Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Soil Sampling
2.2. Chemical Analysis
2.3. Assessment of Potential Risk and Criteria
2.3.1. Enrichment Factor (EF)
2.3.2. Contamination Factor (CF) and Nemerow Composite Index (NI)
2.3.3. Geo-Accumulation Index (Igeo)
2.3.4. Potential Ecological Risk Index (RI)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties
3.2. Horizontal Distribution Patterns of Heavy Metals
3.3. Vertical Distribution Patterns of Heavy Metals
3.4. Speciation of Heavy Metals
3.5. Assessment of Soils Pollution
3.5.1. Enrichment Factor
3.5.2. Contamination Factor and Nemerow Composite Index
3.5.3. Geo-Accumulation Index
3.5.4. Potential Ecological Risk Index
3.6. Source Identification of Heavy Metals
3.6.1. Relationships of Heavy Metal and Environmental Factors
3.6.2. Correlation of Heavy Metals
3.6.3. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radwan, E.K.; Kafafy, H.; El-Wakeel, S.T.; Shaheen, T.I.; Gad-Allah, T.A.; El-Kalliny, A.S.; El-Naggar, M.E. Remediation of Cd(II) and reactive red 195 dye in wastewater by nanosized gels of grafted carboxymethyl cellulose. Cellulose 2018, 25, 6645–6660. [Google Scholar] [CrossRef]
- Hossain, M.I.; Soliman, M.M.; El-Naggar, M.E.; Sultan, M.Z.; Kechi, A.; Abdelsalam, N.R.; Abu-Saied, M.A.; Chowdhury, M. Synthesis and characterization of Graphene Oxide-Ammonium Ferric Sulfate composite for the removal of dyes from tannery wastewater. J. Mater. Res. Technol. 2021, 12, 1715–1727. [Google Scholar] [CrossRef]
- Yang, J.C.; Wang, W.G.; Zhao, M.W.; Chen, B.; Dada, O.A.; Chu, Z.H. Spatial distribution and historical trends of heavy metals in the sediments of petroleum producing regions of the Beibu Gulf, China. Mar. Pollut. Bull. 2015, 91, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Dassenakis, M.; Scoullos, M.; Gaitis, A. Trace metals transport and behavior in the Mediterranean estuary of Acheloos river. Mar. Pollut. Bull. 1997, 34, 103–111. [Google Scholar] [CrossRef]
- Bryan, G.W.; Langston, W.J. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef]
- Cravotta, C.A., III; Brady, K.B.C. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Appl. Geochem. 2015, 62, 108–130. [Google Scholar] [CrossRef]
- Li, X.X.; Wang, X.L.; Chen, Y.D.; Yang, X.Y.; Cui, Z.J. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol. Environ. Saf. 2019, 168, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Olawoyin, R.; Oyewole, S.A.; Grayson, R.L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta. Ecotoxicol. Environ. Saf. 2012, 85, 120–130. [Google Scholar] [CrossRef]
- Cao, H.C.; Luan, Z.Q.; Wang, J.D.; Zhang, X.L. Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin Province, China. Stoch. Environ. Res. Risk Assess. 2009, 23, 57–64. [Google Scholar] [CrossRef]
- Gu, J.G.; Lin, Q.Q.; Hu, R.; Zhu, Y.P.; Zhou, Q.X. Heavy metals pollution in soil-plant and its research prospect. Chin. J. Soil Sci. 2005, 36, 128–133. [Google Scholar]
- Margin, M.; Rossier, D.; Crettaz, P.; Jolliet, O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric. Ecosyst. Environ. 2002, 93, 379–392. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients-food safety issues. Field Crops Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Cai, K.; Duan, Y.M.; Luan, W.L.; Li, Q.; Ma, Y.C. Geochemical behavior of heavy metals Pb and Hg in the farmland soil of Hebei plain. Geol. China 2016, 43, 1420–1428. [Google Scholar]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.Y.; Yu, H.C.; Ma, J.; Liu, J.N.; Chen, F. Identifying the Status of Heavy Metal Pollution of Cultivated Land for Tradeoff Spatial Fallow in China. Acta Pedol. Sin. 2021, in press. [Google Scholar]
- Song, W.; Chen, B.M.; Liu, L. Soil heavy metal pollution of cultivated land in China. Res. Soil Water Conserv. 2013, 20, 293–298. [Google Scholar]
- Dai, J.R.; Pang, X.G.; Song, J.H.; Dong, J.; Hu, X.P.; Li, X.P. A study of geochemical characteristics and ecological risk of elements in soil of urban and suburban areas of Zibo City, Shandong Province. Geol. China 2018, 45, 617–627. [Google Scholar]
- Zhang, L.; Song, F.B.; Wang, X.B. Heavy metal contamination of urban soils in China: Status and countermeasures. Ecol. Environ. 2004, 13, 258–260. [Google Scholar]
- Yao, D.; Sun, M.; Yang, F.; Jiang, H.Y.; Li, G.S.; Ding, C.X. Environmental geochemistry of heavy metals in urban soils of Qingdao City. Geol. China 2008, 35, 539–550. [Google Scholar]
- Zhao, Y.F.; Shi, X.Z.; Huang, B.; Yu, D.S.; Wang, H.J.; Sun, W.X.; Oboern, I.; Blomback, K. Spatial Distribution of Heavy Metals in Agricultural Soils of an Industry-Based Peri-Urban Area in Wuxi, China. Pedosphere 2007, 17, 44–51. [Google Scholar] [CrossRef]
- Sun, Z.H.; Xie, X.D.; Wang, P.; Hu, Y.N.; Cheng, H.F. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Cheng, H.F.; Hu, Y.N.; Luo, J.; Xu, B.; Zhao, J.F. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 2009, 165, 13–26. [Google Scholar] [CrossRef]
- Zhuang, P.; Zou, B.; Li, N.Y.; Li, Z.A. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environ. Geochem. Health 2009, 31, 707–715. [Google Scholar] [CrossRef]
- Szatyłowicza, E.; Krasowskab, M. Assessment of heavy metals leaching from fly ashes as an indicator of their agricultural use. Desalin. Water Treat. 2000, 199, 288–296. [Google Scholar] [CrossRef]
- Ye, M.H.; Yuan, X.Y.; Li, G.P.; Wan, J.; Xu, J. Distribution and ecological risk assessment of nutrient elements in surface sediments of Jianxi Watershed in northern Fujian. Environ. Chem. 2018, 37, 2481–2488. [Google Scholar]
- Ye, M.H.; Yuan, X.Y.; Zhou, R.; Wan, J.; Xu, J. Distribution and environmental significance of phosphorus forms in riparian soils and river sediments of Jianxi Basin, Fujian province. Pol. J. Environ. Stud. 2017, 26, 2331–2341. [Google Scholar] [CrossRef]
- Li, J.F.; Qu, M.K.; Huang, B.; Liu, G.; Zhao, Y.C.; Sun, W.X.; Hu, W.Y. Spatially non-stationnary relationships between cation exchange capacity and related control factors. Acta Pedol. Sin. 2017, 54, 638–646. [Google Scholar]
- Cui, X.W.; Geng, Y.; Sun, R.R.; Xie, M.; Feng, X.W.; Li, X.X.; Cui, Z.J. Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. J. Clean Prod. 2021, 295, 1–9. [Google Scholar]
- Wen, Z.; Li, J.; Wang, X.; Zhang, X.X. Fractionation and Environmental Assessment of Heavy Metals in Sewage Sludge from Municipal Wastewater Treatment Plants of Guizhou Province. China Rural. Water Hydropower 2016, 12, 67–78. [Google Scholar]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Baig, J.A. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. J. Hazard. Mater. 2008, 154, 998–1006. [Google Scholar] [CrossRef]
- José, M.N.; José, P.H.; Sergi, D. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1272–1285. [Google Scholar] [CrossRef]
- Lv, J.S.; Liu, Y.; Zhang, Z.L.; Dai, J.R.; Dai, B.; Zhu, Y.C. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediments 2015, 15, 163–178. [Google Scholar] [CrossRef]
- Fang, G.C.; Wu, Y.S.; Chang, S.Y.; Huang, S.H.; Rau, J.Y. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmos. Res. 2006, 81, 320–333. [Google Scholar] [CrossRef]
- Kartal, S.; Aydin, Z.; Tokalioglu, S. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. J. Hazard. Mater. 2006, 132, 80–89. [Google Scholar] [CrossRef]
- Dai, J.R.; Pang, X.G.; Yu, C.; Wang, C.L.; Wang, Z.H.; Hu, X.P. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong Province. Geochimica 2011, 40, 577–587. [Google Scholar]
- Sutherland, R.A. Bed sediment -associated trace metals in an Urban stream, Oahu, Hawaii. Environ. Geo. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Fan, X.T.; Jiang, Y.X.; Cui, B.; Chao, S.H.; Zhu, M.L.; Zeng, X.C.; Liu, J.W.; Cao, H.B. Selection of a reference element for enrichment factor: A case study on the pollution evaluation of heavy metals in the sediment of Yuan River. Acta Sci. Circumstantiae 2016, 36, 3795–3803. [Google Scholar]
- Szefer, P.; Glasby, G.P.; Sefer, K.; Pempkowiak, J.; Kaliszan, R. Heavy-metal pollution in superficial sediments from the southern Baltic Sea off Poland. J. Environ. Sci. Health 1996, 31, 2723–2754. [Google Scholar]
- Jiang, Y.F.; Wang, X.T.; Wu, M.H.; Sheng, G.Y.; Fu, J.M. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China. Environ. Monit. Assess. 2011, 183, 139–150. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Muller, G. Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Stoffers, P.; Glasby, G.P.; Wilson, C.J. Heavy metals pollution in Wellington harbour. N. Z. J. Mar. Fresh. 1986, 20, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Forstner, U.; Ahlf, W.; Calmano, W. Sediment quality objectives and criteria development in Germany. Water Sci. Technol. 1993, 28, 307–314. [Google Scholar] [CrossRef]
- Guo, W.H.; Liu, X.B.; Liu, Z.G.; Li, G.F. Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environ. Sci. 2010, 2, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculat ion of Heavy Metals’Toxicity Coefficient in the Evaluat ion of Potent ial Ecological Risk Index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Bao, L.R.; Deng, H.; Jia, Z.M.; Li, Y.; Dong, J.X.; Yan, M.S.; Zhang, F.L. Ecological and health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing. Geol. China 2020, 47, 1625–1636. [Google Scholar]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Adebowale, K.O. Distribution and interactions of pentachlorophenol in soils: The roles of soil iron oxides and organic matter. J. Contam. Hydrol. 2016, 191, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Mellor, A.; Bevan, J.R. Lead in the soils and stream sediments of an urban catchment in Tyneside, UK. Water Air Soil Pollut. 1999, 112, 327–348. [Google Scholar] [CrossRef]
- Han, C.M.; Wang, L.S.; Gong, Z.Q.; Xu, H.X. Chemical forms of soils heavy metal and their environmental significance. Chin. J. Ecol. 2005, 24, 1499–1502. [Google Scholar]
- He, Y.S. Pollution characteristics and ecological risk assessment of heavy metals in Haikou urban soil. Chin. J. Ecol. 2014, 33, 421–428. [Google Scholar]
- Sun, J.L.; Wu, W.J.; Zhao, R.X.; Zhang, X.X. Studies on pollution of heavy metals in soils and technology of plant remediation. J. Chang. Univ. Sci. Technol. 2003, 26, 46–48. [Google Scholar]
- Wu, X.M.; Pan, G.X. The correlation analysis between the content of heavy metals and the factor influencing the pollution of heavy metals in urban soils in Nanjing city. Acta Pedol. Sin. 2003, 40, 921–928. [Google Scholar]
- Yang, Y.G.; Pateson, E.; Campbell, C. Environment effects of heavy mental accumulation in urban soils by application of Biolog method. Geochimica 2001, 30, 459–464. [Google Scholar]
- Shibini, M.P.A.; Sujiatha, C.H. Distribution and geochemical speciation of sediment bound heavy metals in the specific zones of central Kerala, India. Environ. Nanotechnol. Monit. Manag. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J.; Kim, B. Bioremoval of heavy metals from recycling industry electronic waste by a consortium of moderate thermophiles: Process development and optimization. J. Clean Prod. 2014, 70, 194–202. [Google Scholar] [CrossRef]
- Qiu, J.D.; Liu, J.Q.; Li, M.N.; Wang, S.; Bai, W.M.; Zhang, D.L. Assessment of heavy metal contamination in surface sediments from the nearshore zone, southern Jiangsu Province, China. Mar. Pollut. Bull. 2018, 133, 281–288. [Google Scholar] [CrossRef]
- Winner, D.A.; Cass, G.R. Modeling the long-term frequency distribution of regional ozone concentrations using synthetic meteorology. Environ. Sci. Technol. 2001, 35, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Landis, M.S.; Keeler, G.J.; Al-Wali, K.I.; Stevens, R.K. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmos. Environ. 2004, 38, 613–622. [Google Scholar] [CrossRef]
- Heckel, P.F.; Lemasters, G.K. The Use of AERMOD Air Pollution Dispersion Models to Estimate Residential Ambient Concentrations of Elemental Mercury. Water Air Soil Pollut. 2011, 219, 377–388. [Google Scholar] [CrossRef]
- Sun, G.Y.; Li, Z.G.; Bi, X.Y.; Chen, Y.P.; Lu, S.F. Distribution, sources and health risk assessment of mercury in kindergarten dust. Atmos. Environ. 2013, 73, 169–176. [Google Scholar] [CrossRef]
- Garcia, G.F.; Alvarez, H.B.; Echeverria, R.S.; Alba, S.R.; Rueda, V.M.; Dosantos, E.C.; Cruz, G.V. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. J. Air Waste Manag. Assoc. 2017, 67, 973–985. [Google Scholar] [CrossRef]
EF | Class | Degree |
---|---|---|
EF ≤ 1 | 0 | Non-pollution |
1 < EF ≤ 2 | 1 | Slight pollution |
2 < EF ≤ 5 | 2 | Moderately polluted |
5 < EF ≤ 20 | 3 | Heavy pollution |
20 < EF ≤ 40 | 4 | Moderately severe |
40 < EF | 5 | Severe pollution |
Class | CF | NI | Contamination Degree |
---|---|---|---|
0 | <0.7 | <0.7 | Safety |
1 | 0.7–1.0 | 0.7–1.0 | Warning |
2 | 1.0–2.0 | 1.0–2.0 | Slight pollution |
3 | 2.0–3.0 | 2.0–3.0 | Moderate pollution |
4 | >3.0 | >3.0 | Heavy pollution |
Igeo | Class | Degree |
---|---|---|
Igeo < 0 | 0 | Unpolluted |
0 ≤ Igeo < 1 | 1 | Unpolluted to moderate |
1 ≤ Igeo < 2 | 2 | Moderately polluted |
2 ≤ Igeo < 3 | 3 | Moderately to strongly polluted |
3 ≤ Igeo < 4 | 4 | Strongly polluted |
4 ≤ Igeo < 5 | 5 | Strong to very strong pollution |
5 ≤ Igeo | 6 | Very strong pollution |
Class | Er | Degree | RI | Degree |
---|---|---|---|---|
1 | <40 | Low | <150 | Low |
2 | 40–80 | Moderate | 150–300 | Moderate |
3 | 80–160 | High | 300–600 | High |
4 | 160–320 | Moderately severe | 600–1200 | Moderately severe |
5 | >320 | Severe | >1200 | Severe |
Property | pH | OM (g·kg−1) | CEC (cmol·kg−1) | TP (g·kg−1) | TN (g·kg−1) | TOC (g·kg−1) |
---|---|---|---|---|---|---|
Range | 5.36–7.57 | 3.68–31.52 | 0.42–15.41 | 0.08–1.52 | 0.10–1.52 | 2.14–18.30 |
Mean | 6.90 | 16.13 | 9.71 | 0.34 | 0.77 | 9.36 |
Standard deviation | 0.46 | 5.69 | 4.00 | 0.26 | 0.35 | 3.30 |
Coefficient of variation | 0.07 | 0.37 | 0.49 | 0.48 | 0.44 | 0.37 |
Metal | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Range | 0.50–98.30 | 0.03–11.90 | 5.00–472.00 | 2.30–556.00 | 1–6544 | 2.00–203.00 | 4.10–429.00 | 3.10–1100.00 |
Mean | 7.60 | 0.15 | 45.50 | 19.10 | 44.00 | 18.70 | 29.00 | 51.40 |
SD | 4.30 | 0.31 | 22.10 | 18.60 | 115.00 | 10.50 | 18.80 | 32.50 |
CV | 0.58 | 2.10 | 0.49 | 0.97 | 2.62 | 0.56 | 0.65 | 0.63 |
Background values [38] | 6.30 | 0.108 | 56.20 | 19.60 | 29.00 | 23.5 | 25.4 | 56.1 |
Grade II criteria values | 30.00 | 0.30 | 200.00 | 100.00 | 2400.00 | 100.00 | 120.00 | 250.00 |
Parameters | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
EF | Range | 0.03–44.41 | 0.25–113.36 | 0.16–15.16 | 0.22–69.48 | 0.02–268.41 | 0.13–10.27 | 0.05–18.19 | 0.43–35.41 |
Mean | 1.75 | 1.94 | 1.10 | 1.32 | 2.13 | 1.03 | 1.77 | 1.27 | |
CF | Range | 0.02–3.28 | 0.1–39.67 | 0.03–2.36 | 0.02–5.56 | 0.01–2.73 | 0.02–2.03 | 0.03–3.58 | 0.01–4.40 |
Mean | 0.25 | 0.49 | 0.23 | 0.19 | 0.02 | 0.19 | 0.24 | 0.21 | |
Igeo | Range | −4.15–3.47 | −2.31–6.32 | −3.98–2.58 | −3.53–4.40 | −5.24–7.45 | −3.99–2.67 | −3.15–3.56 | −4.67–3.80 |
Mean | −0.36 | −0.33 | −0.91 | −0.69 | −0.24 | −0.96 | −0.42 | −0.76 | |
Er | Range | 0.85–166.61 | 9.09–3606.06 | 0.19–17.91 | 0.65–157.95 | 1.58–10470.40 | 0.47–47.88 | 0.84–88.64 | 0.06–20.91 |
Mean | 12.81 | 44.48 | 1.73 | 5.44 | 70.37 | 4.41 | 5.99 | 0.98 |
N | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Farmland | 1618 | 7.30 | 0.132 | 44.11 | 17.87 | 36.38 | 17.96 | 30.00 | 49.85 |
Forest | 636 | 6.10 | 0.121 | 40.01 | 17.43 | 21.81 | 15.67 | 28.58 | 45.18 |
Industrial Land | 261 | 10.50 | 0.162 | 48.77 | 20.84 | 63.60 | 20.63 | 36.23 | 56.39 |
Rural settlement | 1191 | 8.10 | 0.179 | 49.29 | 21.14 | 59.43 | 20.57 | 30.47 | 55.42 |
Urban | 128 | 7.50 | 0.130 | 49.26 | 21.40 | 66.47 | 21.62 | 28.12 | 55.48 |
F | 57.796 ** | 5.402 ** | 23.068 ** | 7.773 ** | 16.428 ** | 30.587 ** | 16.548 ** | 13.529 ** | |
Pluvial alluvial sediments | 2018 | 7.58 | 0.132 | 38.85 | 16.25 | 46.88 | 15.18 | 29.31 | 45.08 |
Marble and schist | 492 | 7.57 | 0.142 | 53.49 | 20.48 | 47.79 | 22.29 | 27.52 | 53.08 |
Granite | 69 | 5.07 | 0.104 | 32.61 | 22.89 | 18.24 | 9.40 | 37.23 | 56.25 |
Gneissic granite | 464 | 7.45 | 0.214 | 47.64 | 21.23 | 33.87 | 20.03 | 33.80 | 62.93 |
Basite | 124 | 8.32 | 0.152 | 68.97 | 24.75 | 41.40 | 30.27 | 28.54 | 64.33 |
Granulite | 666 | 7.68 | 0.151 | 55.40 | 23.96 | 42.51 | 24.59 | 25.08 | 58.58 |
F | 5.464 ** | 5.658 ** | 127.797 ** | 23.900 ** | 1.809 * | 174.925 ** | 15.541 ** | 39.853 ** |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Fe | Elevation | |
---|---|---|---|---|---|---|---|---|---|---|
As | 1 | |||||||||
Cd | 0.222 ** | 1 | ||||||||
Cr | 0.113 ** | 0.103 ** | 1 | |||||||
Cu | 0.254 ** | 0.313 ** | 0.409 ** | 1 | ||||||
Hg | 0.037 * | 0.029 | 0.024 | 0.023 | 1 | |||||
Ni | 0.147 ** | 0.096 ** | 0.796 ** | 0.319 ** | 0.029 | 1 | ||||
Pb | 0.426 ** | 0.399 ** | 0.151 ** | 0.258 ** | 0.044 ** | 0.052 ** | 1 | |||
Zn | 0.284 ** | 0.478 ** | 0.497 ** | 0.641 ** | 0.045 ** | 0.378 ** | 0.372 ** | 1 | ||
Fe | 0.235 ** | 0.079 ** | 0.677 ** | 0.366 ** | 0.032 * | 0.783 ** | 0.029 | 0.384 ** | 1 | |
Elevation | −0.087 ** | −0.002 | 0.168 ** | 0.083 ** | −0.050 ** | 0.164 ** | −0.002 ** | 0.0145 ** | 0.275 ** | 1 |
Parameter | PC1 | PC2 | PC3 |
---|---|---|---|
As | 0.093 | 0.599 | 0.097 |
Cd | 0.004 | 0.735 | −0.045 |
Cr | 0.886 | 0.144 | −0.004 |
Cu | 0.446 | 0.572 | −0.068 |
Hg | 0.024 | 0.045 | 0.989 |
Ni | 0.920 | 0.041 | 0.024 |
Pb | −0.054 | 0.772 | 0.056 |
Zn | 0.466 | 0.688 | −0.039 |
Fe | 0.882 | 0.073 | 0.033 |
Eigenvalues | 3.466 | 1.720 | 0.998 |
Percentage of variances | 38.285 | 19.106 | 11.092 |
Cumulative % eigenvectors | 38.285 | 57.391 | 68.483 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Jiang, H.; Kong, L.; Shen, T.; Zhang, X.; Gu, S.; Han, X.; Li, Y. Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China. Water 2021, 13, 2940. https://doi.org/10.3390/w13212940
Zhao Z, Jiang H, Kong L, Shen T, Zhang X, Gu S, Han X, Li Y. Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China. Water. 2021; 13(21):2940. https://doi.org/10.3390/w13212940
Chicago/Turabian StyleZhao, Zhigang, Haishui Jiang, Linghao Kong, Tianyi Shen, Xionghua Zhang, Songsong Gu, Xiangcai Han, and Yachao Li. 2021. "Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China" Water 13, no. 21: 2940. https://doi.org/10.3390/w13212940
APA StyleZhao, Z., Jiang, H., Kong, L., Shen, T., Zhang, X., Gu, S., Han, X., & Li, Y. (2021). Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China. Water, 13(21), 2940. https://doi.org/10.3390/w13212940