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Abstract: Increases in water demand often result in unsustainable water use, leaving insufficient
amounts of water for the environment. Therefore, water-saving strategies have been introduced to
the environmental policy agenda in many (semi)-arid regions. As many such interventions failed to
reach their objectives, a comprehensive tool is needed to assess them. We introduced a constructive
framework to assess the proposed strategies by estimating five key components of the water balance
in an area: (1) Demand; (2) Availability; (3) Withdrawal; (4) Depletion and (5) Outflow. The framework
was applied to assess the Urmia Lake Restoration Program (ULRP) which aimed to increase the basin
outflow to the lake to reach 3.1 × 109 m3 yr−1. Results suggested that ULRP could help to increase the
Outflow by up to 57%. However, successful implementation of the ULRP was foreseen to be impeded
because of three main reasons: (i) decreasing return flows; (ii) increased Depletion; (iii) the impact
of climate change. Decreasing return flows and increasing Depletion were expected due to the
introduction of technologies that increase irrigation efficiency, while climate change could decrease
future water availability by an estimated 3–15%. We suggest that to reach the intervention target,
strategies need to focus on reducing water depletion rather than water withdrawals. The framework
can be used to comprehensively assess water-saving strategies, particularly in water-stressed basins.

Keywords: water-saving strategies assessment framework; climate change; rebound effect; Urmia
Lake; water resources management; water governance

1. Introduction

During the last century, water management policies have mainly focused on developing water
resources to secure food and energy for a growing population. This has led to an increasing number of
reservoirs, wells and irrigated areas [1]. Climate change has also had a significant impact on water
scarcity in (semi)-arid regions [2]. Water demand has thus approached, or is approaching, the limit of
water availability in many basins, also referred to as basin closure [3,4]. This leaves limited volumes of
water available for the natural environment [5]. The Colorado River in the United States, for instance,
no longer reaches the Gulf of California [6], the Aral Sea has desiccated due to a decline in inflows to
the Amu Darya and Sir Darya rivers [7] and Bolivia’s second largest lake, Lake Poopó, has already
dried up [8]. To prevent further environmental degradation and to promote resilience to drought,
water-saving interventions (solutions) have been introduced to the environmental policy agenda in
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many (semi)-arid regions [9]. However, many of these policies have not only failed to reach their
goal of saving water for the environment, but have also weakened basin resilience through loss of
flexibility and redundancy [10]. Water-saving policies in southern Spain, for instance, have increased
(rather than decreased) water depletion by 20%, along with a fourfold increase in costs of management
and operation [11]. This calls for a better understanding of the complex impacts of water-saving
interventions on the water balance of basins.

The key to understanding a water-saving policy is to distinguish between water withdrawal
and water depletion. Water withdrawal refers to the total amount of water extracted from a basin
for different uses, while water depletion is the fraction of water withdrawal not returning to the
water system. Water depletion can be divided into beneficial and non-beneficial consumption [12].
Beneficial depletion occurs when water is depleted to produce goods such as agricultural products.
Non-beneficial depletion occurs when no benefit (or a negative benefit) is derived from the depletion
of water [13]. Without a clear distinction between withdrawal and depletion, misconceptions and
misinterpretations of performance indicators for water-saving policies can occur [12,14]. Many efforts to
improve water-use efficiency, especially in agriculture, focus on reducing withdrawals with sometimes
little impact on water depletion [15,16]. Increased efficiency in resource use can lead to increased total
resource use [17]. This is known as the rebound effect and has been reported in many water-saving
investments [18–23]. Promoting irrigation efficiency often not only reduces withdrawals, but also
decreases return flows. Changes in return flows link field hydrology to basin hydrology [24–27].
Therefore, it is important to undertake a basin-wide approach when it comes to increasing water-use
efficiency. If surface irrigation systems are replaced by sprinkler or drip systems, the return flow
decreases, which in turn reduces downstream water availability [10,28] and can amount to up to
60% (77% in rice fields) of the water applied for irrigation [27]. Cai et al. [29] used an integrated
modeling approach which included hydrologic and agronomic models for the evaluation of basin
management scenarios in the Maipo River Basin in Chile. They showed that increased irrigation
efficiency in agricultural areas can negatively affect river flow, as water depletion increases even if
water withdrawals decline.

Existing water policies often ignore the possible changes in future water availability and demand.
In (semi)-arid regions, rainfall is often unpredictable, while there are also large annual and seasonal
differences in terms of water availability. This variability may further increase, and in many semi-arid
regions, water availability is projected to decrease due to climate change [30]. Moreover, water demand,
especially for irrigation, often increases in these areas and will become even more pronounced with
increasing global warming [31]. Water demand is also likely to increase in the domestic and industrial
sectors due to population growth, socioeconomic development and land use change [32].

Although well-described in literature, the dynamic effect of these complexities is often not
adequately addressed by water-saving policies. In the absence of an adequate basin-wide assessment
tool, water-saving strategies may even aggravate water scarcity and put more pressure on natural
resources [16,33,34]. In this study we introduce a comprehensive water-saving strategies assessment
(WSSA) framework to assess the water resources’ status “ex-ante” and “ex-post” of the interventions.
The framework highlights real water saving by distinguishing between Demand, Availability, Withdrawal,
Depletion and Outflow in the context of possible changes in future demand and availability.
To demonstrate the WSSA framework, we applied it to evaluate a set of proposed water-saving
strategies in the Urmia Lake Restoration Program (ULRP) which aims to restore the Urmia Lake in
northwestern Iran. Applying existing ground and modeled data, the WSSA framework depicts the
situations ex-ante and ex-post of the intervention while accounting for different climate change and
socioeconomic scenarios. The study aims to raise awareness among policy makers who are aiming to
save water for alternative uses—in particular, for the environment.
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2. Materials and Methods

2.1. Study Area

Lake Urmia located in northwestern Iran (Figure 1), was once the largest lake in the Middle East
and one of the largest permanent hypersaline lakes in the world. Its basin area is around 51,000 km2,
some 5000 km2 of which was covered by the lake [35]. The Urmia Basin has a total population of
6.5 million and is an important agricultural region. The average annual precipitation ranges between
200 and 300 mm, with air temperatures between 0 and −20 ◦C in winter and up to 40 ◦C in summer.
The basin’s climate is classified as arid to semi-arid, causing the agriculture to be highly dependent on
irrigation [36]. The total irrigated area in the basin is 5119 km2, with 89% of available water used for
irrigation (Withdrawals). The main crops are wheat, barley, alfalfa, potato, tomato, sugar beet and apple.

An assessment of the lake’s water surface level over a hundred-year span shows a sharp, unusual
decline after 1995 [37]. By 2016, the surface area of Lake Urmia was found to have decreased by
90% (Figure 1). As a result, the salinity of the lake has also increased sharply, disturbing ecosystems,
local agriculture and livelihoods, regional health and tourism [38].
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2.2. Urmia Lake Restoration Program (ULRP)

To address the unsustainable situation, the government of Iran announced a national ten-year
program, the “Urmia Lake Restoration Program” (ULRP), in July 2013 (Supplementary Materials (1)).
The government committed a budget of USD 5 billion to the program [40], the main goal of which is
the revival of the life cycle of the lake within 10 years. The plan also aims to promote the development
of sustainable agriculture.

The ULRP uses six categories of strategies. For this study, we assumed successful ULRP implementation,
namely that withdrawals in the basin will be successfully controlled or that structural strategies will be
able to direct the surface flow available in the basin to the lake [41]. While the quantitative effects of
strategies that aim directly to increase the basin Outflow are unclear, those having a direct impact on
Outflow are:

Strategy #1. Reduction of 40% of ground and surface water allocated to the farmers through a direct
purchasing system run by the Ministry of Energy.
Strategy #2. Planning by the Ministry of Jihad-e-Agriculture to enhance the productivity of 60% of the
remaining water volume still used for irrigation.

(2-a). Deficit irrigation for wheat.
(2-b). Deficit irrigation for barley.
(2-c). Replacing barley with alfalfa.
(2-d). Using greenhouse cultivation for vegetables.

Strategy #3. Allocation of funds and supply of the required technologies by the government to increase
the efficiency of usage of the remaining water.

(3-a). Increasing application efficiency by applying micro-irrigation alternatives.
(3-b). Increasing distribution efficiency by using pipes for water distribution to the fields.
(3-c). Increasing conveyance efficiency by lining canals.

Strategy #4. Appropriation of the required funds and accelerated transfer of water from the Zaab and
Silveh rivers to the Urmia Lake Basin.
Strategy #5. Transfer of treated wastewater from the Urmia Lake Basin into Lake Urmia.

2.3. The Water-Saving Intervention Assessment Framework

Water accounting refers to approaches that present information on water resources, supply and
use [42]. This involves a water-balance approach where the sum of outflows equals the sum of outflows
plus storage [13]. Thus, water accounting is the key to understanding water inflows and outflows at
the basin scale, which is essential for assessing water-saving strategies [16]. Water accounting covers a
range of methods of reporting water information [43]. Building on the water accounting approach,
we propose a framework that provides a simple overview of the status of the water resources of a basin
(WSSA; Figure 2). By comparing the situations ex-ante and ex-post of the interventions, the WSSA
framework can evaluate the effectiveness of water-saving strategies. The WSSA framework serves
three main purposes. Firstly, it allows for considering possible future changes in water availability and
demand due to climate change and socioeconomic scenarios. Secondly, the difference between water
demand and withdrawal is clearly shown. This highlights shortages and overuse that could affect
the efficacy of a water-saving intervention. Thirdly, depletion and return flows (to surface water and
groundwater) are included separately; this serves to avoid overlooking the potential rebound effect.
The WSSA framework comprises five main components to evaluate water-saving strategies under
different socioeconomic and climate change scenarios. As follows, we present each component and the
possible methods to estimate them ex-ante and ex-post of the intervention:
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basin, the five components should be estimated ex-ante and ex-post of an intervention.

1. (Gross) Demand (for simplicity, we refer to this as Demand in this paper) should be estimated
for specific water uses (agriculture, industry and domestic) under different socioeconomic scenarios.
Demand is equal to:

Demand = net water demand/total efficiency

Ex-ante Demand can be obtained from empirical data for different sectors. Ex-post Demand should
be calculated considering population growth and future development in the industrial and agricultural
sectors. If Demand is not met in a basin, then a shortage occurs.

In the Urmia case, the ex-ante Demand for the agricultural sector was obtained from the official
report by the Iran Ministry of Energy [44]. They calculated the Urmia basin Demand based on the
cultivated area of the basin, cropping patterns, planting and harvesting dates, irrigation management
and efficiency. To estimate the ex-post Demand for the agricultural sector, firstly the net demand was
estimated by applying the proposed headlines for Strategy #2. Secondly, the total irrigation efficiency
ETotal equals conveyance efficiency (Ec) × distribution efficiency (Ed) × application efficiency (Ea));
the explanation of each term is in the Appendix A) was estimated by applying the proposed headlines
for Strategy #3. Finally, the Demand was estimated by dividing the net demand by total efficiency.

The estimation of the ex-ante Demand for industry and domestic use was reported by the
Iranian Ministry of Energy [45]. The ex-post Demand for industry and domestic use was estimated
for two senarios: “business-as-usual” (applying the current water distribution system) and the
“business-as-planned” (applying improvements in the water distribution system), considering a
growing popluation and industrial development [45].
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2. Availability is the amount of water in the basin which is exploitable; this includes naturalized
surface flow, extracted groundwater and any water added to the basin water resources by being
transferred from outside the basin or by desalination. This is equal to:

Availability = naturalized surface flow + renewable groundwater + additional sources

Naturalized surface flow: The naturalized surface flow (the surface flow without considering any
anthropogenic impact) can be estimated through a simulation approach for both ex-ante and ex-post
by applying a hydrological model. The ex-post naturalized flow can be simulated for different climate
change scenarios.

The naturalized surface flow for the Urmia case was estimated by using the Variable Infiltration
Capacity (VIC) hydrological model. We manually calibrated the VIC model for the Urmia basin in a
systematic way, using seven runoff-related model parameters (including the infiltration parameter) and
three soil-layer thicknesses for the Urmia Basin; for more information, please refer to Shadkam et al. [46].
We forced the calibrated VIC for the Urmia Basin using bias-corrected daily climate model output,
as developed within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP [47–49]). In order
to cover the whole range of future greenhouse gas emissions, we used the Representative Concentration
Pathways (RCPSs), selecting the highest (8.5) and the lowest (2.6) [50]; for more details, please refer
to [51]. To cover decadal variabilities, we used a 10-year moving average for 2005 and the projected
outflow for 2025.

Renewable groundwater: The ex-ante groundwater extraction data can be obtained from data
measured on the ground or from satellite data. Ex-post groundwater Withdrawals can be estimated
based on future water demand and groundwater extraction regulations. Groundwater use requires
careful consideration. Groundwater Withdrawal should, essentially, return back to groundwater.
If groundwater volumes reduce, then this should also be accounted for in the WSSA framework. This is
particularly important for an area where groundwater volumes are under pressure. The framework
does not assess the interaction between surface water and groundwater.

There are around 88,000 wells in the Urmia Lake Basin, of which an estimated 40,000 are
unauthorized. The Withdrawals from groundwater, including wells and qanats, were reported by the
ULRP [52]. These Withdrawals represent groundwater supply for the historic period 2000–2010. Based
on the ULRP, there needs to be a 40% decrease in Withdrawals in agriculture, of which 0.5 × 109 m3 yr−1

would be deducted from groundwater abstraction [53]. However, a substantial portion of industrial
and domestic Demand will still be met from groundwater resources. This means that groundwater
extraction will increase in the industrial and domestic sectors. Therefore, the groundwater extraction
for ex-ante was estimated considering the ULRP plan, the population growth and the industrial
development under both the business-as-planned and business-as-usual scenarios.

Additional sources: These may include water transfers or abstractions from non-renewable (fossil)
groundwater sources. In the Urmia basin, 0.7 × 109 m3 yr−1 of inter-basin transfer water from the Zaab
Basin has been considered as an additional source.

3. Withdrawals (also referred to as water extractions in the literature) refers to abstractions by
all users (agriculture, industry and domestic) and can be estimated for current and possible future
developments by using observations and model simulations. Ex-post Withdrawals should also include
those that result from proposed interventions. The amount of Withdrawals depends on how much water
is available. If the Availability is more than the Demand, then the Withdrawals are equal to the Demand.

For the Urmia basin, the ex-ante Withdrawals for agricultural sector were reported by the Iran
Ministry of Energy [44]. The ULRP aims for the reduction of 40% of allocated water to the farmers
(Strategy #1), which can be translated to a 40% reduction in the ex-post Withdrawals. Up to now,
the domestic and industrial demands have always been met in the basin; the ex-ante Withdrawals have
been equal to the Demand. For ex-post, the domestic and industrial Demands will continue to be fully
met; Withdrawals will, thus, be the same as Demand in these two sectors.
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4. Depletion (also referred to as consumption) is equal to:

Depletion = Withdrawals − return flow

Thus, to calculate water depletion, one needs to understand what proportion of the Withdrawals
will return to the system. In an endorheic basin, a change in the depletion will show the real water
saved through the intervention [54].

To determine the ex-ante return flow in the Urmia basin, we used simulation studies which have
estimated the current total return flow into the basin [55,56]. To estimate the proportions of return
flow to groundwater and to surface water, we used reports by the Iran Ministry of Energy [57] which
estimated the surface return flows from irrigation, based on field observations.

To determine ex-post return flow for the Urmia basin, we used Toloei’s study [58], which assessed
the effect of changing from gravity irrigation to pressurized systems by applying the Soil and Water
Assessment Tool (SWAT) to the Urmia Basin.

5. Outflow is the streamflow at the outlet of a catchment area.

Outflow = Availability −Withdrawals + surface return flow

To evaluate whether there is enough Outflow, it should be compared to the Environmental Flow
Requirement (EFR) or, in the case of the Urmia Lake Restoration Program, the intervention target.

3. Results

In what follows, we present the results of the estimation of the five components, both ex-ante and
ex-post the ULRP, to assess if the ULRP is able to increase the basin outflow to the lake and reach its
goal of a 3.1 × 109 m3 yr−1 outflow to the lake.

3.1. Demand

3.1.1. Agricultural Sector’s Demand

Ex-ante Demand: The Iran Ministry of Energy [44] reported that the net irrigation demand for
water is around 2.6 × 109 m3 yr−1. The total irrigation efficiency ETotal was reported to be 34% and 42%
for croplands and orchards, respectively. Consequently, the ex-ante Demand in the agricultural sector
was estimated to be 6.7 × 109 m3 yr−1 (around 2.3 × 109 m3 yr−1 relates to orchards and 4.4 × 109 m3 yr−1

to farmlands).
Ex-post Demand: Following this, we present the estimation of ex-post Demand by considering the

application of proposed headlines for Strategy #2 (to estimate ex-post net demand) and Strategy #3
(to estimate ex-post efficiency).

The ex-post net water demand has been estimated based on the proposed headlines for
Strategy #2 [53] (Table 1):

(2-a) Deficit irrigation for wheat: the Soil and Water Research Institute of Iran [59] estimated that
by changing the current variety to the Pishgam variety for the Urmia Basin, deficit irrigation of up to
10% can be conducted without a significant reduction in productivity.

(2-b) Deficit irrigation for barley: the Bahman variety was applied, based on the Soil and Water
Research Institute of Iran’s [59] recommendation for the Urmia Basin.

(2-c) Replacing alfalfa with barley: the reported net irrigation demand of alfalfa is ~2300 m3/ha
lower than that of barley (Bahman variety). The initial investigation revealed that there is potential to
replace 30% of alfalfa in the area with barley; this was applied in this study [41].

(2-d) Using greenhouse cultivation for vegetables: the Iran Ministry of Energy [60] reported that
greenhouse cultivation can decrease the net irrigation demand by 25% in this area for vegetables.
We considered that the ULRP will be able to transfer all vegetables to greenhouses by 2025.
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Therefore, in total, if Strategy #2 (2-a to 2-d) is applied successfully, the net irrigation demand will
decrease by 0.2 × 109 m3 yr−1—a 7% reduction. Table 1 shows the average net irrigation demands for
the covered area ex-ante and ex-post of the individual strategies.

Table 1. The impact of the Urmia Lake Restoration Program (ULRP) Strategy #2 (enhancing crop water
productivity) on the net irrigation demand. The average net irrigation demands for the covered area
were estimated ex-ante (2000–2010) and ex-post (2020–2030) individually for Strategy #2 (2-a to 2-d).

Proposed Strategies
Net Irrigation Demand (×109 m3 yr−1)

Ex-Ante ULRP Ex-Post ULRP

(2-a) Deficit irrigation for wheat (164 ha) 0.448 0.389
(2-b) Deficit irrigation for barley (36 ha) 0.072 0.065

(2-c) Greenhouse cultivation for vegetables (4 ha) 0.019 0.014
(2-d) Replacing alfalfa with short growing season barley (121 ha) 0.872 0.760

Total 1.410 1.228

The ex-post irrigation efficiency was estimated based on the proposed headlines for Strategy #3 [53]
(Table 2):

(3-a) Increasing irrigation efficiency by applying micro-irrigation alternatives: the current
application efficiency is around 50%. For croplands (i.e., wheat, barley and sugar beet), we substituted
sprinkler irrigation for furrow irrigation which has an efficiency in the basin of around 75%. For orchards
(fruits and nut trees), the current reported efficiency is about 62%, which could increase to around 90%
if the current furrow irrigation is replaced with drip irrigation [44].

(3-b) Increasing distribution efficiency by using pipes for water distribution to the fields: the
average current distribution efficiency in the basin is around 85%, which could increase to around 95%
when pipes are used [44].

(3-c) Increasing conveyance efficiency by lining canals: the average conveyance efficiency in the
basin is around 80%, which could increase to around 90% if lining would be implemented [44].

Regarding the topography, soil type and water quality, up to 70% of the irrigated land could
potentially be irrigated using pressurized irrigation. Therefore, it has been assumed that 70% of all
irrigated land will be equipped with pressurized irrigation after full implementation of the ULRP [60].
Furthermore, by applying Strategy #3 (3-a to 3-c), the total irrigation efficiency is expected to increase
to 77% for orchards and to 64% for croplands.

Thus, the Demand (net demand divided by total efficiency) in the agricultural sector could
potentially decrease to an estimated 4.1 × 109 m3 yr−1 (38%).

Table 2. The impact of the Urmia Lake Restoration Program (ULRP) Strategy #3 (increasing irrigation
efficiency). The irrigation efficiencies were estimated ex-ante (2000–2010) and ex-post (2020–2030)
individually for Strategy #3 (3-a to 3-c).

Application Ex-Ante ULRP Ex-Post ULRP

Ec Ed Ea ETotal Ec Ed Ea ETotal *

Orchard 80% 85% 62% 42% 95% 90% 90% 77%
Cropland 80% 85% 50% 34% 95% 90% 75% 64%

* (Ec): Conveyance efficiency; (Ed): Distribution efficiency; (Ea): Application efficiency; ETotal = Ec × Ed × Ea.

3.1.2. Domestic and Industrial Sectors

Ex-ante Demand: In 2005, the population in the Urmia Basin was around 5 million, with 3.5 million
people living in urban areas and 1.5 million in rural areas. Their water Demand was estimated by the
Iranian Ministry of Energy [61]. This estimate considered 7100 firms in the basin, including textile, food,
metal and steel, wood, mining and machinery manufacturing, for which the Demand was reported by
the Iranian Ministry of Energy to be around 0.3 × 109 m3 yr−1 [61].
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Ex-post Demand: The population of the Urmia Basin is predicted to increase to around 6.5 million in
2025 [62]. The number of firms is also predicted to increase to 16,352 sites in the basin. The Demand will
increase by 190% and 254% for the business-as-planned and business-as-usual scenarios, respectively
(Figure 3). Detailed information can be found in the Supplementary Materials (2).
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Figure 3. The Urmia Lake Basin ex-ante (2000–2010) and ex-post (2020–2030) Demand, Withdrawals from
ground and surface water, Depletion and return flows to the surface and groundwater. The error bars
represent the value ranges under the different climate change and socioeconomic.

3.2. Availability

Ex-ante Availability: Based on the simulated naturalized runoff (using the VIC model), the water
availability is around 4.7 × 109 m3 yr−1. There are approximately 88,000 wells in the Urmia Lake Basin,
of which an estimated 40,000 are unauthorized. The Withdrawals from groundwater, including wells
and qanats, were reported by the ULRP [52] to be 2.4 × 109 m3 yr−1. These withdrawals represent the
groundwater supply for the historic period 2000–2010. There was no inter-basin transfer in the Urmia
Lake Basin over the ex-ante period.

Ex-post Availability: Based on the simulated naturalized results, naturalized runoff is expected to
reduce in 2010–2030 by around 3% for the low climate change scenario (RCP2.6) and by 15% for the
higher climate change scenario (RCP8.5).

Based on the ULRP, there needs to be a 0.5× 109 m3 yr−1 decrease in Withdrawals in agriculture from
groundwater abstraction [53]. However, a substantial portion of the industrial and domestic Demand
will still be met from groundwater resources. This means that groundwater extraction will increase by
0.5 × 109 m3 yr−1 and 0.7 × 109 m3 yr−1 under the business-as-planned and business-as-usual scenarios,
respectively. Thus, after the ULRP, the total groundwater Withdrawals are expected to increase by
~1% and ~7% under the business-as-planned and business-as-usual socioeconomic development
scenarios, respectively.

In addition, 0.7 × 109 m3 yr−1 of inter-basin transfer water from the Zaab Basin has been added
to the available water. The Availability for the ex-ante and ex-post periods are presented in Figure 4.
For more detailed information, please refer to Supplementary Material (3).
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the business-as-planned and business-as-usual scenarios (for groundwater).

3.3. Withdrawal and Depletion

3.3.1. Agricultural Sector’s Withdrawal and Depletion

The amount of Withdrawals depends on water Availability for the agricultural sector. If the available
water is less than Demand, then the Withdrawals will be the available water for agriculture; otherwise,
Withdrawals are equal to Demand. The ex-ante Withdrawal for the agricultural sector was reported to be
around 5.3 × 109 m3 yr−1 [44], which is much less than the Demand (6.7 × 109 m3 yr−1). The ex-ante
Demand is expected to decrease by 40% to 4.0 × 109 m3 yr−1 which is less than the available basin water
for the agricultural sector (5.3 × 109 m3 yr−1). Therefore, the Withdrawals equal the Demand.

Depletion equals Withdrawals minus return flow. We thus need to firstly estimate the return
flow. Simulation studies have estimated the current total return flow (to surface and groundwater)
in the basin to be, on average, 48% of irrigation Withdrawals [55,56]. However, the proportions of
return flow to groundwater and to surface water were not determined in these studies. To estimate
the proportions of return flow to groundwater and to surface water, we used reports by the Iran
Ministry of Energy [57] which estimated surface return flows from irrigation to be ~18% of Withdrawals,
based on field observations. The return flow to the groundwater should, thus, be around 30%.
Therefore, the estimated return flows for the ex-ante period are 0.9× 109 m3 yr−1 and 1.6× 109 m3 yr−1 to
surface and ground flow, respectively. Depletion equals Withdrawals− return flow. Therefore, the ex-ante
Depletion is estimated to be 2.7 × 109 m3 yr−1.

Toloei [58] assessed the effect of changing from gravity irrigation to pressurized systems, applying
the Soil and Water Assessment Tool (SWAT) to the Urmia Basin. In common with this study,
they assumed the transformation of gravity irrigation to drip irrigation for orchards and to sprinkler
irrigation for farmland. Their results showed a decrease of 60% in groundwater return flow. They also
reported a negligible amount of surface return flow in the case of pressurized irrigation. Based on
their results, the ULRP will decrease the return flow by 77% and 40% for surface and groundwater,
respectively. Thus, Depletion is estimated to increase (rather than decrease) by ~5% to 2.9 × 109 m3 yr−1

after the ULRP (Figure 3).
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3.3.2. Domestic and Industrial Sectors

Up to the present time, domestic and industrial demands have always been met in the basin;
the ex-ante Withdrawals have been equal to the Demand. Based on the reported domestic and industrial
return flow [61,63], the ex-ante Depletion is estimated at around 0.07 × 109 m3 yr−1 (Figure 3).

After implementation of the ULRP, the domestic and industrial demands will continue to be fully
met; Withdrawals will, thus, be the same as Demand in these two sectors. Based on the predicted domestic
and industrial return flow, Depletion would increase by around 81% and 87% for the business-as-planned
and business-as-usual scenarios, respectively (Figure 3).

In addition, the ULRP aims to treat and direct all urban (not rural) and industrial wastewater to
the lake. To estimate how much domestic and industrial water will return to surface and groundwater,
we applied the ULRP strategy aimed at treating and directing all urban (not rural) and industrial
wastewater to the lake. Therefore, following the ULRP, the estimated urban and industrial wastewater
was added to the surface water flows.

3.4. Outflow under Different Climate Change and Socioeconomic Scenarios

Outflow equals Availability −Withdrawals + Surface return flows. Therefore, Outflow for the ex-ante
period was equal to 2.3 × 109 m3 yr−1. This is within the range of the reported ex-ante outflow to the
lake [53]. The results (Figure 5) show that if the ULRP succeeds in performing all strategies, it can
increase outflow by 49%, 51%, 53% and 57%, under the RCP2.6 and business-as-planned socioeconomic,
the RCP2.6 and business-as-usual socioeconomic, the RCP8.5 and business-as-planned socioeconomic
and the RCP8.5 and business-as-usual socioeconomic scenarios, respectively. However, only under
RCP2.6 and under both socioeconomic scenarios will the basin outflow reach the ULRP target of
3.1 × 109 m3 yr−1. This is not the case for the RCP8.5 scenario for either socioeconomic scenario.
The results are compared with the Urmia Lake Environmental Flow Requirements (EFRs) estimated by
Abbaspour and Nazaridoust [64], which is the Urmia Lake Restoration Program’s (ULRP’s) target.
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Figure 5. The ex-ante (2000–2010) and ex-post (2020–2030) outflows to the Urmia Lake under two
different climate change scenarios (RCP2.6 and RCP8.5) and two different socioeconomic scenarios
(business-as-planned and business-as-usual). The dashed line is the Urmia Lake Environmental
Flow Requirements (EFRs) estimated by Abbaspour and Nazaridoust [64], which is the Urmia Lake
Restoration Program’s (ULRP’s) target.



Water 2020, 12, 2789 12 of 21

The effectiveness of each ULRP strategy in terms of changing EF (surface outflow) has also
been estimated. The effectiveness of agricultural strategies in terms of EF can be estimated as the
difference between Withdrawals for agriculture and surface return flow from agriculture before and
after implementation of the ULRP. The effectiveness of wastewater strategies on EF is equal to the
urban and industrial wastewater which would be conveyed to the lake under the ULRP. As shown
in Figure 5, the most effective strategy is inter-basin transfer followed by the wastewater strategies.
The agricultural strategy has little impact on the water flow.

Figure 6 shows the WSSA framework for the ULRP for ex-ante and ex-post of the interventions
(a), the most optimistic climate change scenario for the future (RCP2.6) with the socioeconomic
business-as-planned scenario (b) and the most pessimistic climate change scenario for the future
(RCP8.5) with the socioeconomic business-as-usual scenario (c).
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4. Discussion

To achieve a sustainable water balance for all water users in a basin, it is necessary to identify,
quantify and report water-related information in a structured way. To achieve this, several national and
international organizations have introduced different water-accounting frameworks. Some examples
of water accounting systems are the System of Environmental–Economic Accounting for Water
(SEEAW) [65], Water Footprint Accounting [66] and Water Accounting Plus (WA+) [5]. However, as none
of the frameworks were specifically designed to assess a water-saving intervention, their results are not
suited to adequately inform policy makers on the efficacy of water-saving interventions. The WSSA
framework introduced in this study assists in generating a simple and informative overview that
can be used to evaluate proposed interventions. Its benefits are threefold. Firstly, it considers
uncertainties in water Availability and Demand by including climate change and socioeconomic
scenarios. Secondly, the role of the rebound effect can be analyzed systematically by explicitly
distinguishing between Withdrawal and Depletion, and thirdly, it discloses any possible shortages or
over-exploitation in the basin by an explicit recognition of Demand and Withdrawals. The framework
promotes an improved understanding of the current state of basin water resources, future uncertainties
and barriers and provides opportunities for real water saving in a water-stressed basin. The framework
can also be used to evaluate the impact of water-saving policies on groundwater resources.

4.1. Application of the WSSA Framework for the ULRP

As can be seen in Figure 6a, for the ex-ante period, the sectors’ water Demands were almost equal
to the Availability (~7 × 109 m3 yr−1). In terms of EFRs, this shows that the basin experiences water
scarcity. It is, therefore, not surprising that the sectors’ Withdrawals, 5.7 × 109 m3 yr−1, were lower than
their Demands. The difference between the two has been expressed as representing the anthropogenic
water shortage in the basin (Figure 6a). As domestic and industrial demands are fully met, this shortage
is fully attributed to the agricultural sector. It means that there has already been a (gross) shortage
of ~1.3 × 109 m3 yr−1 (~20% of Demand) for the agricultural sector in the basin. This is confirmed
by the Iran Ministry of Energy [44], particularly for the downstream part of the basin (near Lake
Urmia). Regarding this shortage, proportionally, only 2.1 × 109 m3 yr−1 of the 2.6 × 109 m3 yr−1 net
demand for water can be met. Thus, of the 2.7 × 109 m3 yr−1 agricultural depletion, 2.1 × 109 m3 yr−1

is beneficial and 0.7 × 109 m3 yr−1 is non-beneficial ex-ante agricultural depletion. After the ULRP
(Figure 6b,c), the Demand for water would be less than the Availability under all scenarios. This shows
that there would be no anthropogenic water shortage in any of the sectors, including the agricultural
sector. In other words, the ULRP would be able to fulfill the full irrigation demand for the farmers
and, in that way, eliminate the earlier shortage. From the 2.9 × 109 m3 yr−1 agricultural depletion after
implementing the ULRP, 2.4 × 109 m3 yr−1 (full net demand) would be beneficial and 0.5 × 109 m3 yr−1

non-beneficial depletion of water.
Ex-ante Depletion for all sectors together has been estimated at 2.8× 109 m3 yr−1. After implementation

of the ULRP, Depletion is estimated to increase further, rather than decrease, by estimated amounts of
~8% and ~9% for the business-as-planned and business-as-usual scenarios, respectively. The increase
in Depletion is caused by two factors; the first factor is the growth in population and industrial
development, whilst the second factor, as explained above, is that the ULRP would provide enough
water to overcome earlier shortages. This would mean that the entire agricultural net Demand would
be met. Thus, although the ULRP agricultural strategies would decrease Demand by ~40% and
Withdrawals by ~23%, Depletion would still increase by an estimated ~17%. This implies that the
proposed interventions in agriculture will not lead to real water saving, but rather lead to increased
water use in agriculture.
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4.2. The ULRP Outcome under Different Scenarios

The basin Outflow to the lake was estimated for four different scenarios and the results indicate
that the ULRP is likely to reach its goal only under limited climate change. As 60% of total Withdrawals
by the agricultural sector are from surface water, if Withdrawals are decreased from 5.3 × 109 m3 yr−1

to 4.1 × 109 m3 yr−1, the surface Withdrawals would decrease by approximately 0.8 × 109 m3 yr−1.
On the other hand, the surface return flows would decrease sharply by 0.7 × 109 m3 yr−1 due to
the use of pressurized irrigation systems. Thus, in practice, the ULRP agricultural strategies would
only help to save water at a volume of 0.06 × 109 m3 yr−1; this is far below the expected amount
(1.34 × 109 m3 yr−1, [53]). These results are consistent with Saemian et al. [67] who evaluated the
efficiency of the ULRP measures on the state of the lake up to 2019 using spaceborne observations
along with ground-based measurements. Their results showed that the lake status stabilized between
2015 to 2019; however, the long-term trend (2003 to 2019) was still negative. They indicated that the
stabilization was mostly due to a drought-free period from 2015 to 2019 and anomalous precipitation
events in 2016 and early 2019 (rather than the ULRP measures).

The proposed policy will also lead to an increase in urban and industrial return flow from treated
wastewater that would be conveyed to Lake Urmia. This will add around 0.5 × 109 m3 yr−1 of
water to surface return flows. Before the ULRP was implemented, the return flow went back to the
groundwater; consequently, the proposed change will cause a considerable reduction in return flow
to the groundwater. In addition, the groundwater return flows from the agricultural sector would
decrease by 0.7 × 109 m3 yr−1 after the implementation of the ULRP.

4.3. Reasons for the Possible Failure of the ULRP

The application of the framework to the Urmia Lake Basin revealed that under a limited climate
change scenario (RCP 2.6), the policy could reach the water-saving target. This, however, assumes
that the ULRP is fully implemented, which is actually unlikely. It is thus possible that the ULRP will
not achieve its stated goal, despite the huge investment and the social and economic impacts of the
proposed interventions. These results reflect those of Saemian et al. [67] who assessed the lake’s status
up to 2019 and reported that the water level is still far from its targeted level. The framework made
clear a few reasons for the poor performance. The first reason is the rebound effect. However, as the
ULRP decreases the gross surface Withdrawals, it will cause almost the same reduction in the surface
return flow. This means that although average irrigation efficiency would improve from 38% to 84%,
the ULRP’s agricultural strategies would not lead to the expected change in the basin outflow to the
lake. This can be explained by the concept of effective irrigation efficiency rather than classical irrigation
efficiency. The ULRP aims to increase classical efficiency, which is Depletion divided by Withdrawals,
whereas effective efficiency is the crop-effective use of applied irrigation water (Depletion) divided by
the effective inflow less the effective outflow (Withdrawals − return flows) [54]. The effective irrigation
efficiency for the Urmia Lake Basin is, thus, around 75% in the current situation. This relatively
high effective efficiency for the basin shows that there is not much room to improve the efficiency.
These results are consistent with those of Alizadeh and Keshavarz [68] who assessed the status of
irrigation efficiency in Iran. They indicated that due to high effective efficiency in Iran, there is not much
real water saving to be attained through irrigation efficiency improvement. However, having said that,
in this study, it was assumed that the authorities are able to control water extraction and land expansion,
which is highly unlikely. Berbel et al. [69] undertook a comprehensive literature review linking water
savings with water diversion and depletion, including both theoretical models and empirical evidence.
They concluded that if land expansion and water rights are not strictly controlled in a water-saving
intervention, increasing rather than decreasing water depletion is to be expected. The results of this
study also support the study by Ahmadzadeh and Morid [55]. Their simulation results showed that
pressurized irrigation can reduce water uptake by about 0.16 × 109 m3 yr−1 compared to current
surface irrigation in the Zarrineh Rud Basin, which is the main sub-basin in the Urmia Basin. They also
indicated that pressurized irrigation reduces the return flow by about the same amount, which results
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in no significant change in the total outflow to Urmia Lake. Farokhnia [56] simulated a transformation
from furrow irrigation to drip irrigation (for orchards) and sprinkler irrigation (for farmland) for the
Urmia basin, applying the SWAT model. Their results showed that improving irrigation efficiency
in the Urmia basin would decrease Withdrawals by 45%. However, real water saving would only be
around 13% if the farmers retain deficit irrigation, and otherwise, only 5%.

The second reason for the possible poor performance of the proposed interventions reveals the fact
that the basin has already faced a water shortage of around 1.3 × 109 m3 yr−1 in the agricultural sector.
Therefore, the net demand will not be fully met, which means that farmers are already experiencing
water shortages. Unwillingness to perform deficit irrigation and low productivity have been reported
in many parts of the basin, particularly in the downstream parts around the lake [44]. By increasing
irrigation efficiency, the Demand will be less than the Availability, implying that the farmers can
withdraw the amount they need and meet the full irrigation demand. Therefore, the depletion increase
will be ~17%. In other words, implementing the proposed interventions (ULRP) will compensate for
the anthropogenic shortage which the basin population has already faced rather than save water for the
environment. We named this effect as the Shortage effect. The Shortage effect occurs when water-saving
strategies (e.g., increasing efficiency) provide results, thus reducing the Demand, which means reducing
the shortage which had already been in place in the basin. It means that, unlike the ex-ante intervention,
the plants can receive as much water as they need, resulting in increasing Depletion and decreasing
Available water for the environment. Although this effect can play a serious role in interventions aimed
at saving water for the environment, to the best of our knowledge, this has not been considered as
such in the previous literature.

A third reason for the possible poor performance of the proposed interventions is that the ULRP
ignores the impact of future changes. The naturalized surface water of the basin may decrease by
around 3% to 15% under RCP2.6 and RCP8.5, respectively. This has not been considered in the
policy. Ignoring the impact of climate change is an extremely critical issue, with most of the scenarios
predicting a water availability decline in semi-arid areas [2]. Saemian and Elmi [67] demonstrated
that the lake level stabilized from 2015 to 2019; however, they warned that due to the high correlation
between the lake status and rainfall, the current situation may not continue in times of dry periods.
Another relevant change is the possible increase in demand due to socioeconomic development.
However, as the ULRP aims to convey the treated wastewater to the lake, socioeconomic development
can also increase the amount of wastewater which will eventually add to the lake outflow. This is not
a sustainable solution, however, because it decreases groundwater recharge and will thus increase
pressure on groundwater resources which are already heavily utilized.

4.4. Limitations and Uncertainties

Our assessment is affected by different uncertainties and limitations. Firstly, we used model
simulation results for water availability. For uncertainties in the modeling framework, refer to
Shadkam 2016a, 2016b [46,51]. The rest of the data, including Demand and Withdrawals, are derived
from ground-measured data. All data were taken from governmental reports, whilst the validity
of the data was confirmed by the ULRP Committee. However, data are often uncertain and/or
error-prone. This is especially the case for parameters that are difficult to plan strategically, such as
return flows. The numbers used for the purpose of demonstrating the framework in this study should,
thus, be revised when more accurate data become available.

Secondly, this study focused on annual outflow to the lake at the basin level. Therefore, the results
of this study do not show distinctions between the dry and wet seasons. However, this approach can
be used further at finer spatial and temporal resolutions. This would help to understand where the
particular strategies are needed. For example, across the basin, potential evaporation varies strongly.
This is likely to be reflected in other parameters, such as irrigation efficiency, depletion or return flow.
Thus, in a next step, the framework can be applied for finer spatial resolutions (e.g., sub-basin) and
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finer temporal resolutions (e.g., seasonally, to assess the seasonal variations including dry and wet
seasons). However, such an approach depends on data availability.

Thirdly, using the framework, assessments are made to explore the effects of interventions.
These assessments are based on quantifiable parameters in the water domain only, while some
interventions may have other effects. For example, the inter-basin transfer is ranked as the most
effective strategy for increasing outflow but it may negatively affect social or ecological indicators in
another basin. In such cases, an additional qualitative assessment would be required. Finally, this study
does not include surface–groundwater interactions which are susceptible to changes in the water
balance. Moreover, for this simple demonstration case, changes in agricultural demand due to climate
change were ignored, as were many other factors.

5. Conclusions

Although the concepts of water-saving strategies have been well described in the literature,
many failed examples around the world show that the dynamic effects of water-saving strategies
are still quite complex to be evaluated flawlessly by policy makers. The water-saving strategies
assessment (WSSA) framework introduced in this study provided policy makers with a simple and
informative overview to be used for evaluating proposed interventions by comprising five components.
The WSSA framework was built on existing concepts and knowledge and combines them into a
new comprehensive tool for evaluating planned water-saving strategies. This framework can be
distinguished from existing water accounting frameworks ([5,65,66]) as it allows policy makers to
explore the potential effects of planned activities while also taking into account the future by including
climate change and socioeconomic scenarios. Furthermore, by making a clear distinction between
Demand, Availability, Withdrawal, Depletion and Outflow, the framework raised the awareness of the
policy makers on the common mistakes made in water-saving policies. The framework is, therefore,
a useful communication tool which differentiates between these terms. In addition, the framework
introduces a conceptual notion that depicts the undesired impact of water-saving policies, referred to
as the Shortage effect in this study. In basins that face water shortages, the Shortage effect occurs when
water-saving strategies result in a reduced shortage (leading to more Depletion) rather than saving
water for the environment. The WSSA framework also helps to highlight opportunities that lead to
real water saving in a basin.

The application of the WSSA framework for the Urmia Lake Basin revealed that although the
Urmia Lake Restoration Program helped to increase Outflow into the Urmia Lake, it was unlikely to
meet its target, in particular for the agricultural sector. By generating a clear overview of the situation
of Demand and Withdrawals in the basin, the WSSA framework showed that agricultural strategies
would probably not have a noticeable impact on the Outflow to the lake. Therefore, water saving
interventions focused on increasing irrigation efficiency in this basin would not lead to an increase
in the basin Outflow to the lake. The results of this study showed that additional sources of water,
namely inter-basin transfer and treated wastewater, were more effective strategies for increasing Outflow.
However, these interventions are also accompanied by side-effects associated with environmentally
unsustainable outcomes. The WSSA framework showed that the most secure approach to increase
real water saving is by reducing Depletion, which is a clear indicator of water saving. The ULRP
decreased only 6% of agricultural Depletion (mostly none-beneficial). It is thus recommended to focus
more on reducing both beneficial and non-beneficial Depletion in the Urmia Basin. Another strategy
which can be considered to reduce Depletion is through decreasing soil evaporation in agricultural
areas, particularly in irrigated land. The results of this study also showed that the performance of the
proposed interventions is more sensitive to changes in the climate compared to socioeconomic changes.
This is for two reasons. Firstly, over 90% of the water is depleted by the agricultural sector, so changes
in population size and industrial developments have a relatively low impact on Demand compared to
the agricultural sector. Secondly, based on the ULRP, the domestic and industrial wastewater will be
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treated and added to the basin Outflow to the lake. Therefore, by increasing domestic and industrial
withdrawal, this return flow will also increase.

An advantage of using the WSSA framework is to give a clear overview of the possible effects of a
water-saving intervention on basin water resources and to prevent critical issues being overlooked.
It is thus recommended that, even where data are limited, the framework should be applied to assess
any proposed water-saving intervention before implementation. Using the WSSA framework to
compare alternative interventions can highlight the potential pitfalls and may be used to facilitate
the debates among stakeholders. Furthermore, any type of data can be used, including ground
data, results from model simulations, estimations derived from remotely sensed data or even some
best-guess estimations.
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Appendix A

Table A1. Indicators definition.

Indicator Calculation Used in This Paper Definition

Availability
Naturalized surface flow +
renewable groundwater +
additional sources

Part of water in the basin which is exploitable

Demand Net water demand/total efficiency Total amount of water needed by different sectors
(i.e., agriculture, industry and domestic)

Withdrawal - Total amount of water extracted from a basin for
different sectors (i.e., agriculture, industry and domestic)

Depletion Withdrawals − return flows Fraction of water withdrawal not returning to the
water system

Outflow Availability −Withdrawals +
surface return flow Streamflow at the outlet of a catchment

Distribution
efficiency (Ed) - Represents the efficiency of water transport to the field

Application
efficiency (Ea) - Represents the efficiency of water application in the field

Conveyance
efficiency (Ec) - Represents the efficiency of water transport in canals

http://www.mdpi.com/2073-4441/12/10/2789/s1
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Table A1. Cont.

Indicator Calculation Used in This Paper Definition

Total irrigation
efficiency (ETotal)

Application efficiency (Ea) ×
Distribution efficiency (Ed) ×
Conveyance efficiency (Ec)

Represents the total water efficiency

Non-beneficial
Depletion - Occurs when no benefit (or a negative benefit) is derived

from the Depletion of water

Beneficial Depletion - Occurs when water is depleted to produce goods such as
agricultural products

Shortage effect -

Occurs when water-saving strategies (e.g., increasing
efficiency) result in reducing the Demand, which means
reducing the shortage which was already in place in the
basin. Therefore, the intervention causes the plants to
receive as much water as they need, which will result in
increasing Depletion and decreasing the available water
for the environment
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