The Effect of Salinity on the Growth of Lavender Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Growth Conditions
2.2. Experimental Design and Irrigation Treatments
2.3. Plant Growth Variables
2.4. Physical-Hydraulic Properties of Substrate
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical–Hydraulic Properties of Substrate
3.2. Symptoms Induced by Salinity
3.3. Plant Growth
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daniele, L.; Vallejos, A.; Sola, F.; Corbella, M.; Pullido-Bosch, A. Hydrogeochemical processes in the vicinity of a desalination plant (Cabo de Gata, SE Spain). Desalination 2011, 277, 338–347. [Google Scholar] [CrossRef]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Liakou, E. Θεσμικό πλαίσιο για την επαναχρησιμοποίηση επεξεργασμένων υγρών αστικών αποβλήτων (Legislative Framework For the Reuse of Treated Urban Waste Water); Hμερίδα, Eπαναχρησιμοποίηση αστικών λυμάτων για άρδευση, Θεσμικό πλαίσιο, εφαρμογές και προοπτικές για την Eλλάδα. Δ.E.Υ.A.X. και Πολυτεχνείο Κρήτης: Xανιά, Eλλάδα, 2013. [Google Scholar]
- Cai, X.; Sun, Y.; Starman, T.; Hall, C. Response of 18 Earth-Kind Rose Cultivars to Salt Stress. HortScience 2014, 49, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Pessarakli, M.; Szabolcs, I. Soil salinity and sodicity as particular plant/crop stress factors. In Handbook of Plant and Crop Stress, 3rd ed.; Pessarakli, M., Ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2011; pp. 3–21. [Google Scholar]
- Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D. Φυσιολογία Καταπονήσεων των Φυτών: Οι λειτουργίες των φυτών κάτω από αντίξοες συνθήκες του περιβάλλοντος (Plant Stress Physiology: Plant Functioning under Environmental Stress); Εκδόσεις Έμβρυο: Egaleo, Greece, 2012. [Google Scholar]
- Lambers, H. Dryland salinity: A key environmental issue in southern Australia. Plant Soil 2003, 257. [Google Scholar] [CrossRef]
- Batool, N.; Shahzad, A.; Ilyas, N. Plants and Salt stress. Int. J. Agric. Crop. Sci. 2014, 7, 1439–1446. [Google Scholar]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotox. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- James, R.A.; Rivelli, A.R.; Munns, R.; von Caemmerer, S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Fun. Plant Biol. 2002, 29, 1393–1403. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Bernstein, L. Effects of salinity and sodicity on plant growth. Ann. Rev. Phytopathol. 1975, 13, 295–312. [Google Scholar] [CrossRef]
- Nikaya, A.; Masui, M.; Ishida, A. Salt tolerance of muskmelons in sand nutrient solution cultures. J. Jpn. Soc. Hort. Sci. 1983, 49, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Carillo, P.; Annunziata, M.G.; Pontecorvo, G.; Fuggi, A.; Woodrow, P. Salinity Stress and Salt Tolerance. In Abiotic Stress in Plants–Mechanisms and Adaptations; Shanker, A., Ed.; Tech: Rijeka, Croatia, 2011; pp. 21–38. [Google Scholar]
- Demiral, M.A. Effect of salt stress on concentration of nitrogen and phosphorus in root and leaf of strawberry plant. Eurasian J. Soil Sci. 2017, 6, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Grieve, C.M. Review: Irrigation of floricultural and nursery crops with saline wastewaters. Isr. J. Plant Sci. 2011, 59, 187–196. [Google Scholar] [CrossRef]
- Shillo, R.; Ding, M.; Pasternak, D.; Zaccai, M. Cultivation of cut flower and bulb species with saline water. Sci. Hortic. 2002, 92, 41–54. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Carrión, C.; Noguera, V.; García-Agustín, P.; Abad, M. Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Sci. Hortic. 2007, 113, 52–59. [Google Scholar] [CrossRef]
- Plaza, B.M.; Jiménez-Becker, S.; García-Caparrós, P.; del M. Verdejo, M. Influence of Salinity on Vegetative Growth of Six Native Mediterranean Species. Acta Hortic. 2015, 1099, 755–760. [Google Scholar] [CrossRef]
- The Plant List (2013). Version 1.1. Available online: http://www.theplantlist.org/1.1/browse/A/Lamiaceae/Lavandula/ (accessed on 6 January 2020).
- Schaminée, J.H.J.; Chytrý, M.; Hennekens, S.M.; Janssen, J.A.M.; Jiménez-Alfaro, B.; Knollová, I.; Marceno, C.; Mucina, L.; Rodwell, J.S.; Tichý, L. Review of Grassland Habitats and Development of Distribution Maps of Heathland, Scrub and Tundra Habitats of EUNIS Habitats Classification; Report EEA/NSV/15/005; Stichting Dienst Landbouwkundig Onderzoek–Alterra (ALT): Wageningen, The Netherlands, 2016. [Google Scholar]
- Polunin, O. Flowers of Greece and the Balkans, a Field Guide; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Lavandula multifida response to salinity: Growth, nutrient uptake, and physiological changes. J. Plant Nutr. Soil Sci. 2016, 1–9. [Google Scholar] [CrossRef]
- Haines, W.B. Studies in the physical properties of soils. V. The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith. J. Agric. Sci. 1930, 20, 97–116. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonck, O. The physical properties of the substrates in horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.H. Soilless Culture Theory and Practice; Elsevier BV: London, UK, 2008; p. 587. [Google Scholar]
- Naaz, R.; Bussières, P. Particle Sizes Related to Physical Properties of Peat-Based Substrates. Acta Hortic. 2011, 893, 971–978. [Google Scholar] [CrossRef]
- Caser, M.; Scariot, V.; Gaino, W.; Larcher, F.; Devecchi, M. The Effects of Sodium Chloride on the Aesthetic Value of Buxus spp. Eur. J. Hort. Sci. 2013, 78, 153–159. [Google Scholar]
- Cassaniti, C.; Leonardi, C.; Flowers, T.J. The effect of sodium chloride on ornamental shrubs. Sci. Hortic. 2009, 122, 586–593. [Google Scholar] [CrossRef]
- Cassaniti, C.; Romano, D.; Flowers, T.J. The Response of Ornamental Plants to Saline Irrigation Water. In Irrigation-Water Management, Pollution and Alternative Strategies; Garcia-Garizabal, I., Ed.; Tech: London, UK, 2012; pp. 131–158. [Google Scholar]
- Niu, G.; Rodriguez, D.S. Relative salt tolerance of selected herbaceous perennials and groundcovers. Sci. Hortic. 2006, 110, 352–358. [Google Scholar] [CrossRef]
- Rodríguez, P.; Torrecillas, A.; Morales, M.A.; Ortuño, M.F.; Sánchez-Blanco, M.J. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ. Exp. Bot. 2005, 53, 113–123. [Google Scholar] [CrossRef]
- Navarro, A.; Bañon, S.; Olmos, E.; Sánchez-Blanco, M.J. Effect of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci. 2007, 172, 473–480. [Google Scholar] [CrossRef]
- Torrecillas, A.; Rodríguez, P.; Sánchez-Blanco, M.J. Comparison of growth, leaf water relations and gas exchange of Cistus albidus and C. monspeliensis plants irrigated with water of different NaCl salinity levels. Sci. Hortic. 2003, 97, 353–368. [Google Scholar] [CrossRef]
- Bañón, S.; Fernández, J.A.; Ochoa, J.; Sánchez-Blanco, M.J. Paclobutrazol as an aid to reduce some effects of salt stress in oleander seedlings. Eur. J. Hort. Sci. 2005, 70, 43–49. [Google Scholar]
- Niu, G.; Rodriguez, D.S. Relative salt tolerance of five herbaceous perennials. Hortscience 2006, 41, 1493–1497. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, J.J.; Morales, M.A.; Ferrández, T.; Sánchez-Blanco, M.J. Effects of water and salt stress on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotech. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Imbrahim, K.M.; Collins, J.C.; Collin, H.A. Effects of salinity on growth and ionic composition of Coleus blumei and Salvia splendens. J. Hortic. Sci. 2015, 66, 215–222. [Google Scholar] [CrossRef]
- Luttge, U.; Smith, J.A.C. Structural, biophysical and biochemical aspects of the role of leaves in plant adaption to salinity and water stress. In Salinity Tolerance in Plant. Strategies for Crop Improvement; Staples, R.C., Toenniessen, G.H., Eds.; Wiley International: New York, NY, USA, 1984; pp. 125–150. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence, a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Ikeda, T.; Itoh, R. Effect of NaCl salinity photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 1999, 42, 211–220. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Brenzel, K.N. Sunset Western Garden Book; Sunset Publishing Corporation: Oakland, CA, USA, 2007; p. 768. [Google Scholar]
- Sfikas, G. Αγριολούλουδα της Κρήτης (Wildflowers of Crete); Eυσταθιάδης και Υιοί A.E.: Aθήνα, Eλλάδα, 1987; p. 310. [Google Scholar]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Baas, R.; Nijssen, H.M.C.; van den Berg, T.J.M.; Warmenhoven, M.G. Yield and quality of carnation (Dianthus caryophyllus L.) and gerbera (Gerbera jamesonii L.) in a closed nutrient system as affected by sodium chloride. Sci. Hortic. 1995, 61, 273–284. [Google Scholar] [CrossRef]
- Sonneveld, C.; Baas, R.; Nijssen, H.M.C.; de Hoog, J. Salt Tolerance of Flower Crops Grown in Soilless Culture. J. Plant Nutr. 1999, 22, 1033–1048. [Google Scholar] [CrossRef]
- Cai, X.; Niu, G.; Starman, T.; Hall, C. Response of six garden roses (Rosa x hybrida L.) to salt stress. Sci. Hortic. 2014, 168, 27–32. [Google Scholar] [CrossRef]
- Rajzmoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of Salinity and Drought Stresses on Growth Parameters and Essential Oil Content of Matricaria chamomila. Int. J. Agric. Biol. 2008, 10, 451–454. [Google Scholar]
- Wahome, P.K.; Jesch, H.H.; Grittner, I. Effect of NaCl on the vegetative growth and flower quality of roses. J. Appl. Bot. 2000, 74, 38–41. [Google Scholar]
Total Porosity 1 (cm3 cm−3) | Airspace 2 (cm3 cm−3) | Water Content at −10 cm (cm3 cm−3) | Water Content at −50 cm (cm3 cm−3) | Easily Available Water 3 (cm3 cm−3) | Water Buffering Capacity 4 (cm3 cm−3) |
---|---|---|---|---|---|
0.88 | 0.12 | 0.76 | 0.46 | 0.30 | 0.13 |
Particle Size (mm) | Particle Size Distribution (% by wt) |
---|---|
>20 | 1.24 |
20–16 | 1.18 |
16–10 | 2.09 |
10–8 | 6.70 |
8–4 | 18.19 |
4–2 | 20.79 |
2–1 | 21.85 |
1–0.5 | 11.22 |
0.5–0.25 | 7.18 |
0.25–0.106 | 3.94 |
0.106–0.053 | 2.72 |
<0.053 | 2.90 |
NaCl Solution | |||||
---|---|---|---|---|---|
Species | 0 mM (Control) | 25 mM | 50 mM | 100 mM | 200 mM |
L. angustifolia | 1* | 2 | 3 | 5 | 5 |
L. stoechas | 1 | 2 | 3 | 5 | 5 |
L. dentata var. candicans | 1 | 2 | 3 | 4.0 | 5 |
L. dentata var. dentata | 1.5 | 2 | 3 | 4.5 | 5 |
Day | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
L. angustifolia | 16.467 ± 0.456c | 18.047 ± 0.389c | 18.583 ± 0.408c | 19.063 ± 0.405c | 19.257 ± 0.390c | 19.267 ± 0.412c | -† | - | |
L. stoechas | 25.700 ± 0.456b | 28.510 ± 0.389b | 29.023 ± 0.408b | 29.657 ± 0.405b | 30.463 ± 0.390b | 31.810 ± 0.412b | - | - | |
L. dentata var candicans | 25.583 ± 0.456b | 27.410 ± 0.389b | 28.207 ± 0.408b | 28.900 ± 0.405b | 29.280 ± 0.390b | 29.623 ± 0.412b | - | - | |
L. dentata var. dentata | 29.767 ± 0.456a | 33.327 ± 0.389a | 34.617 ± 0.408a | 36.237 ± 0.405a | 37.603 ± 0.390a | 38.840 ± 0.412a | - | - | |
NaCl (mM) | |||||||||
0 mM (control) | ns | ns | 27.779 ± 0.456ab | 28.825 ± 0.453a | 29.983 ± 0.436a | 31.463 ± 0.461a | - | - | |
25 mM | ns | ns | 27.763 ± 0.456ab | 28.850 ± 0.453a | 29.450 ± 0.436a | 30.275 ± 0.461ab | - | - | |
50 mM | ns | ns | 28.525 ± 0.456a | 29.392 ± 0.453a | 30.271 ± 0.436a | 30.829 ± 0.461a | - | - | |
100 mM | ns | ns | 27.467 ± 0.456ab | 28.213 ± 0.453ab | 28.604 ± 0.436ab | 28.904 ± 0.461bc | - | - | |
200 mM | ns | ns | 26.504 ± 0.456b | 27.042 ± 0.453b | 27.446 ± 0.436b | 27.954 ± 0.461c | - | - | |
Interaction (species x NaCl) | |||||||||
L. angustifolia x | 0 mM (control) | ns | ns | ns | ns | ns | ns | 18.817 ± 0.936i | 18.817 ± 0.985j |
25 mM | ns | ns | ns | ns | ns | ns | 19.300 ± 0.936i | 19.300 ± 0.985j | |
50 mM | ns | ns | ns | ns | ns | ns | 19.683 ± 0.936i | 19.817 ± 0.985j | |
100 mM | ns | ns | ns | ns | ns | ns | 20.083 ± 0.936i | 20.083 ± 0.985j | |
200 mM | ns | ns | ns | ns | ns | ns | 18.367 ± 0.936i | 18.367 ± 0.985j | |
L. stoechas x | 0 mM (control) | ns | ns | ns | ns | ns | ns | 35.950 ± 0.936bcde | 36.283 ± 0.985cdef |
25 mM | ns | ns | ns | ns | ns | ns | 32.483 ± 0.936cdefg | 32.950 ± 0.985defgh | |
50 mM | ns | ns | ns | ns | ns | ns | 33.500 ± 0.936cdef | 33.750 ± 0.985defg | |
100 mM | ns | ns | ns | ns | ns | ns | 31.400 ± 0.936efgh | 31.400 ± 0.985fghi | |
200 mM | ns | ns | ns | ns | ns | ns | 29.567 ± 0.936fgh | 29.567 ± 0.985ghi | |
L. dentata var. candicans x | 0 mM (control) | ns | ns | ns | ns | ns | ns | 32.100 ± 0.936defg | 32.517 ± 0.985defgh |
25 mM | ns | ns | ns | ns | ns | ns | 30.600 ± 0.936fgh | 30.600 ± 0.985ghi | |
50 mM | ns | ns | ns | ns | ns | ns | 31.633 ± 0.936efgh | 31.633 ± 0.985efgh | |
100 mM | ns | ns | ns | ns | ns | ns | 27.950 ± 0.936gh | 27.950 ± 0.985hi | |
200 mM | ns | ns | ns | ns | ns | ns | 27.183 ± 0.936h | 26.467 ± 0.985i | |
L. dentata var. dentata x | 0 mM (control) | ns | ns | ns | ns | ns | ns | 41.600 ± 0.936a | 42.183 ± 0.985a |
25 mM | ns | ns | ns | ns | ns | ns | 40.917 ± 0.936a | 41.500 ± 0.985ab | |
50 mM | ns | ns | ns | ns | ns | ns | 40.333 ± 0.936ab | 40.333 ± 0.985abc | |
100 mM | ns | ns | ns | ns | ns | ns | 36.833 ± 0.936abcd | 36.933 ± 0.985bcd | |
200 mM | ns | ns | ns | ns | ns | ns | 36.983 ± 0.936abc | 36.517 ± 0.985bcde | |
Fspecies/sig. | 151.694/0.000* | 270.206/0.000* | 266.763/0.000* | 305.079/0.000* | 375.767/0.000* | 386.198/0.000* | 397.793/0.000 | 364.676/0.000 | |
FΝaCl/sig. | 2.158/0.079 | 1.641/0.170 | 2.568/0.043* | 3.926/0.005* | 6.909/0.000* | 9.685/0.000* | 12.834/0.000 | 14.908/0.000 | |
Finteraction/sig. | 0.981/0.472 | 1.135/0.341 | 0.740/0.709 | 0.695/0.753 | 1.272/0.247 | 1.374/0.191 | 1.856/0.049* | 1.961/0.036* |
Day | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
L. angustifolia | 15.940 ± 0.413c | 18.747 ± 0.441c | 19.473 ± 0.417c | 19.903 ± 0.418c | 20.037 ± 0.412c | 20.407 ± 0.415c | 20.510 ± 0.418c | 20.533 ± 0.419c | |
L. stoechas | 21.890 ± 0.413b | 26.647 ± 0.441b | 27.600 ± 0.417b | 28.330 ± 0.418b | 29.173 ± 0.412b | 29.950 ± 0.415b | 30.417 ± 0.418b | 30.417 ± 0.419b | |
L. dentata var. candicans | 27.233 ± 0.413a | 31.457 ± 0.441a | 32.873 ± 0.417a | 33.840 ± 0.418a | 34.097 ± 0.412a | 34.427 ± 0.415b | 34.473 ± 0.418b | 34.473 ± 0.419b | |
L. dentata var. dentata | 26.350 ± 0.413a | 31.750 ± 0.441a | 32.603 ± 0.417a | 34.477 ± 0.418a | 35.203 ± 0.412a | 37.160 ± 0.415a | 37.797 ± 0.418a | 37.863 ± 0.419a | |
NaCl (mM) | |||||||||
0 mM (control) | ns | ns | ns | ns | ns | ns | 32.021 ± 0.467a | 32.117 ± 0.469a | |
25 mM | ns | ns | ns | ns | ns | ns | 31.063 ± 0.467ab | 31.079 ± 0.469ab | |
50 mM | ns | ns | ns | ns | ns | ns | 31.125 ± 0.467ab | 31.125 ± 0.469ab | |
100 mM | ns | ns | ns | ns | ns | ns | 30.163 ± 0.467b | 30.163 ± 0.469b | |
200 mM | ns | ns | ns | ns | ns | ns | 29.625 ± 0.467b | 29.625 ± 0.469b | |
Fspecies/sig. | 156.673/0.000* | 189.365/0.000* | 226.035/0.000* | 260.722/0.000* | 280.935/0.000* | 313.565/0.000* | 321.313/0.000* | 320.620/0.000* | |
FΝaCl/sig. | 1.289/0.280 | 0.536/0.710 | 0.395/0.811 | 1.518/0.203 | 1.315/0.270 | 1.933/0.111 | 3.950/0.005* | 4.215/0.003* | |
Finteraction/sig. | 1.302/0.229 | 0.243/0.995 | 0.382/0.967 | 1.305/0.228 | 0.556/0.872 | 0.528/0.892 | 0.635/0.808 | 0.656/0.789 |
Day | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | |
---|---|---|---|---|---|---|---|---|---|
Species | |||||||||
L. angustifolia | 16.100 ± 0.335c | 18.493 ± 0.323c | 19.157 ± 0.318c | 19.617 ± 0.327c | 19.767 ± 0.309c | 20.010 ± 0.318c | 20.073 ± 0.329c | 20.097 ± 0.333c | |
L. stoechas | 23.153 ± 0.335b | 27.250 ± 0.323b | 28.067 ± 0.318b | 28.760 ± 0.327b | 29.593 ± 0.309b | 30.553 ± 0.318b | 31.110 ± 0.329b | 31.187 ± 0.333b | |
L. dentata var. candicans | 26.687 ± 0.335a | 30.087 ± 0.323b | 31.297 ± 0.318b | 32.173 ± 0.327b | 32.480 ± 0.309b | 32.807 ± 0.318b | 32.927 ± 0.329b | 32.910 ± 0.333b | |
L. dentata var. dentata | 27.483 ± 0.335a | 32.263 ± 0.323a | 33.253 ± 0.318a | 34.720 ± 0.327a | 35.993 ± 0.309a | 37.710 ± 0.318a | 38.310 ± 0.329a | 38.407 ± 0.333a | |
NaCl (mM) | |||||||||
0 mM (control) | ns | ns | ns | ns | 30.296 ± 0.345a | 31.300 ± 0.356a | 32.038 ± 0.367a | 32.213 ± 0.372a | |
25 mM | ns | ns | ns | ns | 29.617 ± 0.345ab | 30.492 ± 0.356ab | 30.967 ± 0.367ab | 31.071 ± 0.372ab | |
50 mM | ns | ns | ns | ns | 29.821 ± 0.345ab | 30.825 ± 0.356ab | 31.171 ± 0.367ab | 31.204 ± 0.372ab | |
100 mM | ns | ns | ns | ns | 28.996 ± 0.345ab | 29.717 ± 0.356bc | 29.775 ± 0.367bc | 29.783 ± 0.372bc | |
200 mM | ns | ns | ns | ns | 28.563 ± 0.345b | 29.017 ± 0.356c | 29.075 ± 0.367c | 28.979 ± 0.372c | |
Fspecies/sig. | 239.689/0.000* | 351.413/0.000* | 384.017/0.000* | 406.690/0.000* | 224.500/0.000* | 550.696/0.000* | 542.787/0.000* | 532.256/0.000* | |
FΝaCl/sig. | 0.464/0.762 | 0.138/0.968 | 0.948/0.440 | 2.267/0.067 | 3.933/0.049* | 6.514/0.000* | 10.242/0.000* | 11.675/0.000* | |
Finteraction/sig. | 0.862/0.587 | 0.431/0.948 | 0.619/0.822 | 0.962/0.490 | 0.922/0.528 | 0.860/0.590 | 1.139/0.338 | 1.256/0.257 |
Shoot | Root | ||
---|---|---|---|
Species | |||
L. angustifolia | 20.638 ± 0.950c | -† | |
L. stoechas | 34.428 ± 0.950b | - | |
L. dentata var. candicans | 47.178 ± 0.950a | - | |
L. dentata var. dentata | 43.854 ± 0.650a | - | |
NaCl (mM) | |||
0 mM (control) | 41.270 ± 1.062a | - | |
25 mM | 36.907 ± 1.062 b | - | |
50 mM | 37.534 ± 1.062ab | - | |
100 mM | 34.974 ± 1.062bc | - | |
200 mM | 31.937 ± 1.062c | - | |
Interaction (species x NaCl) | |||
L. angustifolia x | 0 mM (control) | ns | 5.917 ± 0.501cd |
25 mM | ns | 6.282 ± 0.501c | |
50 mM | ns | 4.865 ± 0.501cd | |
100 mM | ns | 4.985 ± 0.501cd | |
200 mM | ns | 5.123 ± 0.501cd | |
L. stoechas x | control | ns | 5.593 ± 0.501cd |
25 mM | ns | 6.417 ± 0.501c | |
50 mM | ns | 4.752 ± 0.501cd | |
100 mM | ns | 5.575 ± 0.501cd | |
200 mM | ns | 3.488 ± 0.501d | |
L. dentata var. candicans x | 0 mM (control) | ns | 13.887 ± 0.501ab |
25 mM | ns | 14.847 ± 0.501ab | |
50 mM | ns | 15.180 ± 0.501a | |
100 mM | ns | 15.422 ± 0.501a | |
200 mM | ns | 12.277 ± 0.501b | |
L. dentata var. dentata x | 0 mM (control) | ns | 5.315 ± 0.501cd |
25 mM | ns | 4.800 ± 0.501cd | |
50 mM | ns | 5.533 ± 0.501cd | |
100 mM | ns | 4.667 ± 0.501cd | |
200 mM | ns | 4.703 ± 0.501cd | |
Fspecies/sig. | 156.577/0.000* | 415.648/0.000 | |
FΝaCl/sig. | 10.444/0.000* | 6.470/0.000 | |
Finteraction/sig. | 1.312/0.223 | 2.396/0.009* |
Day | 14 | 35 | 56 | |
---|---|---|---|---|
Species | ||||
L. angustifolia | 0.821 ± 0.007a | -† | - | |
L. stoechas | 0.807 ± 0.007a | - | - | |
L. dentata var. candicans | 0.810 ± 0.007a | - | - | |
L. dentata var. dentata | 0.755 ± 0.007b | - | - | |
NaCl (mM) | ||||
0 mM (control) | ns | - | - | |
25 mM | ns | - | - | |
50 mM | ns | - | - | |
100 mM | ns | - | - | |
200 mM | ns | - | - | |
Interaction (species x NaCl) | ||||
L. angustifolia x | 0 mM (control) | ns | 0.788 ± 0.056a | 0.821 ± 0.075a |
25 mM | ns | 0.816 ± 0.056a | 0.833 ± 0.075a | |
50 mM | ns | 0.789 ± 0.056a | 0.794 ± 0.075a | |
100 mM | ns | 0.674 ± 0.056a | 0.500 ± 0.075abc | |
200 mM | ns | 0.160 ± 0.056b | 0.215 ± 0.075bc | |
L. stoechas x | 0 mM (control) | ns | 0.815 ± 0.056a | 0.832 ± 0.075a |
25 mM | ns | 0.790 ± 0.056a | 0.798 ± 0.075a | |
50 mM | ns | 0.797 ± 0.056a | 0.775 ± 0.075a | |
100 mM | ns | 0.723 ± 0.056a | 0.470 ± 0.075abc | |
200 mM | ns | 0.566 ± 0.056a | 0.493 ± 0.075abc | |
L. dentata var. candicans x | 0 mM (control) | ns | 0.821 ± 0.056a | 0.807 ± 0.075a |
25 mM | ns | 0.820 ± 0.056a | 0.821 ± 0.075a | |
50 mM | ns | 0.796 ± 0.056a | 0.828 ± 0.075a | |
100 mM | ns | 0.748 ± 0.056a | 0.631 ± 0.075a | |
200 mM | ns | 0.728 ± 0.056a | 0.130 ± 0.075c | |
L. dentata var. dentata x | 0 mM (control) | ns | 0.770 ± 0.056a | 0.788 ± 0.075a |
25 mM | ns | 0.743 ± 0.056a | 0.731 ± 0.075a | |
50 mM | ns | 0.717 ± 0.056a | 0.767 ± 0.075a | |
100 mM | ns | 0.632 ± 0.056a | 0.585 ± 0.075ab | |
200 mM | ns | 0.660 ± 0.056a | 0.523 ± 0.075ab | |
Fspecies/sig. | 19.181/0.000* | 5.358/0.000 | 0.450/0.718 | |
FΝaCl/sig. | 0.352/0.842 | 16.579/0.000 | 30.580/0.000 | |
Finteraction/sig. | 1.061/0.401 | 4.322/0.000* | 1.959/0.036* |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraskevopoulou, A.T.; Kontodaimon Karantzi, A.; Liakopoulos, G.; Londra, P.A.; Bertsouklis, K. The Effect of Salinity on the Growth of Lavender Species. Water 2020, 12, 618. https://doi.org/10.3390/w12030618
Paraskevopoulou AT, Kontodaimon Karantzi A, Liakopoulos G, Londra PA, Bertsouklis K. The Effect of Salinity on the Growth of Lavender Species. Water. 2020; 12(3):618. https://doi.org/10.3390/w12030618
Chicago/Turabian StyleParaskevopoulou, Angeliki T., Anna Kontodaimon Karantzi, Georgios Liakopoulos, Paraskevi A. Londra, and Konstantinos Bertsouklis. 2020. "The Effect of Salinity on the Growth of Lavender Species" Water 12, no. 3: 618. https://doi.org/10.3390/w12030618
APA StyleParaskevopoulou, A. T., Kontodaimon Karantzi, A., Liakopoulos, G., Londra, P. A., & Bertsouklis, K. (2020). The Effect of Salinity on the Growth of Lavender Species. Water, 12(3), 618. https://doi.org/10.3390/w12030618