Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Changes to Study Site
2.3. Measurement and Reporting of Infiltration Rate
2.4. Description of Maintenance Practices
2.4.1. Hand-Held Pressure Washer and Vacuum
2.4.2. Leaf Blower and Push Broom
2.4.3. Vacuum-Assisted Street Cleaner
2.4.4. Manual Disturbance of PICP Aggregate
2.4.5. Pressure Washing and Vacuuming
2.4.6. Compressed Air and Vacuuming
2.5. Statistical Evaluation
3. Results
3.1. Surface Heterogeneity
3.2. Surface Clogging
3.3. Maintenance Practice Results
3.3.1. Hand-Held Pressure Washing and Vacuuming
3.3.2. Leaf Blower and Push Broom
3.3.3. Vacuum-Assisted Street Cleaning
3.3.4. Manual Disturbance of PICP Aggregate
3.3.5. Pressure Washing and Vacuuming
3.3.6. Compressed Air and Vacuuming
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Selbig, W.R.; Buer, N. Hydraulic, Water-Quality, and Temperature Performance of Three Types of Permeable Pavement under High Sediment Loading Conditions; U.S. Geol. Surv. Sci. Investig. Rep. 2018–5037; US Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Selbig, W.R.; Buer, N.; Danz, M.E. Stormwater-quality performance of lined permeable pavement systems. J. Environ. Manag. 2019, 251, 109510. [Google Scholar] [CrossRef] [PubMed]
- Fassman, E.A.; Blackbourn, S. Urban runoff mitigation by a permeable pavement system over impermeable soils. J. Hydrol. Eng. 2010, 15, 475–485. [Google Scholar] [CrossRef]
- Rushton, B.T. Low-Impact Parking Lot Design Reduces Runoff and Pollutant Loads. J. Water Resour. Plan. Manag. 2001, 127, 172–179. [Google Scholar] [CrossRef]
- Pratt, C.J.; Mantle, J.D.G.; Schofield, P.A. UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality. Water Sci. Technol. 1995, 32, 63–69. [Google Scholar] [CrossRef]
- Watanabe, S. Study on Stormwater Control by Permeable Pavement and Infiltration Pipes. Water Sci. Technol. 1995, 32, 25–32. [Google Scholar] [CrossRef]
- Drake, J.; Bradford, A.; Van Seeters, T. Evaluation of Permeable Pavements in Cold Climates—Kortright Centre, Vaughan; Toronto and Region Conservation Authority: Toronto, ON, Canada, 2012. Available online: https://sustainabletechnologies.ca/app/uploads/2013/02/KPP-Final-2012.pdf (accessed on 20 April 2020).
- Wardynski, B.; Winston, R.; Hunt, W. Enhancement of exfiltration and thermal load reduction from permeable pavement with internal water storage. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012; pp. 349–359. [Google Scholar] [CrossRef]
- Eisenberg, B.; Lindow, K.C.; Smith, D.R. Permeable Pavements; American Society of Civil Engineers: Reston, VA, USA, 2015; p. 249. [Google Scholar] [CrossRef]
- Pezzaniti, D.; Beecham, S.; Kandasamy, J. Influence of clogging on the effective life of permeable pavements. Proc. Inst. Civ. Eng. Water Manag. 2009, 162, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Gerrits, C.; James, W. Restoration of Infiltration Capacity of Permeable Pavers. In Global Solutions for Urban Drainage; American Society of Civil Engineers (ASCE) Publication Division: Reston, VA, USA, 2002; pp. 1–16. [Google Scholar] [CrossRef]
- Brattebo, B.O.; Booth, D.B. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res. 2003, 37, 4369–4376. [Google Scholar] [CrossRef]
- Baladès, J.D.; Legret, M.; Madiec, H. Permeable Pavements: Pollution Management Tools. Water Sci. Technol. 1995, 32, 49–56. [Google Scholar] [CrossRef]
- Chopra, M.; Stuart, E.; Wanielista, M.P. Pervious Pavement Systems in Florida—Research Results. In Proceedings of the 2010 International Low Impact Development Conference—Redefining Water in the City, San Francisco, CA, USA, 11–14 April 2010; American Society of Civil Engineering: Reston, VA, USA, 2010; pp. 193–206. [Google Scholar] [CrossRef]
- Sehgal, K.; Drake, J.; Van Seters, T.; Vander Linden, W.K. Improving restorative maintenance practices for mature permeable interlocking concrete pavements. Water 2018, 10, 1588. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Rissmeyer, D. Can One Machine Clean All Permeable Pavements? Available online: https://runoffreducer.com/wp-content/uploads/2017/08/SWM-PAVE-Cyclone-CY5500.pdf (accessed on 4 January 2020).
- Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate—The effects of street sweeping, vacuum cleaning, high pressure washing, and milling. J. Environ. Manag. 2016, 169, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.; Bradford, A. Assessing the potential for restoration of surface permeability for permeable pavements through maintenance. Water Sci. Technol. 2013, 68, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Selbig, W.R. Storm Characteristics, Concentrations, and Loads Measured at the Permeable Pavement Research Facility, Madison, Wisconsin (2014–2016); US Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Wisconsin Department of Natural Resources Stormwater Post-Construction Technical Standards for Permeable Pavement 2016, Conservation Practice Standard 1008. Available online: http://dnr.wi.gov/topic/Stormwater/standards/postconst_standards.html (accessed on 20 April 2020).
- American Society of Testing and Materials ASTM C33–02a—Standard Test Method for Infiltration Rate of in Place Pervious Concrete 2009, ASTM C33–02a. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/C33-02.htm (accessed on 20 April 2020).
- Pave Tech Inc. Available online: https://www.pavetech.com/typhoon-picp-maintenance-solutions (accessed on 4 January 2020).
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources: U.S. Geological Survey Techniques of Water Resources Investigations; Version 1; U.S. Geological Survey: Reston, VA, USA, 2002; ISBN 04-A3.
- Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A. Field survey of permeable pavement surface infiltration rates. J. Irrig. Drain. Eng. 2007, 133, 249–255. [Google Scholar] [CrossRef]
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Hydrologic Comparison of Four Types of Permeable Pavement and Standard Asphalt in Eastern North Carolina. J. Hydrol. Eng. 2008, 13, 1146–1157. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Avellaneda, P.; Briggs, J.; Fowler, G.; Wildey, R. Seasonal performance variations for storm-water management systems in cold climate conditions. J. Environ. Eng. 2009, 135, 128–137. [Google Scholar] [CrossRef]
- Kayhanian, M.; Anderson, D.; Harvey, J.T.; Jones, D.; Muhunthan, B. Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots. J. Environ. Manag. 2012, 95, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Borst, M. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches. J. Hydrol. Eng. 2015, 20, 04014041. [Google Scholar] [CrossRef]
- James, W.; Von Langsdorff, H.; McIntyre, M. Permeable pavers designed for rapid renewal by considering sweeper mechanics: Initial field tests. J. Water Manag. Model. 2018, 26, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kia, A.; Wong, H.S.; Cheeseman, C.R. Clogging in permeable concrete: A review. J. Environ. Manag. 2017, 193, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Chopra, M.; Kakuturu, S.; Ballock, C.; Spence, J.; Wanielista, M. Effect of rejuvenation methods on the infiltration rates of pervious concrete pavements. J. Hydrol. Eng. 2010, 15, 426–433. [Google Scholar] [CrossRef]
- Al-Rubaei, A.M.; Stenglein, A.L.; Viklander, M.; Blecken, G.T. Long-Term hydraulic performance of porous asphalt pavements in Northern Sweden. J. Irrig. Drain. Eng. 2013, 139, 499–505. [Google Scholar] [CrossRef]
Discrete Location | M1 | M2 | M3 | M4 | M5 | M6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | ||
PICP | 1 | - | - | <23 | <23 | <23 | <23* | <23 | 660 | <23 | 1130 | <23 | 1185 |
2 | - | - | <23 | 58 | <23 | 437 | <23 | 468 | <23 | 1311 | <23 | 1537 | |
3 | - | - | <23 | 393 | 74 | 128 | <23 | 1185 | 38 | 1214 | <23 | 1725 | |
4 | - | - | <23 | <23 | <23 | <23* | 45 | 688 | 108 | 1171 | <23 | 1130 | |
5 | - | - | <23 | <23 | <23 | 1967 | 768 | 793 | 540 | 886 | 262 | 1513 | |
6 | - | - | <23 | 87 | <23 | 437 | <23 | 1118 | 723 | 902 | <23 | 1513 | |
7 | - | - | <23 | <23 | <23 | <23* | <23 | 697 | 375 | 707 | <23 | 1725 | |
8 | - | - | <23 | 66 | <23 | 468 | <23 | 1105 | 422 | 768 | <23 | 1696 | |
9 | - | - | 457 | 546 | 457 | 886 | 1171 | 1277 | 1214 | 1347 | 345 | 1756 | |
Average | - | - | 71 | 138 | 77 | 488 | 235 | 888 | 385 | 1049 | 85 | 1531 | |
% change | - | 94% | 535% | 278% | 172% | 1703% | |||||||
p-value | - | 0.02 | 0.02 | <0.01 | <0.01 | <0.01 | |||||||
PC | 1 | <23 | 33 | - | - | <23 | <23 | - | - | 32 | 378 | <23 | 307** |
2 | <23 | <23* | - | - | <23 | <23 | - | - | 50 | 129 | <23 | 49** | |
3 | 41 | 41* | - | - | <23 | <23 | - | - | 58 | 428 | <23 | 113 | |
4 | 30 | 66 | - | - | <23 | <23 | - | - | 41 | 562 | <23 | 199** | |
5 | 36 | 36* | - | - | <23 | <23 | - | - | 262 | 386 | 91 | 154** | |
6 | 1118 | 1118* | - | - | 53 | <23 | - | - | 209 | 378 | 66 | 226 | |
7 | 36 | 109 | - | - | <23 | 25 | - | - | 73 | 468 | <23 | 317 | |
8 | 109 | 109* | - | - | <23 | <23 | - | - | 518 | 298 | 91 | 191 | |
9 | 1092 | 1092* | - | - | 546 | 333 | - | - | 651 | 618 | 401 | 492 | |
Average | 279 | 292 | - | - | 84 | 58 | - | - | 210 | 405 | 85 | 227 | |
% change | 5% | - | −32% | - | 92% | 169% | |||||||
p-value | 0.05 | - | 0.86 | - | 0.02 | <0.01 | |||||||
PA | 1 | - | - | - | - | 25 | 46 | - | - | - | - | 1214 | 1756 |
2 | - | - | - | - | <23 | <23 | - | - | - | - | 1130 | 1667 | |
3 | - | - | - | - | 25 | <23 | - | - | - | - | 1425 | 1855 | |
4 | - | - | - | - | 518 | 518 | - | - | - | - | 1639 | 2399 | |
5 | - | - | - | - | 333 | 393 | - | - | - | - | 1788 | 2658 | |
6 | - | - | - | - | 492 | 615 | - | - | - | - | 1696 | 2138 | |
7 | - | - | - | - | 452 | 562 | - | - | - | - | 1667 | 2235 | |
8 | - | - | - | - | 56 | 84 | - | - | - | - | 1405 | 2049 | |
9 | - | - | - | - | 719 | 806 | - | - | - | - | 1199 | 1667 | |
Average | - | - | - | - | 294 | 341 | - | - | - | - | 1463 | 2047 | |
% change | - | - | 16% | - | - | 40% | |||||||
p-value | - | - | 0.02 | - | - | <0.01 |
This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighboring rights (https://creativecommons.org/publicdomain/mark/1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
Share and Cite
Danz, M.E.; Selbig, W.R.; Buer, N.H. Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement. Water 2020, 12, 1563. https://doi.org/10.3390/w12061563
Danz ME, Selbig WR, Buer NH. Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement. Water. 2020; 12(6):1563. https://doi.org/10.3390/w12061563
Chicago/Turabian StyleDanz, Mari E., William R. Selbig, and Nicolas H. Buer. 2020. "Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement" Water 12, no. 6: 1563. https://doi.org/10.3390/w12061563
APA StyleDanz, M. E., Selbig, W. R., & Buer, N. H. (2020). Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement. Water, 12(6), 1563. https://doi.org/10.3390/w12061563