328 | 146642 | 0.84 | 2.46 | 0.87 | 1.240 | 1.9 | 0.8700 | 0.5 |
Nist614 327 | 141742 | 0.83 | 2.41 | 0.96 | 1.244 | 1.8 | 0.8751 | 0.6 |
NIST614 383 | 142172 | 0.84 | 2.45 | 0.90 | 1.243 | 1.8 | 0.8685 | 0.6 |
Nist614 382 | 141383 | 0.83 | 2.43 | 0.90 | 1.235 | 1.8 | 0.8713 | 0.6 |
NIST614 450 | 143098 | 0.86 | 2.51 | 0.92 | 1.235 | 1.8 | 0.8730 | 0.5 |
WC-1 | ||||||||
Calcite 04 | 57958 | 3.60 | 0.24 | <0.001 | 21.30 | 2.7 | 0.1674 | 4.4 |
Calcite 03 | 57442 | 3.58 | 0.23 | <0.001 | 21.11 | 2.1 | 0.1610 | 3.2 |
Calcite 30 | 53037 | 3.26 | 0.22 | <0.001 | 20.98 | 3.0 | 0.1761 | 3.1 |
Calcite 35 | 55525 | 3.55 | 0.22 | <0.001 | 21.22 | 2.3 | 0.1519 | 3.9 |
Calcite 36 | 52116 | 3.08 | 0.23 | <0.001 | 20.15 | 4.0 | 0.1999 | 10.8 |
Calcite 67 | 60273 | 3.87 | 0.24 | <0.001 | 21.96 | 2.3 | 0.1595 | 5.3 |
Calcite 68 | 50337 | 2.99 | 0.22 | <0.001 | 19.87 | 3.3 | 0.2024 | 9.1 |
Calcite 102 | 61659 | 3.57 | 0.28 | <0.001 | 19.54 | 2.7 | 0.2120 | 6.8 |
Calcite 103 | 55004 | 3.42 | 0.23 | <0.001 | 20.82 | 2.3 | 0.1874 | 5.1 |
Calcite 146 | 53194 | 3.33 | 0.24 | <0.001 | 20.20 | 4.5 | 0.1916 | 6.3 |
Calcite 147 | 47066 | 3.01 | 0.19 | <0.001 | 21.37 | 2.5 | 0.1567 | 4.9 |
Calcite 195 | 53947 | 3.66 | 0.23 | <0.001 | 21.43 | 2.6 | 0.1489 | 3.7 |
Calcite 196 | 52916 | 3.60 | 0.21 | <0.001 | 22.27 | 2.3 | 0.1489 | 3.0 |
Calcite 239 | 54507 | 3.76 | 0.22 | <0.001 | 22.09 | 2.3 | 0.1459 | 2.8 |
Calcite 240 | 56367 | 3.70 | 0.24 | <0.001 | 21.39 | 2.2 | 0.1842 | 4.3 |
Calcite 329 | 53738 | 3.63 | 0.23 | <0.001 | 21.39 | 2.5 | 0.1598 | 6.0 |
Calcite 384 | 50897 | 3.54 | 0.23 | <0.001 | 21.21 | 2.6 | 0.1747 | 7.6 |
Calcite 451 | 51850 | 3.55 | 0.25 | <0.001 | 19.98 | 4.1 | 0.1843 | 10.6 |
Calcite 285 | 46761 | 3.18 | 0.19 | <0.001 | 22.16 | 2.2 | 0.1625 | 5.2 |
Calcite 452 | 52066 | 3.76 | 0.24 | <0.001 | 21.40 | 2.4 | 0.1612 | 3.2 |
Calcitee 507 | 49116 | 3.34 | 0.24 | <0.001 | 20.37 | 2.5 | 0.2071 | 6.5 |
Calcitee 561 | 49407 | 3.65 | 0.23 | <0.001 | 21.36 | 2.1 | 0.1661 | 4.2 |
Zechstein dolomite | ||||||||
ZD 05 | 383976 | 2.17 | 3.12 | 0.02 | 2.27 | 5.5 | 0.7410 | 0.6 |
ZD 37 | 434820 | 1.59 | 3.88 | 0.02 | 1.35 | 4.4 | 0.7685 | 0.6 |
ZD 71 | 145036 | 2.03 | 1.15 | 0.02 | 5.22 | 4.2 | 0.6482 | 0.8 |
ZD 106 | 98172 | 1.87 | 0.82 | 0.03 | 6.51 | 3.2 | 0.6210 | 0.9 |
ZD 150 | 103377 | 0.88 | 0.99 | 0.05 | 2.89 | 2.6 | 0.7279 | 0.7 |
ZD 198 | 38804 | 0.90 | 0.36 | 0.07 | 6.60 | 2.4 | 0.6067 | 0.7 |
ZD 242 | 15608 | 0.07 | 0.16 | 0.12 | 1.54 | 4.2 | 0.7679 | 0.9 |
ZD 287 | 159760 | 0.86 | 1.80 | 0.08 | 1.64 | 8.4 | 0.7706 | 0.8 |
ZD 387 | 104283 | 4.59 | 0.80 | 0.01 | 13.05 | 2.9 | 0.4131 | 0.6 |
ZD 197 | 90226 | 2.21 | 0.72 | 0.02 | 8.17 | 3.9 | 0.5666 | 1.2 |
ZD 241 | 72961 | 2.16 | 0.53 | 0.02 | 10.03 | 3.9 | 0.4992 | 1.4 |
ZD 286 | 57874 | 2.37 | 0.37 | 0.02 | 13.71 | 5.2 | 0.3945 | 2.8 |
ZD 331 | 66408 | 2.24 | 0.49 | 0.00 | 10.76 | 2.4 | 0.4842 | 0.9 |
ZD 386 | 138406 | 2.21 | 1.21 | 0.02 | 5.72 | 3.0 | 0.6317 | 0.6 |
ZD 508 | 114549 | 2.26 | 1.08 | 0.02 | 5.96 | 7.7 | 0.6264 | 1.3 |
ZD 562 | 99812 | 2.70 | 0.90 | 0.02 | 8.06 | 3.5 | 0.5751 | 1.3 |
ZD 385 | 51470 | 3.65 | 0.21 | 0.00 | 22.01 | 2.3 | 0.1443 | 3.0 |
Grain | 206Pb a | U b | Pb b | Th b | 238U d | ±2 s | 207Pb d | ±2 s |
---|---|---|---|---|---|---|---|---|
(cps) | (ppm) | (ppm) | U | 206Pb | (%) | 206Pb | (%) | |
A172 | 2196 | 0.053 | 0.016 | 0.006 | 11.22 | 3.8 | 0.6343 | 2.7 |
A173 | 3861 | 0.056 | 0.032 | 0.004 | 5.425 | 3.8 | 0.712 | 2 |
A174 | 4840 | 0.081 | 0.038 | 0.002 | 6.575 | 6.6 | 0.7082 | 2.9 |
A175 | 24795 | 0.144 | 0.205 | 0.008 | 2.13 | 8.0 | 0.6771 | 2.5 |
A176 | 9157 | 0.086 | 0.074 | 0.002 | 3.473 | 3.0 | 0.6851 | 1.7 |
A177 | 7469 | 0.031 | 0.060 | 0.003 | 1.589 | 6.9 | 0.6732 | 2 |
A178 | 6009 | 0.119 | 0.052 | 0.003 | 7.261 | 3.0 | 0.7361 | 1.6 |
A179 | 18528 | 0.076 | 0.152 | 0.003 | 1.532 | 3.5 | 0.6877 | 1.3 |
A180 | 8362 | 0.125 | 0.068 | 0.004 | 5.538 | 2.9 | 0.6846 | 1.7 |
A181 | 4123 | 0.063 | 0.035 | 0.004 | 5.746 | 5.8 | 0.7558 | 2.9 |
A182 | 59898 | 0.116 | 0.120 | 0.005 | 3.603 | 9.1 | 0.6416 | 0.81 |
A183 | 1729 | 0.102 | 0.012 | 0.004 | 21.29 | 5.1 | 0.5217 | 4.2 |
A184 | 5994 | 0.126 | 0.051 | 0.002 | 7.834 | 3.0 | 0.7192 | 2.1 |
A185 | 6869 | 0.082 | 0.062 | 0.003 | 4.342 | 2.5 | 0.7749 | 1.4 |
A186 | 3399 | 0.084 | 0.029 | 0.006 | 9.108 | 3.6 | 0.7117 | 2.5 |
A187 | 3879 | 0.063 | 0.036 | 0.005 | 5.704 | 4.0 | 0.7397 | 1.9 |
A188 | 3489 | 0.040 | 0.027 | 0.009 | 5.394 | 3.8 | 0.7375 | 2.4 |
A189 | 37434 | 1.660 | 0.283 | 0.005 | 16.41 | 3.5 | 0.5762 | 0.94 |
A190 | 48897 | 1.183 | 0.408 | 0.005 | 8.138 | 4.5 | 0.6056 | 0.83 |
A191 | 38268 | 1.672 | 0.312 | 0.004 | 14.32 | 5.0 | 0.5741 | 1.2 |
A192 | 39296 | 1.507 | 0.325 | 0.004 | 12.96 | 2.7 | 0.6087 | 0.82 |
A193 | 144628 | 0.569 | 1.540 | 0.068 | 1.337 | 2.0 | 0.8671 | 0.48 |
A199 | 108990 | 1.226 | 0.956 | 0.011 | 3.767 | 5.5 | 0.6533 | 0.88 |
A200 | 21083 | 0.255 | 0.208 | 0.013 | 4.048 | 4.0 | 0.769 | 1.1 |
A201 | 44634 | 0.670 | 0.381 | 0.014 | 5.072 | 3.7 | 0.6346 | 1 |
A202 | 41916 | 0.659 | 0.376 | 0.008 | 5.342 | 3.8 | 0.6876 | 1.1 |
A203 | 35337 | 0.810 | 0.298 | 0.013 | 7.576 | 3.3 | 0.6075 | 1.2 |
A204 | 46046 | 0.826 | 0.404 | 0.008 | 5.988 | 4.8 | 0.6476 | 0.99 |
A205 | 34360 | 1.100 | 0.312 | 0.005 | 10.75 | 3.3 | 0.6875 | 1.1 |
A206 | 64312 | 0.934 | 0.547 | 0.005 | 4.934 | 7.0 | 0.6407 | 0.73 |
A207 | 58540 | 1.407 | 0.498 | 0.016 | 8.028 | 2.8 | 0.6161 | 1 |
A208 | 35535 | 1.485 | 0.299 | 0.004 | 14.12 | 2.6 | 0.6202 | 1.1 |
A209 | 43572 | 1.063 | 0.376 | 0.005 | 8.147 | 5.0 | 0.6417 | 1.1 |
A210 | 70359 | 1.446 | 0.598 | 0.007 | 6.963 | 3.0 | 0.6131 | 0.77 |
A211 | 48935 | 1.820 | 0.407 | 0.004 | 12.59 | 2.6 | 0.6147 | 0.86 |
A212 | 40903 | 1.514 | 0.349 | 0.004 | 11.88 | 6.0 | 0.6005 | 0.94 |
A213 | 42144 | 2.265 | 0.526 | 0.014 | 9.835 | 2.6 | 0.6014 | 1.6 |
A214 | 70012 | 0.943 | 0.594 | 0.010 | 4.613 | 7.7 | 0.6425 | 0.85 |
A215 | 39667 | 1.337 | 0.446 | 0.004 | 8.152 | 3.1 | 0.7238 | 0.96 |
A216 | 40872 | 1.952 | 0.346 | 0.005 | 15.83 | 6.7 | 0.6067 | 1 |
A217 | 41833 | 1.414 | 0.372 | 0.004 | 11.36 | 6.0 | 0.6665 | 1.3 |
A218 | 36369 | 1.297 | 0.323 | 0.005 | 11.84 | 4.9 | 0.6574 | 1 |
A219 | 33775 | 1.219 | 0.292 | 0.007 | 12.15 | 2.4 | 0.6402 | 1.1 |
A220 | 257672 | 2.773 | 2.255 | 0.006 | 3.604 | 2.5 | 0.6476 | 0.47 |
A221 | 10013 | 0.094 | 0.104 | 0.491 | 3.166 | 2.8 | 0.8176 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, N.; Mansurbeg, H.; Muchez, P.; Gerdes, A.; Préat, A. Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry. Water 2021, 13, 3559. https://doi.org/10.3390/w13243559
Salih N, Mansurbeg H, Muchez P, Gerdes A, Préat A. Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry. Water. 2021; 13(24):3559. https://doi.org/10.3390/w13243559
Chicago/Turabian StyleSalih, Namam, Howri Mansurbeg, Philippe Muchez, Axel Gerdes, and Alain Préat. 2021. "Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry" Water 13, no. 24: 3559. https://doi.org/10.3390/w13243559
APA StyleSalih, N., Mansurbeg, H., Muchez, P., Gerdes, A., & Préat, A. (2021). Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry. Water, 13(24), 3559. https://doi.org/10.3390/w13243559