The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia
Abstract
:1. Introduction
- In which growth phases are crops most sensitive to climate variations?
- What is the relationship of climate variables with yield and irrigation water demand during sensitive crop growth phases?
2. Material and Methods
2.1. Study Area
2.2. Data
2.2.1. Yield Statistics and Literature Review
2.2.2. Lund-Potsdam-Jena managed Land (LPJmL-3.5.003) Model Simulated Data
Simulation Protocol
Phenological Development Phases
2.3. Analysis
3. Results
3.1. Crop Yield Sensitivity to Climate Variables at Different Spatial Scales (Observed Data)
3.2. Crop Yield Sensitivity to Climate Variables at Higher Spatio-Temporal Scale (Simulated Data)
3.3. Impacts of Climate Variables on Irrigation Water Demand
4. Discussion
4.1. Crop Yield Sensitivity at Different Spatial Scales
4.2. Climate Sensitive Crop Growth Phases
4.3. Impacts of Climate Variables on Irrigation Water Demand during Sensitive Crop Growth Phases
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, M.; Mondal, P.; Galford, G.L.; Fiske, G.; DeFries, R.S. An automated approach to map winter cropped area of smallholder farms across large scales using MODIS imagery. Remote Sens. 2017, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.B.; Ahmad, S.; Khan, N.; Khurshid, M. Germplasm conservation of multipurpose trees and their role in agroforestry for sustainable agricultural production in Pakistan. Int. J. Agric. Biol. 2008, 10, 340–348. [Google Scholar]
- Kalra, S. A Study of Land Utilization in Different Areas of India. IJSRST 2018, 4, 631–636. [Google Scholar]
- Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B. Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol. Earth Syst. Sci. 2016, 20, 1971–1982. [Google Scholar] [CrossRef] [Green Version]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial quantification of groundwater abstraction in the irrigated indus basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Chandio, A.A.; Yuansheng, J.; Magsi, H. Agricultural Sub-Sectors Performance: An Analysis of Sector-Wise Share in Agriculture GDP of Pakistan. Int. J. Econ. Financ. 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Bharti, N. Evolution of agriculture finance in India: A historical perspective. Agric. Financ. Rev. 2018, 78, 376–392. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Biemans, H.; Lutz, A.F.; Shrestha, A.B.; Immerzeel, W.W. Climate change vs. Socio-economic development: Understanding the South-Asian water gap. Hydrol. Earth Syst. Sci. 2018, 22, 6297–6321. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [Green Version]
- Terink, W.; Lutz, A.F.; Simons, G.W.H.; Immerzeel, W.W.; Droogers, P. SPHY v2.0: Spatial Processes in HYdrology. Geosci. Model. Dev. 2015, 8, 2009–2034. [Google Scholar] [CrossRef] [Green Version]
- Khandu, E.; Forootan, M.; Schumacher, J.; Awange, L.; Schmied, H.M. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin. Water Resour. Res. 2016, 52, 2240–2258. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.R.; Srivastava, T.K.; Singh, P. Climate change impacts on rainfall and temperature in sugarcane growing Upper Gangetic Plains of India. Theor. Appl. Climatol. 2014, 135, 279–292. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2017, 201, 247–260. [Google Scholar] [CrossRef]
- Alam, M.; Emura, K.; Farnham, C.; Yuan, J. Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Hasson, S.; Schickhoff, U.; Scholten, T.; Böhner, J. Rising Precipitation Extremes across Nepal. Climate 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, A.M.; Bonsor, A.M.M.H.C.; Ahmed, K.M.; Burgess, W.G.; Basharat, M.; Calow, R.C.; Dixit, A.; Foster, S.S.D.; Krishan, G.; Lapworth, D.J.; et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 2016, 9, 762–766. [Google Scholar] [CrossRef]
- De Vrese, P.; Hagemann, S.; Claussen, M. Asian irrigation, African rain: Remote impacts of irrigation. Geophys. Res. Lett. 2016, 43, 3737–3745. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M.J.M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- Qureshi, A.S. Water Management in the Indus Basin in Pakistan: Challenges and Opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar] [CrossRef]
- Kumar, N.; Tischbein, B.; Beg, M.K.; Bogardi, J.J. Spatio-temporal analysis of irrigation infrastructure development and long-term changes in irrigated areas in Upper Kharun catchment, Chhattisgarh, India. Agric. Water Manag. 2018, 197, 158–169. [Google Scholar] [CrossRef]
- Hirji, R.; Nicol, A.; Davis, R. Climate Change Risks in Water Management: Climate Risks and Solutions-Adaptation Frameworks for Water Resources Planning, Development, and Management in South Asia; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Chinnasamy, P.; Hubbart, J.A.; Agoramoorthy, G. Using remote sensing data to improve groundwater supply estimations in Gujarat, India. Earth Interact. 2013, 17, 1–17. [Google Scholar] [CrossRef]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashfaq, M.; Rasul, G.; Wajid, S.A.; Khaliq, T.; Rasul, F.; Saeed, U.; Rahman, M.H.U.; Hussain, J.; Ahmad Baig, I.; et al. Impact of climate change on the Rice-Wheat cropping system of pakistan. Handb. Clim. Chang. Agroecosyst. Agric. Model. Intercomp. Improv. Proj. Integr. Crop Econ. Assess. Part 2 2015, 219–258. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Anwar, A.A.; Aslam, M. Groundwater monitoring and management: Status and options in Pakistan. Comput. Electron. Agric. 2017, 35, 143–153. [Google Scholar] [CrossRef]
- Nibanupudi, H.K.; Rawat, P.K. Environmental concerns for DRR in the HKH region. In Ecosystem Approach to Disaster Risk Reduction; National Institute of Disaster Management: New Delhi, India, 2012. [Google Scholar]
- Liu, X.; Tang, Q.; Cui, H.; Mu, M.; Gerten, D.; Gosling, S.N.; Masaki, Y.; Satoh, Y.; Wada, Y. Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations. Environ. Res. Lett. 2017, 12, 025009. [Google Scholar] [CrossRef]
- Dorji, U.; Olesen, J.E.; Bøcher, P.K.; Seidenkrantz, M.S. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover. Mt. Res. Dev. 2016, 36, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Pitman, A.J.; De Noblet-Ducoudré, N.; Cruz, F.T.; Davin, E.L.; Bonan, G.B.; Brovkin, V.; Claussen, M.; Delire, C.; Ganzeveld, L.; Gayler, V.; et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. (Special Issue: Agricultural prediction using climate model ensembles. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, U.; Saboor, A.; Baig, I.; Afzal, A. Climate Variability Impacts on Rice Crop Production in. Pak. J. Agric. Res. 2015, 28, 19–27. [Google Scholar]
- Bandyopadhyay, S.; Mosier, T.; Chonabayashi, S.; Mani, M.; Markandya, A. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed changes in extreme wet and dry spells during the south Asian summer monsoon season. Nat. Clim. Chang. 2014, 4, 456–461. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant. Cell Environ. 2007, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 54010. [Google Scholar] [CrossRef]
- Mahmood, R. Impacts of air temperature variations on the boro rice phenology in Bangladesh: Implications for irrigation requirements. Agric. For. Meteorol. 1997, 84, 233–247. [Google Scholar] [CrossRef]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293–1297. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A. review. Glob. Chang. Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Garrity, D.; O’Toole, J. Screening rice for drought resistance at the reproductive phase. Field Crop. Res. 1994, 39, 99–110. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 10. [Google Scholar] [CrossRef]
- Hijioka, Y.; Lin, E.; Pereira, J.J.; Corlett, R.T.; Cui, X.; Insarov, G.E.; Lasco, R.D.; Lindgren, E.; Surjan, A. Climate Change 2014: Impacts and Vulnerability. Part B: Regional Aspects. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Girma, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1327–1370. [Google Scholar]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Sarvestani, Z.T.; Pirdashti, H.; Sanavy, S.A.; Balouchi, H. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Cell 2013, 5, 1415–1423. [Google Scholar]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Jat, M.L. Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems; Springer: Amsterdam, The Netherlands, 2019; No. 0123456789. [Google Scholar]
- Matiu, M.; Ankerst, D.P.; Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 2017, 12, e0178339. [Google Scholar] [CrossRef] [PubMed]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 144, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, T.; Makowski, D. Decomposing global crop yield variability. Environ. Res. Lett. 2014, 9, 114011. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Islam, S.; Cenacchi, N.; Sulser, T.; Gbegbelegbe, S.; Hareau, G.; Kleinwechter, U. Structural approaches to modeling the impact of climate change and adaptation technologies on crop yields and food security. Glob. Food Sec. 2016, 10, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Dahri, Z.H.; Moors, E.; Ludwig, F.; Ahmad, S.; Khan, A. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin. Int. J. Climatol. 2017, 38, 42–60. [Google Scholar] [CrossRef]
- Khattak, M.S.; Babel, M.S.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Hussain, Z.; Ludwig, F.; Moors, E.; Ahmad, B.; Khan, A.; Kabat, P. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ. 2016, 548, 289–306. [Google Scholar]
- Papa, F.; Frappart, F.; Malbeteau, Y.; Shamsudduha, M.; Vuruputur, V.; Sekhar, M.; Bala, S. Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin. J. Hydrol. Reg. Stud. 2015, 4, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef] [Green Version]
- Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Smith, B. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Chang. Biol. 2007, 13, 679–706. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Thonicke, K. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar]
- Rost, S.; Gerten, D.; Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 2008, 18, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Biemans, H.; Speelman, L.H.; Ludwig, F.; Moors, E.J.; Wiltshire, A.J.; Kumar, P.; Kabat, P. Future water resources for food production in five South Asian river basins and potential for adaptation—A modeling study. Chang. Water Resour. Availab. North. India 2013, 468, S117–S131. [Google Scholar] [CrossRef]
- Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K. Global Water Availability and Requirements for Future Food Production. J. Hydrometeorol. 2011, 12, 885–899. [Google Scholar] [CrossRef]
- Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O. Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci. 2014, 18, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, W. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Waha, K.; Van Bussel, L.G.J.; Müller, C.; Bondeau, A. Climate-driven simulation of global crop sowing dates. Glob. Ecol. Biogeogr. 2012, 21, 247–259. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 2016, 11, 25002. [Google Scholar] [CrossRef]
- Boons-Prins, E.R. Grassland simulation with the LPJmL model. Statut. Res. Tasks Unit. Nat. Environ. 2010, 174. Available online: https://edepot.wur.nl/156130 (accessed on 14 April 2018).
- Fader, M.; Rost, S.; Müller, C.; Bondeau, A.; Gerten, A. Virtual water content of temperate cereals and maize: Present and potential future patterns. J. Hydrol. 2010, 384, 218–231. [Google Scholar] [CrossRef]
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24. Available online: http://onlinelibrary.wiley.com/doi/10.1029/2008GB003435/pdf (accessed on 23 November 2017). [CrossRef]
- Schaphoff, S.; Heyder, U.; Ostberg, S.; Gerten, D.; Heinke, J.; Lucht, W. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 2013, 8, 014026. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. HydroSHEDS Technical Documentation; v 1.0; World Wildlife Fund: Washington, DC, USA, 2008; pp. 1–27. [Google Scholar]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Nilsson, C. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Carbone, G.J.; Gao, P. Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237, 196–208. [Google Scholar] [CrossRef]
- Goldblum, D. Sensitivity of Corn and Soybean Yield in Illinois to Air Temperature and Precipitation: The Potential Impact of Future Climate Change. Phys. Geogr. 2009, 30, 27–42. [Google Scholar] [CrossRef]
- Müller, C.; Elliott, J.; Chryssanthacopoulos, J.; Arneth, A.; Balkovic, J.; Ciais, P.; Iizumi, T. Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications. Geosci. Model. Dev. 2017, 10, 1403–1422. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar]
- Tashiro, T.; Wardlaw, I.F. The Response to High Temperature Shock and Humidity Changes Prior to and During the Early Stages of Grain Development in Wheat. Funct. Plant. Biol. 1900, 17, 551–561. [Google Scholar] [CrossRef]
- Sage, T.L.; Bagha, S.; Lundsgaard-Nielsen, V.; Branch, H.A.; Sultmanis, S.; Sage, R.F. The effect of high temperature stress on male and female reproduction in plants. Field Crop. Res. 2015, 182, 30–42. [Google Scholar] [CrossRef]
- Harding, S.A.; Guikema, J.A.; Paulsen, G.M. Photosynthetic decline from high temperature stress during maturation of wheat: I. Interaction with senescence processes. Plant. Physiol. 1990, 92, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat a review.pdf. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. Heat stress in cereals: Mechanisms and modelling. Eur. J. Agron. 2015, 64, 98–113. [Google Scholar] [CrossRef]
- Khan, S.U.; Din, J.U.; Qayyum, A.; Jaan, N.E.; Jenks, M.A. Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotypes. Acta Bot. Croat. 2015, 74, 109–121. [Google Scholar]
- Mondal, S.; Singh, R.P.; Crossa, J.; Huerta-Espino, J.; Sharma, I.; Chatrath, R.; Kalappanavar, I.K. Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop. Res. 2013, 151, 19–26. [Google Scholar] [CrossRef]
- Aggarwal, P.K. Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian J. Agric. Sci. 2008, 78, 911. [Google Scholar]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Reynolds, M.P. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Nadeem, F.; Siddique, K.H.M.; Lal, R. Rice-wheat cropping systems in South Asia: Issues, options and opportunities. Crop Pasture Sci. 2019, 70, 395–427. [Google Scholar] [CrossRef]
- Arshad, M.; Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kächele, H.; Müller, K. Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy Water Environ. 2017, 15, 249–261. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Craufurd, P.Q.; Wheeler, T.R. Phenotyping Parents of Mapping Populations of Rice for Heat Tolerance during Anthesis. Crop Sci. 2008, 48, 1140–1146. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Murty, M.V.R.; Quick, W.P. Rice responses to rising temperatures-challenges, perspectives and future directions. Plant. Cell Environ. 2015, 38, 1686–1698. [Google Scholar] [CrossRef]
- Pandey, A.; Kumar, A. Rice quality under water stress. Indian J. Adv. Plant. Res. 2014, 1, 23–26. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Crop Science. Fundam. Rice Crop Sci. 1981, 65–109. [Google Scholar]
- Laborte, A.; Nelson, A.; Jagadish, K.; Aunario, J.; Sparks, A.; Ye, C.; Redoña, E. Rice feels the heat. Rice Today 2012, 11, 30–31. [Google Scholar]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Korres, N.E.; Norsworthy, J.K.; Burgos, N.R.; Oosterhuis, D.M. Temperature and drought impacts on rice production: An agronomic perspective regarding short- and long-term adaptation measures. Water Resour. Rural Dev. 2017, 9, 12–27. [Google Scholar] [CrossRef]
- Konzmann, M.; Gerten, D.; Heinke, J. Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol. Sci. J. 2013, 58, 88–105. [Google Scholar] [CrossRef]
- Ruiz Castillo, N.; Gaitán Ospina, C. Projecting Future Change in Growing Degree Days for Winter Wheat. Agriculture 2016, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ahmad, M.M.; Sharma, P. Influence of climatic and non-climatic factors on sustainable food security in India: A statistical investigation. Int. J. Sustain. Agric. Manag. Inform. 2017, 3, 1–30. [Google Scholar] [CrossRef]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. Agron. Chang. Food Secur. 2020, 9. Available online: https://books.google.nl/books?hl=en&lr=&id=Ppn8DwAAQBAJ&oi=fnd&pg=PA9&dq=Factors+Affecting+Yield+of+Crops,+Liliane&ots=u-Yik5xV0W&sig=3uoGtgb8bkv4_huvBc35wLcdCPk#v=onepage&q=Factors%20Affecting%20Yield%20of%20Crops%2C%20Liliane&f=false (accessed on 10 September 2020).
- Verón, S.R.; De Abelleyra, D.; Lobell, D.B. Impacts of precipitation and temperature on crop yields in the Pampas. Clim. Chang. 2015, 130, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Billib, M.; Bardowicks, K.; Arumi, J.L. Integrated water resources management for sustainable irrigation at the basin scale. Chil. J. Agric. Res. 2009, 69, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, M.; Das, H.; Brunini, O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. Clim. Change 2005, 70, 31–72. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K.; Stefanski, R. Climate Change and Food Security in South Asia; Springer Science: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Amisigo, B.A.; McCluskey, A.; Swanson, R. Modeling impact of climate change on water resources and agriculture demand in the Volta Basin and other basin systems in Ghana. Sustainability 2015, 7, 6957–6975. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.X.; Liao, D.Q.; Oane, R.; Estenor, L.; Yang, X.E.; Li, Z.C. Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crop. Res. 2006, 97, 87–100. [Google Scholar] [CrossRef]
- Asm, M.; Hu, A. Evaluation of Rice Lines Tolerant to Heat during Flowering Stage. Rice Res. Open Access 2016, 4, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Hedhly, A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 2011, 74, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-Temperature Effects on Rice Growth, Yield, and Grain Quality, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Semenov, M.A.; Shewry, P.R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 2011, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Ahmad, B.; Hassan, S.; Bakhsh, K. Impact of temperature ADN precipitation on rice productivity in rice-wheat cropping system of Punjab province. J. Anim. Plant. Sci. 2012, 22, 993–997. [Google Scholar]
- Kumar, P.V.; Rao, V.U.M.; Bhavani, O.; Dubey, A.P.; Singh, C.B.; Venkateswarlu, B. Sensitive growth stages and temperature thresholds in wheat (Triticum aestivum L.) for index-based crop insurance in the Indo-Gangetic Plains of India. J. Agric. Sci. 2016, 154, 321–333. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Gerten, D.; Hagemann, S.; Biemans, H.; Saeed, F.; Konzmann, M. Climate Change and Irrigation: Global Impacts and Regional Feedbacks; WATCH Technical Report; European Commission: Luxembourg, 2011. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Thiery, W.; Davin, E.L.; Lawrence, D.M.; Hirsch, A.L.; Hauser, M.; Seneviratne, S.I. Present-day irrigation mitigates heat extremes. J. Geophys. Res. 2017, 122, 1403–1422. [Google Scholar] [CrossRef]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef] [Green Version]
- Siderius, C.; Biemans, H.; Van Walsum, P.E.; Van Ierland, E.C.; Kabat, P.; Hellegers, P.J. Flexible strategies for coping with rainfall variability: Seasonal adjustments in cropped area in the Ganges basin. PLoS ONE 2016, 11, e0149397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobell, D.B.; Sibley, A. and Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Frieler, K.; Schauberger, B.; Arneth, A.; Balkovi, J.; Elliott, J.; Folberth, C. Earth’s Future Special Section: Understanding the weather signal in national crop-yield variability. Earth’s Future 2017, 5, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Climatic and Non-Climatic Input Variables | References | |||||
---|---|---|---|---|---|---|
Climatic Variables (Dynamic) | ||||||
Variable | Unit | Frequency | Resolution | Data Availability | Domain | |
Average Temperature | °C | Daily | 5 arc-min × 5 arc-min | 1981–2010 | IGB | [59] |
Precipitation | mm | Daily | 5 arc-min × 5 arc-min | 1981–2010 | IGB | [59] |
Long wave Radiation | W m−2 | Daily | 5 arc-min × 5 arc-min | 1981–2010 | IGB | [59] |
Short wave Radiation | W m−2 | Daily | 5 arc-min × 5 arc-min | 1981–2010 | IGB | [59] |
Non-climatic variables (Static) | ||||||
Land use MIRCA2000 dataset including: coordinates, country code and land use type of rainfed and irrigated agricultural land | [73] | |||||
Soil type and soil characteristics based on Harmonized World Soil Dataset (HWSD) soil dataset | [74] | |||||
Drainage direction, stream network and void fill digital elevation model (DEM) for river routing using HydroSHEDS dataset | [75] | |||||
Dams and reservoirs information (location, purpose and capacity) using Global Reservoirs and Dams Database (GRanD) | [76] | |||||
CO2 concentration (ppmv) using global annual mean CO2 values | [4] | |||||
Zone specific monsoon dependent dates for rice in kharif and 1st November for wheat crop in Rabi | [4] | |||||
Representation of irrigation canal network | [70] |
States | Wheat Yield vs. Temperature and Precipitation | Rice Yield vs. Temperature and Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
Temperature | Precipitation | Temperature | Precipitation | |||||
Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | |
Punjab Pakistan | 0.10 | 0.9 | −0.46 | 20.8 | 0.08 | 0.7 | −0.02 | 0.0 |
Punjab India | −0.06 | 0.4 | −0.09 | 0.8 | 0.13 | 1.7 | 0.15 | 2.2 |
Haryana | −0.17 | 2.9 | −0.28 | 7.7 | −0.14 | 1.8 | 0.10 | 1.0 |
Uttar Pradesh | −0.08 | 0.6 | −0.18 | 3.1 | −0.13 | 1.6 | −0.07 | 0.4 |
Nepal | 0.06 | 0.4 | 0.02 | 0.0 | −0.12 | 1.3 | 0.35 | 11.9 |
Bangladesh | −0.20 | 4.0 | 0.03 | 0.1 | −0.03 | 0.1 | −0.05 | 0.2 |
Districts | Wheat Yield vs. Temperature and Precipitation | Rice Yield vs. Temperature and Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
Temperature | Precipitation | Temperature | Precipitation | |||||
Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | |
Bahawalnagar | 0.52 ** | 26.9 | −0.06 | 0.4 | 0.13 | 1.6 | −0.17 | 2.7 |
Faisalabad | 0.55 ** | 30.7 | 0.04 | 0.2 | 0.23 | 5.3 | 0.31 | 9.8 |
Lahore | 0.54 ** | 28.7 | −0.46 | 21.3 | −0.01 | 0.0 | −0.23 | 5.5 |
Multan | 0.37 | 13.5 | −0.01 | 0.01 | 0.04 | 0.1 | 0.08 | 0.6 |
Sargodha | 0.23 | 5.5 | −0.29 | 8.4 | 0.04 | 0.2 | 0.30 | 9.1 |
Crop | Sensitive Crop Growth Phase | Climate Variable | Potential Reasons and Threats to Crop Yields | Region | References |
---|---|---|---|---|---|
Wheat | Flowering and grain-filling | Temperature | Considerable loss in grain yield | Global | [81] |
Wheat | Reproductive | Temperature | Higher temperatures during reproductive stage leads to crop yield loss | India, China | [82] |
Wheat | Reproductive | Temperature | High temperatures during reproductive phases result in a significant acceleration of leaf senescence due to oxidative damage induction in plants | Global | [83,84] |
Wheat | Booting and grain-filling | Temperature and water stress | Heat stress experienced around flowering can have large negative impacts on cereal grain yields. Water stress cause decrease in leaf area index, crop growth rates and dry matter accumulation | Pakistan | [85] |
Wheat | Anthesis/flowering and milky seed | Heat stress (temperature) | Wheat crops exposure to 35–40 °C during anthesis stage reduced yield up to 75%. | Pakistan | [86] |
Wheat | Grain filling | Temperature | Wheat crop yield is highly sensitive to higher temperature during grain filling stage i.e., every 1 degree rise in temperature can reduce 7–8% of crop yield | South Asia | [87] |
Wheat | Growing season | Temperature | Every 1 °C rise of temperature can reduce 4–5 million tons yield | India (Indo Gangetic Plane) | [88,89] |
Wheat, rice | Anthesis and grain filling | Temperature | Heat stress during anthesis results in floret abortion and pollen sterility during the reproductive phase. Indeed, at the reproductive and grain- filling stages, an increase in temperature will reduce the time required for assimilate translocation, which reduces grain yield | South Asia | [90] |
Wheat, rice | Flowering | Temperature | Extreme heat stress during flowering stage caused decreased pollen viability and stigma deposition, leading to increased grain sterility. | Pakistan | [91] |
Wheat, rice | Reproductive | Temperature | Crop exposure to extreme temperatures (both hot and cold) particularly during sensitive stages of the crop cycle (e.g., the flowering or reproductive stage) can cause physiological damage and lead to crop failure | Global | [43] |
Rice | Flowering | Heat stress | Higher night time temperatures (beyond 22 °C) negatively affect grain yield due to altered pollen germination and enhanced spikelet fertility | India, South Asia | [92,93] |
Rice | Flowering | Temperature | Yield reduction, Season-long heat stress can reduce photosynthesis and accelerate senescence | IGB | [47] |
Rice | Flowering, booting and grain filling | Water Stress | Soil water deficit during flowering and grain filling reduces yield and quality | Global | [94] |
Rice | Vegetative, flowering and grain filling | Water stress | Water deficit during vegetative, flowering and grain filling stages reduced yield. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation. | Iran | [46] |
Rice | Growing season | Temperature and water stress | Temperature and water availability above or below optimal threshold ranges for longer duration cause a huge yield | India | [95] |
Rice | Reproductive and grain-filling | Temperature | Higher temperatures at anthesis and grain formation cause poor anther dehiscence and panicle sterility can substantially reduce grain yields | South Asia | [90] |
Rice | Gametogenesis/flowering | Heat stress | Heat stress during flowering stage affects the pollen viability and hence affects the yields | South Asia | [93] |
Rice | Reproductive and ripening | Heat and water stress | Extremely high temperatures and lack of water can cause complete sterility, while high temperatures during ripening can lead to reduced grain filling and poor milling quality (i.e., more broken grains) and can have reduced rice yields—by as much as 10% for every 1 degree increase in minimum temperature. | Asia | [96] |
Rice | Vegetative and reproductive | Heat stress | Heat stress affects the overall crop development and growth process by accelerating the crop maturity | Bangladesh | [39] |
Rice | Anthesis and grain filling | Temperature | Combination of high temperature and low light may seriously affect grain weight and percentage of filled spikelet. | Global | [41] |
States | Wheat Yield (Rabi Season) | Rice Yield (Kharif Season) | ||||||
---|---|---|---|---|---|---|---|---|
Temperature | Precipitation | Temperature | Precipitation | |||||
Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | Corr (r) | R2 (%) | |
Punjab Pakistan | −0.63 *** | 40.0 | 0.34 | 11.0 | −0.74 *** | 55.0 | 0.82 *** | 67.0 |
Punjab India | −0.52 ** | 27.0 | −0.18 | 0.0 | −0.68 *** | 47.0 | 0.81 *** | 65.0 |
Haryana | −0.56 *** | 32.0 | 0.0 | 0.0 | −0.51 ** | 26.0 | 0.87 *** | 75.0 |
Uttar Pradesh | −0.67 *** | 45.0 | 0.14 | 0.0 | −0.72 *** | 52.0 | 0.43 *** | 18.0 |
Nepal | −0.85 *** | 72.0 | 0.57 *** | 33.0 | −0.41 * | 17.0 | −0.25 | 0.1 |
Bangladesh | −0.72 *** | 52.0 | 0.62 *** | 39.0 | −0.73 *** | 54.0 | 0.02 | 0.0 |
(a) | Correlation (R2 in %) of Wheat Yield (Rabi Season) | |||||
States | Phase-Specific Temperature | Phase-Specific Precipitation | ||||
Vegetative | Reproductive | Ripening | Vegetative | Reproductive | Ripening | |
Punjab Pakistan | −0.42 (17.0) * | −0.79 (63.0) *** | −0.02 (0.0) | 0.66 (43.0) | 0.51 (26.0) | 0.53 (28.0) |
Punjab India | −0.26 (07.0) | −0.61 (37.0) *** | −0.02 (0.0) | 0.27 (7.0) | 0.66 (43.0) | 0.18 (03.0) |
Haryana | −0.43 (18.0) ** | −0.75 (56.0) *** | 0.02 (04.0) | 0.26 (7.0) | 0.66 (44.0) | 0.01 (0.0) |
Uttar Pradesh | −0.52 (28.0) ** | −0.85 (72.0) *** | −0.13 (0.01) | 0.46 (21.0) | 0.75 (56.0) | −0.04 (0.0) |
Nepal | −0.72 (52.0) *** | −0.86 (73.0) *** | −0.01 (03.0) | 0.43 (18.0) | 0.49 (24.0) | 0.35 (12.0) |
Bangladesh | −0.32 (10.0) * | −0.33 (11.0) * | −0.26 (0.0) | 0.34 (11.0) | −0.12 (01.0) | −0.35 (12.0)* |
(b) | Correlation (R2) of Rice Yield (Kharif Season) | |||||
States | Phase-Specific Temperature | Phase-Specific Precipitation | ||||
Vegetative | Reproductive | Ripening | Vegetative | Reproductive | Ripening | |
Punjab Pakistan | −0.59 (35.0) *** | −0.61 (38.0) *** | −0.38 (14.0) * | 0.45 (20.0) | 0.77 (59.0) | 0.19 (04.0) |
Punjab India | −0.57 (32.0) *** | −0.54 (30.0) *** | −0.48 (23.0) ** | 0.45 (21.0) | 0.72 (52.0) | 0.41 (16.0) |
Haryana | −0.43 (18.0) ** | −0.39 (15.0) * | −0.33 (11.0) * | 0.58 (33.0) | 0.71 (50.0) | −0.53 (28.0) ** |
Uttar Pradesh | −0.61 (37.0) *** | −0.71 (50.0) *** | 0.04 (0.0) | 0.68 (46.0) | 0.39 (15.0) | −0.52 (27.0) ** |
Nepal | −0.08 (01.0) | −0.33 (11.0) * | −0.31 (09.0) * | −0.20 (04.0) | −0.18 (03.0) | −0.15 (02.0) |
Bangladesh | −0.54 (29.0) ** | −0.66 (44.0) *** | −0.62 (39.0) *** | 0.50 (25.0) | 0.58 (34.0) | −0.03 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Q.-u.-A.; Biemans, H.; Moors, E.; Shaheen, N.; Masih, I. The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia. Water 2021, 13, 50. https://doi.org/10.3390/w13010050
Ahmad Q-u-A, Biemans H, Moors E, Shaheen N, Masih I. The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia. Water. 2021; 13(1):50. https://doi.org/10.3390/w13010050
Chicago/Turabian StyleAhmad, Qurat-ul-Ain, Hester Biemans, Eddy Moors, Nuzba Shaheen, and Ilyas Masih. 2021. "The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia" Water 13, no. 1: 50. https://doi.org/10.3390/w13010050
APA StyleAhmad, Q.-u.-A., Biemans, H., Moors, E., Shaheen, N., & Masih, I. (2021). The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia. Water, 13(1), 50. https://doi.org/10.3390/w13010050