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Abstract: In this study, precipitation, and temperature data from HadGEM2-ES under Representa-
tive Concentration Pathways (RCPs) 4.5 and 8.5 were used to evaluate drought in China in the 21st 
century. The K-means clustering algorithm was used to analyze the regional characteristics of the 
dry hazard index (DHI) in China, and the impact of climate change on the variation trend and peri-
odicity of regional drought in China was explored. The results show that the temperature and po-
tential evapotranspiration (PET) of all clusters have an increasing trend under the two RCPs, and 
the precipitation of most clusters shows a significantly increasing trend. The drought index calcu-
lated by the standardized precipitation-evapotranspiration index (SPEI) is higher than those calcu-
lated by the standardized precipitation index (SPI) and standardized effective precipitation evapo-
transpiration index (SP*ETI). The variation trends of drought intensity and frequency in China are 
not significant in the 21st century; however, the local variation trends are significant. The droughts 
in most parts of the Xinjiang Province, northern Tibet and western Qinghai Province show signifi-
cantly increasing trends. According to the DHI analyses and the variations in the drought area ratio, 
with increases in greenhouse gas concentrations, the droughts in central and western China will 
become more severe, and drought will spread to the eastern areas of China. In the case that both 
precipitation and temperature may increase in the future, the increase in evapotranspiration caused 
by temperature rise will greatly affect drought dynamics. The main drought periodicity in China in 
the 21st century is 1~3.6 years. Drought is affected by climate change but not significantly. 
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1. Introduction 
Drought is a long-term sustainable natural phenomenon with a wide spatial distri-

bution [1], changing the flow characteristics of the underlying surface and affecting hy-
drological process. The latest studies show that with the further development of global 
warming, drought will be more severe in the future [2–6]. Therefore, there is an urgent 
need to build a reliable information system to predict the occurrence and distribution of 
drought, which may help to prevent and mitigate the associated disasters, and play an 
important role in hydrological forecast [7]. Generally, precipitation, temperature, and 
evaporation data can be used to calculate drought indices and predict drought trends. 

China is a country with frequent and severe drought disasters [8]. In recent decades, 
China has suffered several long-term extreme droughts, which caused huge economic 
losses and ecological damage [9–11]. From 2009 to 2010, severe drought in southwestern 
China affected 61.3 million people, with the area of crop failures reaching 1.1 million hec-
tares. Moreover, global warming is likely to worsen China’s drought situation. Therefore, 
the analysis and prediction of drought development trends are conducive to forecast the 
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changes of various elements in the hydrological process and reduce the impact of drought 
on the overall development of the country. 

In recent years, climate projections have been widely used to assess drought caused 
by climate change in the 21st century [1,6,12–18]. There are also many studies on the im-
pact of climate change on drought in China. The probability of warm years is projected to 
significantly increase, and the occurrence probability of hot drought events (SPEI < −1.0) 
will increase to nearly 100% by the year 2050, even though the annual precipitation is 
projected to increase across China in the future [5]. Yao et al. [6] analyzed regional drought 
change in China based on RCMs (regional climate models). In addition, temperature 
anomalies are expected to play an important role in drought occurrences by greatly am-
plifying evaporative demand and thereby increasing overall drought intensity and impact 
[4,19–21]. 

A variety of drought indices, including the Palmer drought severity index (PDSI) 
[22], standardized precipitation index (SPI) [23] have been proposed to analyze the cause 
and degree of drought. The calculation of PDSI requires long-term observation data, so it 
is not suitable for large-scale research. To solve this problem, McKee et al. [23] proposed 
the SPI, which can be used for multiscale time scale analysis and can be used to meet a 
variety of water monitoring needs. The SPI only considers rainfall and has some limita-
tions in reflecting the characteristics of drought. Vicente-Serrano et al. [24–26] proposed 
the SPEI based on the SPI. Since it was proposed in 2010, the SPEI has been widely used 
in different research areas [27,28]. Maccioni et al. [29] developed a new standardized ef-
fective precipitation evapotranspiration index (SP*ETI), which not only considers evapo-
transpiration but also takes into account effective precipitation. In addition, there are 
many complex drought indices, such as the objective blend of drought indicators (OBDI) 
[30], aggregated drought index (ADI) [31], joint drought index (JDI) [32], and multivariate 
standardized drought index (MSDI) [33]. 

Selection of the drought index depends not only on the factors influencing the 
drought, but also on the difficulty of obtaining the data reflecting those factors. As men-
tioned above, the calculation of drought indices, including the OBDI, ADI, and JDI, is rel-
atively complex, and the function distribution has not been recognized. Therefore, a vari-
ety of drought indices, including, the SPI, SPEI, and SP*ETI, are proposed to analyze 
drought characteristics of China in this paper, some of which have been widely used in 
China. Previous studies have confirmed that the two indices could capture the real 
drought events well, while the SPEI is often better than the SPI in capturing drought con-
ditions, especially in humid areas [34–36]. For the observed data for China over the past 
50 years, the drought evaluation effect of the SPEI is better than that of the SPI. However, 
for the drought forecast in the next 100 years, the advantages and disadvantages of vari-
ous indices have not been analyzed. Therefore, the focus of this paper is to use the SPI, 
SPEI, and SP*ETI to analyze the drought situation in China, and to compare the resultant 
evaluation data. 

The drought area generally presents obvious regional distribution characteristics. It 
has been widely studied to partition the drought area to achieve a comprehensive evalu-
ation of regional drought characteristics. A variety of partition methods have been pro-
posed according to the precipitation [6,37–39], drought hazard [40], vegetation type 
[41,42] and terrain characteristics [5,39]. By comparing these partition methods, it can be 
found that most of the studies are based on an individual characteristic index, which does 
not easily provide a comprehensive reflection of the drought characteristics of the whole 
country. The partition rules of drought areas have not been clear and have been mostly 
based on experience. To comprehensively evaluate the drought characteristics, Daneshvar 
et al. [43] proposed the drought hazard index (DHI) based on the above four indices, with-
out giving a specific partition method for the drought characteristic area. Therefore, a par-
tition method based on the distribution features of the DHI is proposed to comprehen-
sively assess drought characteristics in China. 
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Research on the change in drought characteristics in China has mainly analyzed the 
temporal and spatial changes in the drought intensity, frequency, and area [5,6,44–48]. 
Wang et al. [44] analyzed the spatial distribution characteristics of the drought frequency 
and intensity in Southwest China. Huang et al. [46] analyzed the spatial distribution char-
acteristics of the drought frequency and duration in South China. Yao et al. [6] partitioned 
drought regions in China and analyzed the changes in the drought frequency, intensity, 
and duration in each region. Although the drought partition method, based on individual 
drought characteristics, was applied in the above research and drought analysis of each 
partition, a single drought index could only correspond to a situation and it was still dif-
ficult to comprehensively reflect the drought changes. 

Above all, the impact of regional climate change on drought in China has been ex-
tensively studied, and many valuable results have been obtained, although there are still 
some deficiencies in the following aspects. (1) In the study of regional drought in China, 
for the observed data for China over the past 50 years, the drought evaluation effect of 
SPEI is better than that of SPI. However, for the drought forecast in the next 100 years, the 
advantages and disadvantages of various indices have not been analyzed. (2) The parti-
tion rules of drought areas have not been clear and have been mostly based on an indi-
vidual method or experience. (3) Studies of the temporal variation in drought have mostly 
focused on the variation trend, but there is little research on the comprehensive consider-
ations of the drought trend, frequency, area, and periodicity. 

To analyze the impact of climate change on regional drought in China, the following 
three aspects of the research are undertaken. First, the applicability of RCMs is analyzed. 
Second, a partition method based on distribution features of DHI is proposed to compre-
hensively assess drought characteristics in China, with a comprehensive consideration of 
drought trends, frequency, area, and periodicity. Finally, the constructed predicting 
model of mesoscale drought in China is used to analyze the spatial and temporal charac-
teristics of the study area, based on DHI partitions. 

2. Materials and Methods 
2.1. Sources of Observed Data and Study Area 

The observed data are based on the daily value dataset of surface climate data in 
China (Version 3.0) provided by the China meteorological data sharing service network 
(https://www.resdc.cn/data.aspx?DATAID=263, accessed on 1 June 2020). The location of 
each station is shown in Figure 1. Since there are few observation stations in the South 
China Sea, mainland China is selected as the study area and is surrounded by the green 
boundary shown in Figure 1. 0.25° × 0.25° grid data, with a period from 1960 to 2005, are 
obtained by the inverse distance weight (IDW) method. 

 
Figure 1. Study area. Black dots represent weather stations and the green solid line represents China 
boundary. 

India

Russia

Mongolia
Kazakhstan

Myanmar

Thailand

Laos

Vietnam

Nepal

Pakistan

Kyrgyzstan

Bangladesh

North Korea

South Korea

Bhutan

Tajikistan

130° E120° E110° E100° E90° E80° E

50° N

40° N

30° N

20° N

10° N

Weather stations
China Boundary



Water 2021, 13, 2761 4 of 21 
 

 

2.2. Selection of RCMs for Future Projected Precipitation Data 
In this paper, an RCM based on the GCM (global climate model) model is adopted; 

in the GCM, there are several prediction models [49,50], so the forecast of climate change 
is uncertain [51]. There are many models to predict future climate change, so it is neces-
sary to determine the proper RCMs for describing the regional climate change in China. 
According to the research results on the applicability of RCM [49,50,52], 25 models were 
selected as the preliminary RCMs. Considering tremendous computation, it is difficult to 
evaluate the applicability of each RCM. Based on the evaluation results of 25 preliminary 
RCMs in previous studies and the performance of the RCMs (see Section 3.2) tested by the 
comparison of the measured and simulated values, the RCMs which can describe the re-
gional climate change in China is finally selected. 

Sperber et al. [50] used the GCM to study summer precipitation in Asia and found 
that the simulation results of models CNRM-CM5, NCAR-CCSM4, NorESM1-M, GFDL-
CM3, and GFDL-cm2.1 had little deviation from the actual rainfall. McSweeney et al. [52] 
used the HadGEM2-ES, CCSM4, CNRM-CM5, MPI-ESM-LR, MPI-ESM-MR, GFDL-
ESM2G, GFDL-ESM2M, and GFDL-CM3 models to establish a satisfactory model of spe-
cial climate conditions in South Asia. Jiang et al. [53] found that the CSIRO-Mk3.6.0, BNU-
ESM, MIROC5, NorESM1-M, HadGEM2-AO, and GFDL-ESM2M models were effective 
in simulating the average wind speed. Based on the spatial distribution characteristics of 
annual average precipitation in Central Asia simulated by Wu et al. [54], the low values 
of CanESM2, CNRM-CM5, and MRI-CGCM3 are relatively close to the actual low values. 
According to the applicability of the RCMs and the evaluation of the accuracy of various 
RCMs in the above literature, the RCMs to be optimized are shown in Table 1. The data 
in Table 1 was obtained from the website as follows (https://climate-scenarios.can-
ada.ca/?page=gridded-data, accessed on 1 June 2020). The IDW method is used in all the 
models to obtain the 0.25° × 0.25° grid data. 

Table 1. The RCMs to be optimized. 

Model No. Institute Driving Model 
model1 Max Planck Institute for Meteorology(Germany) MPI-ESM-MR 
model2 Max Planck Institute for Meteorology(Germany) MPI-ESM-LR 
model3 NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM2M 
model4 NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3 

model5 Centre National de Recherches Météorologiques and Centre Européen de Re-
cherche et Formation Avancée en Calcul Scientifique (France) 

CNRM-CM5 

model6 UK Met Office Hadley Centre (UK) HadGEM2-ES 
model7 UK Met Office Hadley Centre (UK) HadGEM2-AO 

model8 
University of Tokyo, National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology(Japan) MIROC5 

model9 National Centre for Atmospheric Research(USA) CCSM4 

2.3. Drought Indices 
For most parts of China, annual precipitation is distributed unevenly in time, with 

more monthly monsoon rainfall and less rainfall in other periods, so a time scale of 12 
months is used. The three indices calculated on a time scale of 12 months can be repre-
sented as SPI12, SPEI12 and SP*ETI12. Many studies use a time scale of 12 months to re-
flect the characteristics of long-term drought [5,17,18,55]. 

SPEI and SP*ETI can be estimated using the following equations: 
First, precipitation is selected as the statistic to calculate the SPEI and SP*ETI. 𝐷(𝑖) = 𝑃(𝑖) − 𝑃𝐸𝑇(𝑖) (1)
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Where i represents the series number of the 𝑖 th time segment; 𝐷(𝑖) is water shortage 
content on 𝑖 th; P is the precipitation; and PET is the evapotranspiration, which can be 
calculated by the Thornthwaite method [56]. 𝐷(𝑖) = 𝑃(𝑖) − 𝐸𝑃(𝑖) (2)

EP is the effective precipitation and can be calculated by the Soil Conservation Ser-
vice (SCS) formula [57]. 

D is aggregated at a different time scale (n) as: 𝐷 = ∑ 𝐷௝௝ୀ௜௝ୀ௜ି௡ାଵ   (3)

The three-parameter log-logistic distribution [24] is selected as the optimum fitting 
distribution. The probability density function f(x) and cumulative distribution function 
F(x) are listed below: 𝑓(𝑥) = 𝛽𝛼 (𝑥 − 𝛾𝛼 )ఉିଵ ቂ1 + ቀ𝑥 − 𝛾𝛼 ቁቃିଶ (4)

𝐹(𝑥) = ቈ1 + ൬ 𝛼𝑥 − 𝛾൰ఉ቉ିଵ (5)

Where α, β, and γ are scale, shape, and location parameters, respectively. 
Finally, the SPEI is calculated by transforming F to the standard normal distribution 

as shown in Equation (5). SPEI = 𝜙ିଵ(𝐹)  (6)

The detailed calculation for Equation (6) refers to the research of Vicente-Serrano et 
al. [24], and the selection of the fitting distribution refers to the research of McKee et al. 
[23]. 

The next process of drought analysis is to determine the key parameters. The L-mo-
ment approach is adopted, in which Bayesian information criteria (BIC) are used to deter-
mine the optical fitting distribution. 

2.4. Regionalization of Droughts 
Generally, the regional characteristics of droughts are described to divide the 

drought area. The severity of a drought depends on the duration, intensity, frequency, 
and extent of specific drought episodes [43]. In this study, the DHI [43] is used to compre-
hensively reflect the characteristics of drought. Cluster analysis is used to analyze the dis-
tribution characteristics of the DHI in China; then, the regionalization of droughts is con-
ducted. The calculation of DHI requires four sub-indicators [29,43], which can be shown 
as follows: 
(1) The number of drought events observed in a particular period (FRQ); 
(2) The number of drought events with durations greater than 24 months (FRQ24); 
(3) The maximum observed severity across the observed episodes (Smax); 
(4) The maximum duration in months across the drought episodes (Dmax). 𝐷𝐻𝐼 = 𝑤ଵ × 𝑠𝑐𝑜𝑟𝑒(𝐷𝑚𝑎𝑥) + 𝑤ଶ × 𝑠𝑐𝑜𝑟𝑒(𝑆𝑚𝑎𝑥) + 𝑤ଷ × 𝑠𝑐𝑜𝑟𝑒(𝐹𝑅𝑄24) + 𝑤ସ × 𝑠𝑐𝑜𝑟𝑒(𝐹𝑅𝑄)  (7)

Where w1, w2, w3, and w4 are the relevant weights that are estimated using an analytical 
hierarchical process (AHP) [29,58], and the four relevant weights in this research are 0.25, 
and score represents the score of the rating district of the study area. The detailed calcula-
tion methods are as follows. First, the start time, end time of drought incidents, and 
drought intensity are selected according to drought indices. Second, FRQ (the time length 
is a year), FRQ (24), Smax and Dmax are calculated. Third, the range of the subindicator 
weight series data of each grid in the study area is analyzed. The entire interval is divided 
equally into four segments, and the score is given according to the position of the data to 
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be evaluated in the subindicator interval. Last, the detailed evaluation method provided 
previous research [29,43]. 

2.5. Cluster Analysis 
The goal of cluster analysis is to classify the collected data on the basis of similarity; 

cluster analysis is widely used in many fields. There are many methods of cluster analysis 
for drought regionalization, such as the region of influence method [59], entropy-based 
method [60], hierarchical clustering, fuzzy clustering and K-means clustering [61,62]. Af-
ter studying and comparing these methods, it is found that machine learning algorithms 
are realized simply and easily [61,63]. Because of the simplicity and efficiency of the K-
means clustering algorithm, it has become the most widely used clustering algorithm. 
However, it can only be applied to continuous data, and the number of categories must 
be manually specified before a clustering operation. Sometimes, the local optimum cannot 
be avoided and local optimum is not as good as the global optimum, and the convergence 
speed is relatively slow in large-scale data. Therefore, the K-means clustering algorithm 
[64] is used to regionalize the drought area. After determining the method of drought 
regionalization, appropriate cluster validity indices are used to determine the number of 
clusters, i.e., the number of partitions. There are many clustering validity indices, such as 
the Dunn index [65], average silhouette width index [66] and Davies and Bouldin index 
(DBI) [67]. In this study, the average silhouette width index (ASWI) and the DBI are used 
to determine the number of clusters. Details of these indices can be found in Goyal and 
Gupta [63]. 

The objective function that the k-means algorithm attempts to minimize can be 
shown as Equation (8). 𝐽 = ∑ ∑ ฮ𝑌௜ − 𝐶௝ฮଶெ௜ୀଵ௄௃ୀଵ   (8)

Where, ฮ𝑌௜ − 𝐶௝ฮଶis the squared Euclidean distance between the ith data point and jth 
cluster center in multidimensional space of data attributes. M is the total number of data 
points and K is the number of clusters. Initially, the coordinates of K-cluster centers are 
guessed randomly, and each point is assigned to the nearest cluster center. Cluster centers 
are updated by averaging the coordinates in particular clusters and reassignment is made 
to obtain new clusters. This process is repeated until convergence is reached. Since the 
final result is very sensitive to the initially used cluster center, the algorithm is repeated 
again and again with different initial random cluster centers for obtaining the best results. 

2.6. Trend and Periodicity Analysis 
The modified Mann–Kendall test is adopted in this study [68–70]. In this study, Fou-

rier transform is used to analyze the periodic variation in drought; the specific theory can 
be seen in the research of Moreira et al. [71]. 

Above all, the detailed methodology of this study can be summarized as follows. 
First, the SPI, SPEI, and SP*ETI are selected to evaluate the drought characteristics in 
China. Second, based on the above four indices, the drought hazard index is used to obtain 
characteristic clusters in the study area, and the applicability of RCMs is analyzed. Finally, 
the comprehensive impact of climate change on spatial and temporal characteristics of 
drought in China is constructed. 

3. Results 
3.1. Identification of Drought Clusters 

Drought characteristics, such as the average severity, duration, and interval are ob-
tained using the run approach method. According to the run approach method, the dura-
tion of drought is defined as the time period when the drought indices (SPI12, SPET12 
and SP*ET12) are less than −0.5. The cumulative sum of the difference between the abso-
lute value of SPI and the critical value of 0.5 in the drought duration is defined as the 
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drought intensity. The values of w1, w2, w3, and w4 are all set to 0.25 according to published 
data [29,43]. Based on the drought index, and DHI is calculated, as shown in Figure 2. K-
means clustering is utilized to identify clusters in the study area. Lower values of DBI and 
higher values of ASWI correspond to well-separated clusters in which the DHI values are 
close. In contrast, the DHI values in clusters vary widely. According to historical DHI 
values, the average DHI is obtained (Figure 2). The variations in DBI and ASWI corre-
sponding to the average DHI with the partition number of drought clusters is shown in 
Figure 3. There are two optimal drought clusters in Figure 3, which clearly cannot describe 
the hydrological and meteorological characteristics of the regional climate in China. The 
spatial distribution differences of regional climate data in China are relatively large. Con-
sidering the differences in climate change in China, Chen and Sun optimally divided 
China into six drought clusters [5]. From Figure 3, the number of suboptimal drought 
clusters is 8 and 9. Since the clusters obtained by the two partition methods are similar 
and the ninth cluster is relatively small (in the partition of 9 clusters), eight clusters are 
used in this paper (Figure 4). 

   
(a) (b) (c) 

Figure 2. Historical distribution of DHI. (a) DHI calculated by SPI, (b) DHI calculated by SPEI, (c) DHI calculated by 
SP*ETI. 
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Figure 3. The variations in DBI and ASWI with clusters for K-means. 

 
Figure 4. Drought clusters. The color of the squares in the legend represents the serial number of 
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values of SC and RRMSE of model 6 are better than those of model 7, so model 6 (i.e., 
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pared. The linear deviation correction method [72] is used for data processing. The varia-
tion processes of monthly precipitation and temperature in the clusters from January 1959 
to December 2005 are shown in Figures S1 and S2, respectively. The calculated and ob-
served values of precipitation and temperature in the clusters of the HadGEM2-ES model 
fit well. 

To analyze the impact of simulated precipitation and temperature of HadGEM2-ES 
on reflecting drought, with the drought clusters in Figure 4, the variations in SPI12, 
SPEI12, and SP*ETI12 with time are shown in Figures S3–S5, respectively. As shown in 
Figures S3–S5, HadGEM2-ES can reflect the actual drought characteristics of most clusters 
in the study area. 

From 2006 to 2100, the temperatures of the cluster areas under RCP 4.5 and RCP 8.5 
are shown in Figure S6. The temporal variations in the cluster averages of precipitation 
and potential evapotranspiration under RCP 4.5 and RCP 8.5 are shown in Figures S7 and 
S8. Temperature and PET under both RCPs obviously increase (Table 2). Except for Clus-
ter 4 and Cluster 5, precipitation in other areas shows an obvious increasing trend. In ad-
dition, under RCP 4.5, the Sen’s slope of PET is higher than that of precipitation only in 
Cluster 1, Cluster 4 and Cluster 5. Under RCP 8.5, the Sen’s slope of PET is commonly 
higher than that of precipitation except in Cluster 2 and Cluster 3. 

Table 2. Results of the modified Mann–Kendall and Sen’s slope test for the given precipitation, PET 
and temperature. Values of 1 and 0 represent a significantly increasing trend and no significant 
trend, respectively. The significance level is 0.05. Unit of values of Sen’s slope for precipitation, po-
tential evaporation and temperature is mm/year, mm/year, °C/year, respectively. 

 Sen’s Slope      
 Precipitation  Potential Evapotranspiration Temperature  
 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Cluster 1 0.883 1.42 1.023 2.491 0.038 0.079 
Cluster 2 1.581 2.233 0.887 1.844 0.033 0.068 
Cluster 3 1.699 2.006 0.943 1.893 0.034 0.069 
Cluster 4 0.714 1.509 1.466 2.833 0.043 0.088 
Cluster 5 0.636 1.494 1.757 3.307 0.041 0.083 
Cluster 6 2.778 3.416 2.241 5.515 0.036 0.072 
Cluster 7 3.956 2.611 2.831 9.092 0.033 0.074 
Cluster 8 2.85 3.037 2.555 6.944 0.034 0.067 

 Modified Mann–Kendall’s test 
Cluster 1 1 1 1 1 1 1 
Cluster 2 1 1 1 1 1 1 
Cluster 3 1 1 1 1 1 1 
Cluster 4 0 1 1 1 1 1 
Cluster 5 0 1 1 1 1 1 
Cluster 6 1 1 1 1 1 1 
Cluster 7 1 1 1 1 1 1 
Cluster 8 1 1 1 1 1 1 
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(a) Precipitation (b) Temperature 

Figure 5. Taylor diagram to examine the performance of various RCMs for the simulation of (a) 
precipitation and (b) temperature. 

   
(a) Observed (b) HadGEM2-ES (c) Relative error 

Figure 6. Spatial distribution of annual average precipitation (mm) at each grid point. 

   
(a) Observed (b) HadGEM2-ES (c) Relative error 

Figure 7. Spatial distribution of annual average temperature (°C) at each grid point. 

3.3. Trend Analyses of Drought Severity and Frequency 
The time span from 1960 to 2100 is divided into three periods: the historical period 

(Hist, 1960–2005), the near-future period (NF, 2021–2050), and the far future period (FF, 
2071–2100), unit of frequency is times/year. Mann–Kendall and Sen’s slope tests were used 
to evaluate drought severity and the variation trend of drought frequency over the above 
three periods, as shown in Figure 8. All drought indicators over Hist show a similar pat-
tern. The average values of the Sen’s slope of clusters corresponding to Figure 8a–c are 
shown in Table 3. 
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Figure 8. (a). Mann–Kendall and Sen’s slope test results of the drought severity and frequency of 
historical droughts for the SPI, SP*ETI, and SPEI drought indicators. Blue triangles represent a sig-
nificant decreasing trend and red triangles represent a significant increasing trend. (b). Mann–Ken-
dall and Sen’s slope test results of the drought severity of NF and FF for the SPI, SP*ETI, and SPEI 
drought indicators. Blue triangles represent a significant decreasing trend and red triangles repre-
sent a significant increasing trend. (c). Mann–Kendall and Sen’s slope test results of the drought 
frequency of NF and FF for the SPI, SP*ETI, and SPEI drought indicators. Blue triangles represent a 
significant decreasing trend and red triangles represent a significant increasing trend. 
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The variation trend of drought severity and the frequency of the clusters in China 
over the 21st century can be summed as follows. The drought severity and frequency of 
most areas of Cluster 1 show an increasing trend over the historical period. According to 
the SPI and SP*ETI, drought severity shows an increasing trend under RCP 4.5. Drought 
severity will decrease over NF and increase over FF under RCP 4.5, based on the SPEI 
analysis results. Under RCP 8.5, both the SPI and SPEI drought indicators show that the 
drought severity of Cluster 1 shows a decreasing trend. 

For Cluster 2, based on the analysis results of the SPEI and SP*ETI, the drought se-
verity decreased under RCP 4.5. Over NF and FF, the drought severity and frequency of 
Cluster 1 and Cluster 2 increase significantly in Northern Xinjiang Province, Northwest-
ern Gansu Province, and western Inner Mongolia. 

For Cluster 3, drought severity and frequency show a decreasing trend over Hist. 
However, drought frequency increased over NF and FF based on the analysis results of 
the SPEI and SP*ETI. Under RCP 4.5, drought severity does not show obvious variation 
trends over NF and FF. 

The drought severity and frequency of Cluster 4 and Cluster 5 in northeastern China 
show an increasing trend over Hist. According to the SPI and SPEI, drought severity over 
NF and FF shows an increasing trend. 

The drought severity and frequency values of Cluster 6, Cluster 7, and Cluster 8, lo-
cated in central and southern China, show a decreasing trend over Hist. According to the 
SPI drought indicator, the drought severity and frequency of the 3 clusters will have an 
increasing trend over NF and FF. However, the drought severity and frequency of the 
three clusters will decrease over NF and FF based on the analysis results of the SP*ETI 
and SPI (Table 3). 

Generally, the variation trend of drought severity and frequency in China in the 21st 
century is not obvious, but the local variation trends are much more significant. Drought 
in most parts of Xinjiang Province(73°40′ E–96°23′ E, 34°22′ N–49°10′ N), Northern Ti-
bet(78°25′ E–99°6′ E, 26°43′N–36°31′ N), and Western Qinghai Province(89°24′ E–103°4′ E, 
31°24′ N–39°4′ N) show a significantly increasing trend. Drought in the North China Plain 
and China’s southeastern coast shows a decreasing trend. 

Table 3. Average values of Sen’s slope of the average annual severity and frequency of different 
clusters for Hist, NF, and FF (unit: 1‰). Positive values, “0” and negative values represent a signif-
icantly increasing trend, non-significant trend, and a significantly decreasing trend, respectively. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 
  Sev Freq Sev Freq Sev Freq Sev Freq 

SPI Hist −14 −3 5 3 12 4 −8 −2 
 RCP4.5NF −16 −2 −9 −2 −12 −3 9 0 
 RCP4.5FF −14 −2 −1 −4 −16 −2 −30 0 
 RCP8.5NF −14 −4 −2 −2 −6 −3 −9 −4 
 RCP8.5FF −28 −3 −27 −3 −26 −4 −19 −4 

SP*ETI Hist −14 −3 4 4 9 4 −5 −2 
 RCP4.5NF −9 −1 9 2 9 0 39 −2 
 RCP4.5FF −12 −1 3 −2 −15 −1 −29 5 
 RCP8.5NF 11 −1 32 −1 28 −1 21 2 
 RCP8.5FF 37 0 14 0 25 −1 4 −2 

SPEI Hist −12 −1 26 6 34 8 1 0 
 RCP4.5NF 23 6 37 6 29 2 83 8 
 RCP4.5FF −27 −6 5 −5 −24 −4 −62 3 
 RCP8.5NF 71 −2 65 1 50 3 32 −4 
 RCP8.5FF −35 −2 −46 −5 −29 −3 −44 −1 
  Cluster 5 Cluster 6 Cluster 7 Cluster 8 
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  Sev Freq Sev Freq Sev Freq Sev Freq 
SPI Hist −6 0 10 3 18 0 11 1 

 RCP4.5NF 8 1 −10 −4 −10 −2 −21 −4 
 RCP4.5FF −20 0 −16 −2 −6 −5 −2 −1 
 RCP8.5NF −23 −5 −7 −3 4 −5 −9 −3 
 RCP8.5FF −11 −2 −15 −3 −5 −2 −17 −2 

SP*ETI Hist −4 0 8 2 17 0 19 3 
 RCP4.5NF 24 2 10 1 −10 −3 −2 3 
 RCP4.5FF −32 4 −14 1 10 −1 −24 −4 
 RCP8.5NF −26 1 17 0 22 −4 20 −1 
 RCP8.5FF 5 0 20 −2 8 −2 16 0 

SPEI Hist 3 3 23 4 28 1 32 5 
 RCP4.5NF 74 11 37 3 28 2 −5 5 
 RCP4.5FF −39 3 −18 0 −1 −3 −1 0 
 RCP8.5NF 14 0 60 1 79 −1 65 3 
 RCP8.5FF 11 5 18 4 65 10 24 9 

3.4. The Variation in the Drought Area Ratio 
The variations in drought area with time under different conditions are shown in 

Figure 9. The calculated results of the modified Mann–Kendall test are shown in Table 4. 
Compared with the varying curves with the drought indicators of the SPI, SPEI and 
SP*ETI, the drought area ratio calculated with the SPI is typically lower than that calcu-
lated with the SPEI and SP*ETI, indicating that the drought hazard is more serious when 
the effective precipitation and potential evaporation are considered. The drought area ra-
tio based on the evaluation results of the SPEI is usually greater than that of the SPI and 
SP*ETI, which indicates that potential evaporation related to temperature has a significant 
impact on drought severity. As shown in Figure 9b,c, the drought areas of all clusters over 
NF show an increasing trend, which can be proven by the positive values of the modified 
Mann–Kendall test in Table 4. According to the negative values of the Mann–Kendall test 
for Cluster 1, Cluster 2, and Cluster 6 shown in Table 4, the drought areas in these clusters 
over FF show a decreasing trend. 

Generally, drought areas will first increase and then decrease in most parts of China 
over the period from 2006 to 2100; the most remarkable area is Cluster 1. 

Table 4. The results of the modified Mann–Kendall test of the drought area ratio of clusters. The indicators “+”, “0”, and 
“-” represent a significantly increasing trend, no significant trend, and a significantly decreasing trend, respectively. N 
represents NF (2021–2050), F represents FF (2071–2100), and T represents Total Future (TF, 2006–2100). 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 
 RCP N F T N F T N F T N F T N F T N F T N F T N F T 

SPI 4.5 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0 
SPI 8.5 0 0 + + - 0 0 0 0 0 - 0 0 0 0 0 0 0 0 + 0 + + 0 

SPEI 4.5 + - 0 0 - 0 0 - 0 + 0 0 + 0 0 0 - 0 0 - 0 0 0 0 
SPEI 8.5 + 0 + + - 0 + 0 0 0 0 0 0 + 0 + + + + + + + + + 

SP*ETI 4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 
SP*ETI 8.5 0 + 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 9. (a) The variations in drought area for different clusters with time over Hist. Blue line represents SPI data, and 
the red line represents SPEI data, and the green line represents SP*ETI data. (b) The variations in drought area for different 
clusters with time under RCP 4.5. (c) The variations in drought area for different clusters with time under RCP 8.5. 

3.5. Analyses of the DHI Variations 
To study the temporal and spatial characteristics of drought from 1960 to 2100, the 

DHI distribution over Hist (1960–2005) and TF (2006–2100) is shown in Figure 10. As 
shown in Figure 10, the DHI over TF is greater than that over Hist, which indicates that 
drought in most of China will have an increasing trend. The DHI distribution under RCP 
4.5 indicates that drought in the central and western areas of China, especially in northern 
Xinjiang Province, northwestern Gansu Province, and western Inner Mongolia, shows an 
increasing trend in the future. The DHI distribution under RCP 8.5 indicates that drought 
will spread to East China as the drought severity increases in the central and western areas 
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of China. The DHI value calculated by the SPEI is greater than those calculated by the SPI 
and SP*ETI, which suggests that a predicted drought is more severe when considering 
potential evaporation (Figure 10 and Table 5). This finding shows that a higher emission 
concentration will aggravate drought, and the effect on temperature will be more obvious. 
Considering the potential evapotranspiration related to temperature, with a rise in tem-
peratures, the predicted drought would be more severe, and the drought hazard would 
be greater. 

 

 
Figure 10. The distribution of the drought hazard index for different clusters. 

Table 5. Drought hazard indices for the different clusters. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

SPI 
Hist 1.41 1.29 1.10 1.02 1.15 1.01 1.23 1.37 

RCP4.5 1.51 1.55 1.61 1.42 1.38 1.48 1.47 1.13 
RCP8.5 1.55 1.52 1.53 1.23 1.62 1.61 1.70 1.64 

SPET 
Hist 1.54 1.40 1.30 1.17 1.30 1.17 1.30 1.30 

RCP4.5 1.74 1.65 1.77 1.72 1.73 1.69 1.75 1.69 
RCP8.5 1.87 1.75 1.79 1.86 1.91 1.79 1.87 1.78 

SP*ETI 
Hist 1.61 1.56 1.55 1.45 1.55 1.48 1.62 1.58 

RCP4.5 1.64 1.68 1.67 1.65 1.63 1.65 1.76 1.64 
RCP8.5 1.69 1.69 1.63 1.75 1.65 1.62 1.64 1.78 

3.6. Periodicity Analyses 
Periodograms of the SPI, SP*ETI and SPEI series were calculated to examine the hid-

den cycles of drought in different clusters for each grid point across China. To analyze the 
change in periodicity over time, three time periods, including historic (1951–2005), future 
period 1 (2021–2050) and future period 2 (2071–2100), were used. As shown in Figure 11, 
the percentage of the total area with a periodicity of 1~3.6 years is more than 35%, and the 
percentage of the total area with other grouped periodicity values is mostly less than 20%. 
In addition, the area percentages of some regions (Cluster 1–Cluster 6) over different pe-
riods are similar, which indicates that the periodicity of these clusters does not change 
with time. In Cluster 7 and Cluster 8, the percentage of the cluster area with periodicities 
of 1–3.6 years, 3.6–5 years, and 5–10 years increases to a certain extent. These areas are 
close to the Pacific Ocean and may be influenced by the El Niño phenomenon. The 
grouped periodicities of the clusters under RCP 4.5 and RCP 8.5 are similar, indicating 

SPI-HIS SPETI-HIS

SPETI-RCP4.5 SPEI-RCP4.5

SPI-RCP8.5 SPETI-RCP8.5 SPEI-RCP8.5
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that carbon emission concentrations have a certain influence on drought periodicity. Gen-
erally, climate variation has a certain influence on drought periodicity, while the influence 
of climate variation on other areas is not substantial. 

 

 

  
 

Figure 11. Average area percentages in clusters with different periodicities. The grouped bars on the lower X-axis repre-
sent the dominant average periodicities in the first half of the century (from 2021 to 2050), and the corresponding percent-
ages of areas can be read on the left Y-axis (unit: %). The grouped bars on the upper X-axis represent the dominant average 
periodicities in the second half of the century (from 2071 to 2100), and the corresponding area percentages can be read on 
the right Y-axis (unit: %). 

4. Discussion 
4.1. Spatial and Temporal Characteristics of Drought in China 

Studies have shown that the intensity, frequency and periodicity of drought in areas 
of China have changed significantly due to changes in climate factors, such as precipita-
tion, temperature and wind speed [1,5,6,48,73]. Using various CMIP5 models to predict 
future precipitation, it is concluded that the annual precipitation in most areas of China 
will increase in the 21st century [6,16,74,75]. Some scholars believe that an increase in pre-
cipitation will lead to a decrease in drought. For example, according to the research of Lin 
et al. [76], the increase in precipitation would decrease the drought in Northwest China. 
The research results of Zarch et al. [16] indicate that changes in climate will alter the areal 
extents of aridity zones in the future. Moreover, based on the research of predecessors and 
the work in this study, the predicted precipitation under RCP 8.5 is greater than that under 
other RCPs [77,78]. Temperature anomalies are also considered to play an important role 
in drought occurrences, greatly amplifying the evaporative demand and thereby increas-
ing the overall drought intensity and impact [4,19–21]. Although precipitation will in-
crease in the future, increasing temperatures will also promote evaporation and lead to 
more severe droughts. For example, the droughts in most parts of the Xinjiang Province, 
northern Tibet, and western Qinghai Province show significantly increasing trends. 
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4.2. Impact of Selection of the Drought Index on Drought Characteristics 
It is necessary to be cautious in the selection of drought indicators. For example, the 

research of Oguntunde et al. [79] suggests that the drought evaluation results of SPI and 
SPEI are similar in the short term, but will diverge in the long term. According to the 
results of Ma et al. [73], Sobol’s global sensitivity principle reveals that the frequency of 
drought events induced by PET is greater than the precipitation deficit in the eastern mon-
soon, but the frequency of drought events dominated by precipitation is higher than that 
of PET in the northwest arid region. SPEI evaluates a drought as much more severe than 
the same drought evaluated by SPI and SP*ETI. The research results of this study show 
that the temperature in China will increase in the future, and evaporation will continue to 
be aggravated. Therefore, drought caused by increasing temperatures must be consid-
ered, and the drought indicators combining precipitation and evaporation should be op-
timized. 

Some limitations of the current study should be acknowledged. In the calculation 
process of SPEI, potential evaporation based on temperature is used instead of evapora-
tion, which increases the prediction of actual evaporation and aggravates the drought. 
The selection of the calculation method of PET might affect the evaluation results of 
drought. According to the research of Zhou et al. [80], PET can be estimated by a set of 
models. The set consists of four temperature-decisive models (Hamon, Hargreaves–Sa-
mani, Oudin, Thornthwaite), two radiation-decisive models (Energy-Only and Priestley– 
Taylor) and two synthesis models (Penman and Penman–Monteith). The research results 
show that both P-M and Thornthwaite [56] are suitable for assessing drought conditions 
on the national scale, but the drought assessed by the Thornthwaite method is worse than 
that by the Penman–Monteith method in 1990–2017 when warming is faster than previ-
ously in the arid region. It is impossible to accurately obtain the actual regional evapora-
tion and analyze whether the calculated value is close to the actual value. Thus, we can 
only determine that the calculated evaporation by a certain method is relatively close to 
the average value. The Penman–Monteith method accounts for changes in energy, humid-
ity, and wind speed. Due to the limitations of the data availability for the CMIP5 simula-
tions, the Thornthwaite equation instead of the Penman–Monteith method is used to cal-
culate evapotranspiration in this study. Some early studies [21] have indicated that the 
role of temperature is exaggerated for droughts over North China when using the 
Thornthwaite equation, compared to the Penman–Monteith method; however, there is al-
most no difference for South China. Therefore, we believe that using the Thornthwaite 
equation in this study provides robust results, although the increase in droughts in re-
sponse to anthropogenic warming may be somewhat overestimated for North China. 

4.3. The Impact of Carbon Emission on Drought 
Previous Intergovernmental Panel on Climate Change (IPCC) assessment reports 

have performed assessments of rising temperature and possible risks in the climate sys-
tem under various emission scenarios. Some research results and this study found that 
the precipitation of RCP8.5 is greater than that of the other RCPs. In this study, the analysis 
of GCM simulated data shows that the high carbon emission leads to the more obvious 
increasing trend of temperature and PET and to the increase in precipitation of most clus-
ters (Table 2, Figures S6–S8). Some previous studies suggest that high carbon emissions 
would increase the severity of regional droughts. According to previous research, with 
the comparison of two scenarios, the severity of different drought hazards, including the 
drought frequency, duration, and trends, is higher under RCP 8.5 than RCP 4.5. The re-
search of [47], indicates that the occurrence probability of hot drought events (SPEI less 
than −1.0) will increase to nearly 100% by the year 2050, even though the future annual 
precipitation is projected to increase under the RCP 4.5 scenario, and these conditions 
would become even worse under the RCP 8.5 scenario. In addition, for the Pearl River 
Basin, drought events lasting 1–2 months would be decreased by 7.7%, those lasting 3–4 
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months would be increased by 4.3%, and those lasting more than five months would be 
increased by 3.4% under RCP 4.5, respectively. 

In the present study, carbon emissions are shown to affect the drought intensity and 
frequency in China, which varies greatly in different regions. For example, the drought 
intensity and frequency in eastern Xinjiang Province, the western part of Inner Mongolia, 
and northern Qinghai Province show significantly increasing trends. However, under 
RCP 8.5, the drought intensity and frequency of most regions of Cluster 4 and Cluster 5 
show significantly decreasing trends in the short term. The drought frequency shows a 
significantly decreasing trend, while the drought intensity shows a significantly increas-
ing trend in the long term. Therefore, in the analysis of carbon emission, attention should 
be paid to its spatial and temporal characteristics. The cluster with high carbon emissions 
may not aggravate drought conditions, and some areas may even show decreasing trends 
of drought. 

4.4. Periodicity Analysis 
Few studies have examined the drought periodicity in China, and most of them have 

focused on drought frequency analyses. The research of Ma et al. [73] suggests that the 
frequency of drought events in China is consistent with the global change trend. The 
drought frequency gradually declines from 1961 to 1980 and increases from 1981 to 2017. 
The analysis of periodicity shows that the main periodicity of drought in areas in China 
is 1–3.6 years, and the percentage of coastal areas with this periodicity will increase. Wang 
et al. [81] found that sea-level cycles of 3 and 5 years in the Pearl River Estuary are related, 
and Feng and Li [82] suggested that enhanced rainfall is associated with the decaying 
phase of EP El Niño events in southern China, whereas reduced rainfall occurs when CP 
El Niño events arise in the spring following maturity. 

4.5. Uncertainties Analysis 
It is well known that there are many uncertainties in the assessment of climate change 

impacts. The uncertainties in GCM projections result from errors in the model structure, 
scenarios, and initial conditions. Uncertainty due to the GCM structure would make dif-
ferent models produce different climate projections for the same emission scenarios; 
model predictions can also vary significantly over time. 

The Third national assessment report of China on climate change indicates that one 
of the reasons for uncertainty is the lack of information. Due to few observation stations 
in western China (especially in the Qinghai-Tibet Plateau Region) and the lack of hydrol-
ogy meteorological observation information, climate evaluation results of GCM simula-
tions lack accuracy. As shown in Figures 6 and 7, the fewer data that are available, the 
more uncertainty there is in the simulation results. A similar problem also arises in the 
research of [83]. The largest errors appear in western China, based on the validation with 
the China-CMIP5 dataset during the period from 1976 to 2005. 

Because it is difficult to estimate carbon emissions in the future, many scenarios have 
been set up in previous studies to consider possible circumstances. Studies, such as [84] 
assume an instantaneous removal of all anthropogenic CO2; [85] prescribes a 1% per year 
decrease in atmospheric CO2 concentrations from quadrupled preindustrial CO2 levels, 
while [86] prescribes a decline in CO2 concentrations that reflects atmospheric CO2 in the 
RCPs. 

The uncertainty of temperature and precipitation data leads to the uncertainty of 
drought assessment in GCM projections. Selection of the drought index, grid-scale, and 
data correction method also affect the accuracy of a drought assessment. In the future, a 
better understanding of the hydrological cycle may lead to better and less uncertain pro-
jections, thus resulting in better future climatic predictions that may reduce uncertainty 
in drought analysis. 
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5. Conclusions 
Based on precipitation and temperature data of HadGEM2-ES under RCP4.5 and 

RCP 8.5, the variations in drought during the 21st century in China are predicted. The 
impact of climate change on the variation trend and periodicity of regional drought in 
each cluster of China is explored. The main conclusions in this study are drawn as follows: 
(1) Three drought indices (SPI, SP*ETI, and SPEI) in the historical period are close, di-

verging in the future period. 
(2) Droughts in China over different periods have regional characteristics. All drought 

indices show similar variation trends. Droughts in most parts of Xinjiang Province, 
northern Tibet, and western Qinghai Province show a significantly increasing trend. 

(3) The effect of climate change on the drought cycle is not significant. With the increase 
in greenhouse gas concentrations, drought in central and western China will become 
more severe, and it will spread to the eastern areas in China. A higher emission con-
centration will lead to an increase in the potential evaporation rate, and the corre-
sponding evapotranspiration will lead to a higher drought hazard. 

(4) in the study of drought changes in the future, more consideration should be given to 
comprehensively reflecting the regional drought characteristics by using various 
drought indices related to temperature and evapotranspiration. 
The limitations of this study are as follows: (1) potential evapotranspiration based on 

temperature is used instead of the actual evapotranspiration data; (2) selection of the PET 
calculation formula and uncertainty regarding the drought assessment affect the GCM 
projections. Further efforts are needed to be made to explore and study methods that can 
more accurately calculate actual evapotranspiration and simulate future climate change 
to assess droughts more accurately. 
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