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Abstract: Currently, the management of water networks is key to increase their sustainability. This 
fact implies that water managers have to develop tools that ease the decision-making process in 
order to improve the efficiency of irrigation networks, as well as their exploitation costs. The present 
research proposes a mathematical programming model to optimize the selection of the water 
sources and the volume over time in water networks, minimizing the operation costs as a function 
of the water demand and the reservoir capacity. The model, which is based on fuzzy methods, 
improves the evaluation performed by water managers when they have to decide about the 
acquisition of the water resources under uncertain costs. Different fuzzy solution approaches have 
been applied and assessed in terms of model complexity and computational efficiency, showing the 
solution accomplished for each one. A comparison between different methods was applied in a real 
water network, reaching a 20% total cost reduction for the best solution. 
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1. Introduction 

1.1. Sustainability Concept in Water Systems 

The use of water resources is crucial in irrigation water systems, and currently, their 
management is also of the utmost importance since their sustainability must be improved by 
developing an Integrated Water Resources Management (IWRM). The work in [1] defined this as “a 
process, which promotes the coordinated development and management of water, land and related 
resources in order to maximize the resultant economic and social welfare in an equitable manner 
without compromising the sustainability of vital ecosystems”. The IWRM requires the application of 
Adaptative Water Resources Management (AWRM), which is a process to improve the water policies 
and practices by applying the experience from previous years [2]. The need for increased 
sustainability and resilience, as well as the improvement of drought management results in water 
managers needing to develop or use mechanisms that support, make more resilient, and ease the 
decision-making process [3]. Different research works have analyzed the management of water 
sources in a basin, defining the optimized water level, the volume transfer between rivers, and/or the 
maximum farmer demand in the case of drought [4,5]. However, there are not many research works 
addressing the analysis and management of water networks when the system supplies an irrigation 
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community. Such irrigation systems usually have different water sources. For this reason, the 
development of supporting tools is critical to apply optimization strategies that reduce the 
exploitation costs and ensure the required demand is met. Currently, the decision about the water 
source is usually done in a traditional manner, and it is not focused on the optimization of  
economic costs. 

The modernization of irrigation systems supposes the use of new efficient techniques of 
cultivation with a positive margin where the climatic conditions are not favorable (e.g., long periods 
of drought, high temperatures, or other factors). However, the modernization of irrigation systems 
also presents some disadvantages. The main setback of this type of system is that the installed power 
should be increased by 2 kW/ha to guarantee the pressure in the irrigation system, and therefore, this 
increase directly causes the increase of energy costs and reduces the sustainability indicators [6]. 

Currently, the relationship between energy and water is evolving as we search for a new concept 
of sustainability [7]. Pressurized irrigation systems demand more energy, and this is currently one of 
the main uses of water linked to energy (49%) together with hydroelectric production (30.6%) and 
the highest (92%) in terms of water consumption. Furthermore, in recent years, the use of energy in 
this sector has grown rapidly [8]. 

1.2. Political Context 

The growing demand for water joined with increasing water scarcity [9] has led to increasing 
interest in global modeling of water resources [10]. There are several factors that influence the supply 
and industrial and agricultural water use. These factors are characterized by an uncertain context 
(e.g., climatic conditions and energy prices, among others). This requires that decision-makers be 
resilient enough to deal with uncertainty in an efficient manner [11].  

Based on the review [12], the United Nations Conference on Water held in Argentina in 1977 
defined a set of objectives to work on before the end of the 20th Century. One of these main objectives 
was to ensure an adequate supply of quality water to meet the planet’s socioeconomic needs [12]. 
Afterwards, during the International Conference on Water and Environment, held in Dublin in 1992, 
it was agreed that water should be considered as an economic good, a principle that has been greatly 
discussed during and after this event. At the International Conference on Freshwater held in 2001 in 
Bonn, a set of actions necessary to mobilize financial resources was identified, and among these 
actions, the improvement of economic water-use efficiency was defined as a priority. Based on the 
recent historical milestones of water management, the definition of efficient water resource 
management strategies that administer water in a sustainable and resilient direction seems necessary. 
These strategies should not only focus on basin management; they must consider the distribution in 
the water systems. 

In particular, the Mediterranean is a region characterized by water scarcity and increasing 
energy demand [13]. The irrigation systems need energy to be: (i) originated from them,  
(ii) distributed to the users, and (iii) regenerated during waste-water treatment [14]. These 
interdependencies across water, energy, and food define the Water-Energy-Food (WEF) nexus that 
highlights the importance of the interactions among these sectors [15]. This study is focused on the 
WEF nexus, as it is addressed to the optimization of the provision of water to be used in irrigation 
systems to produce food, taking into account the energy costs, in particular the extraction costs, which 
depend on the water’s source. 

The literature shows different water pricing approaches to obtain the appropriate prices to 
allocate water efficiently [16,17]. Every day, water becomes increasingly vital as demand for food and 
water increases and water scarcity becomes a reality [16]. In Spain, the relationship between water 
and energy has reached great significance as a consequence of the increase in energy prices since 
2007. Moreover, the modernization of irrigation systems has led to a reduction in water consumption 
per area, but the increase in hydraulic efficiency has also led to an increase of energy  
consumption [9]. Water prices are determined by the EU Water Framework Directive [18], which 
provides a range of water-pricing tools that have been adopted by law in the EU Member States and 
have been applied in Southeast Europe on a voluntary basis [13]. Therefore, based on the recovery 
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cost principle of water, which was defined by the Directive, an improvement of the water 
management is necessary to define the new sale prices for users, as well as the increase in the energy 
efficiency of these water systems. Decreasing the recovery cost principle and minimizing the water 
price that is paid by farmers in order to improve the efficiency are the main objectives of this study, 
as well as the resilience and sustainability of the water supply systems. 

Moreover, it is worth mentioning that there is also a great cost variability of irrigation water 
depending on the water source and the location of the water source. In particular, the water scarcity 
and the low profit margins are the main problems for the farmers in the Mediterranean area. 
Therefore, these problems represent a high percentage of the production costs. In Spain, the sale price 
of water varies from 0.08 €/m3 in some areas of Valencia (located in the mid-eastern part of Spain in 
the Mediterranean region) to 0.60 €/m3 in Alicante (the southeast of Spain) (desalinated water) or 
Andalusian (the south of Spain) (groundwater source) [9]. It is common that the same irrigation 
community has different water sources, which usually have different extraction costs (e.g., an 
irrigation water system can receive water from groundwater that has a different piezometric head, 
water transferred between basins, or reused water that was treated in a wastewater treatment plant). 
For this reason, the decision about the most adequate water source from an economic viewpoint is 
critical. This selection significantly affects the final price that farmers have to pay [19], showing that 
there is a vital need for resilient and effective resource management strategies. This management has 
to be focused on societal, environmental, and economic aspects to promote sustainable development. 
Moreover, they also pointed to the need for decision-making mechanisms in order to address the 
question of resource utilization completely. To deal with this imperative need, different solution 
approaches have been developed.  

1.3. Mathematical Programming Modelling Applied to Water Systems: Initial Overview 

The aforementioned approaches were mainly focused on mathematical programming modelling 
and optimization aspects. To have more detailed knowledge about these solution approaches, a 
systematic literature review was carried out using the Web of Science database, covering all years 
and domain categories. The first approximation was focused on the definition of sets of general 
keywords to quantify the number of publications related to the mathematical approaches. Table 1 
shows a summary of the results obtained. As an example, to illustrate the importance of mathematical 
approaches, the search of the keyword “business model” generated 10,465 results compared to the 
more than 200,000 results provided by the keyword “mathematical model”. In light of this, it seems 
suitable to address the research on solution approaches related to mathematical  
programming modelling.  

Table 1. Number of publications according to the different searches performed in the  
literature review. 

Keywords  
And 

“Water
” 

And 
“Irrigation

” 

Number of Publications Per Year and “Irrigation” 
Limited to Related Areas 

 Total 200
9 

201
0 

201
1 

201
2 

201
3 

201
4 

201
5 

201
6 

201
7 

201
8 

201
9 

“mathematical 
model” 

238,86
4 

14,810 403 11 6 9 12 13 10 10 8 11 15 6 

“mathematical 
modelling” 18,655 1862 60 1 1 2 3 5 1  3  2 1 

“mathematical 
programming

” 
11,092 643 150 4 8 10 6 8 6 4 10 9 10 9 

“mathematical 
optimisation” 

2630 276 10   2 1 1       

“fuzzy 
mathematical 
programming

” 

362 12 4        1    
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The first sets of keywords were then extended with the word “water”. This combination of 
keywords provided a smaller number of results. As the search focused on the main topic of this 
research, the number of results decreased considerably. This tendency showed that mathematical 
solution approaches seemed to be universally accepted as reasonable mechanisms to solve 
miscellaneous problems. Therefore, they are also suitable for the management of the water sources. 
When the search was narrowed down further, adding “irrigation” to the set of originals keywords, 
and after the analysis of such results, it could be evinced that the proposal of solution approaches 
related to irrigation systems has been under-researched. Moreover, with the objective of delimiting 
the search further and excluding results that were not directly related to the main topic of the present 
research, only the following areas were chosen as the most connected with this study: water 
resources, agronomy, environmental sciences, agricultural engineering, agriculture 
multidisciplinary, engineering environmental, and green sustainable science technology. The results 
obtained in terms of the number of publications per year are also shown in Table 1, from 2009 to 2019. 
These findings were in concordance with the ones found by [20], who performed a review of 
mathematical programming applications in water resource management under uncertainty. Based 
on this review, it is worth highlighting the growing importance of developing pricing strategies to 
improve the water management in water irrigation networks. 

In the literature, several and different mathematical programming methods were used to 
support water management in water irrigation networks under uncertainty. These methods, together 
with some developments and applications, are described below: 

• Multistage stochastic programming: Some studies use this method. For example, the work  
in [21] developed an interval multistage water allocation model to optimize water allocation 
between different growth stages to obtain the maximum food production in reservoir irrigation 
systems characterized by inputs’ uncertainties. The study developed by [22] considered a fuzzy 
probability distribution based multistage stochastic robust programming method. This model 
supported regional water supply management. The developed model was applied to a water 
resources management system with three water users. 

• Stochastic dynamic programming: Among the references analyzed and in order to show their 
applications, the work in [23] used stochastic dynamic programming to model a farmer’s choice 
whether to invest in a sprinkler irrigation system or in a more water efficient drip irrigation 
system under uncertainty. The work in [24] developed a stochastic dynamic programming 
model, but in this case, in the context of hydro-economic models to maximize irrigation benefits 
while minimizing the costs of power generation within a power market. The work in [25] also 
developed a stochastic dynamic programming model with fuzzy state variables for irrigation of 
multiple crops. This model, in which the reservoir storage and soil moisture of the crops are 
considered as fuzzy numbers and the reservoir inflow is considered as a stochastic variable, has 
the main objective of minimizing crop yield deficits, resulting in optimal water allocations to the 
crops by maintaining storage continuity and soil moisture balance. 

• Inexact programming including fuzzy and interval based programming: The work in [26] 
formulated a fuzzy mathematical programming model for a multi-reservoir system applied to a 
three reservoir system in the Upper Cauvery River basin, South India. The study tried to 
minimize the sum of deviations of the irrigation withdrawals from their target demands, on a 
monthly basis, over a year. Another study developed an interval-fuzzy two stage stochastic 
quadratic programming model. The goal was to allocate the limited irrigation water to different 
crops, maximizing the net benefit under uncertainty and to analyze how water allocation 
schemes change under different climate change scenarios [27]. 

• Nonlinear programming: The work in [28] used a non-linear programming model to estimate 
farmers’ willingness-to-pay for irrigation water that maximizes revenue from crop production 
under different shortage levels. In this case, Monte Carlo simulation was implemented 
considering model parameters’ uncertainty to assess the variation of farmers’ willingness-to-pay 
and avoid water shortage [28]. Other authors used nonlinear programing for the optimization 
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of profitability and productivity in an irrigation command area with conjunctive water  
use options [29]. 

• Multiobjective fuzzy linear programming: The work in [30] proposed a multiobjective fuzzy 
linear programming irrigation planning model for the evaluation of the management strategy 
in the case study of the Jayakwadi irrigation project, Maharashtra, India. Three conflicting 
objectives, net benefits, agricultural production, and labor employment, were considered in the 
irrigation planning scenario. However, the objectives pursued in this study are far from the main 
aim of the present research. In the same line, the work in [31] proposed a model of multiobjective 
fuzzy linear programming based on fuzzy parametric programming to solve the problem of 
optimal cropping pattern in an irrigation system. The objective of the irrigation planning model 
is to find out an optimal cropping pattern that maximizes simultaneously the net benefits, crop 
production, employment generation, and manure utilization. 

In some cases, a combination of the previous methods has also been used to deal with aspects 
related to water irrigation networks under uncertainty. 

Water management in water irrigation networks to satisfy the growing demand of water from 
different water sources is a subject that involves various uncertain impact factors. However, to our 
best knowledge, no evidence in the literature about the uncertainty in the different water source costs 
has been identified. For this reason, the present research is focused on developing strategies to 
improve the water management in water irrigation networks, studies related to water management 
resources in basins being outside the scope of this paper. 

The different mathematical programming methods offer valuable information for water 
managers who will be able to choose more resiliently the water source depending on extraction costs. 
However, the aforementioned real cases were characterized through uncertainty scenarios in which 
statistical data were not reliable or even available. In these cases, the determination based models of 
the probability distributions for uncertain data may not be the best option, and therefore, stochastic 
approaches are not a feasible solution method [32,33]. In this context, fuzzy mathematical 
programming can prove to be an alternative approach, in which water managers can model the 
different types of uncertainties inherent to water source management processes. In this sense, the 
fuzzy approach can be employed to incorporate epistemic uncertainty or a lack of knowledge in the 
input parameters with analytical models or fuzziness in their objectives and also as a resolution 
technique of multi-objective programming models. Two main fuzzy mathematical applications can 
be highlighted. On the one hand, fuzzy mathematical programming can be employed to incorporate 
epistemic uncertainty or lack of knowledge in the input parameters to analytical models or fuzziness 
in their objectives [32–37]. On the other hand, fuzzy optimization can be used as a resolution 
technique of multi-objective programming models [36–38]. 

Based on all these findings, mathematical approaches are vital to make water management 
decisions more resilient and efficient. Moreover, due to the uncertainty that characterizes the 
operation of some irrigation systems, fuzzy techniques are fundamental to deal with  
these difficulties. 

1.4. Research Goals 

The previous section showed the needs to go in depth into the development of management 
techniques that improve the exploitation costs of water systems. In this line, the present research 
develops a mathematical programming model that considers the inherent uncertainty regarding 
operation costs. To do so, three fuzzy approaches were considered: (i) the first index of Yager,  
(ii) the third index of Yager, and (iii) Lai and Hwang. In the last case, the proposed approach 
generates multiple objectives considering the three different objectives. In order to transform this 
multi-objective model into an equivalent mixed integer linear programming model able to be solved 
by a commercial solver, several fuzzy multi-objective approaches were applied: Zimmerman, 
Werners, Selim, and Ozkarahan, and Torabi and Hassini.  

The use of fuzzy methods is crucial to deal with the uncertainty of the results, and as previously 
mentioned, the use of fuzzy modelling is scarce with respect to the enhancement of irrigation systems. 
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The proposed model is able to make several and interrelated decisions with many variables and 
inaccurate or imprecise data in order to choose the most adequate origins of the water sources, 
minimizing the sale price and, therefore, improving the evaluation of water managers. The main 
objective of the present study is to develop a comparison, using different approaches, of the total 
acquisition cost of water sources. The comparison will be used to establish future research lines, 
which will support the decision-making process about the water sources as a function of different 
variables (e.g., quality, aquifer levels, and crops, among others).  

This manuscript is structured as follows: The Introduction is given in this section. Section 2 
defines the methodology of the formulation model, as well as the solution approaches. The third 
section presents a case study and the results obtained when the mathematical model is applied, to 
summarize finally the main conclusions in Section 4. 

2. Methodology 

The methodology of this research was focused on getting the minimum exploitation costs in a 
water irrigation system considering both maximum inlet flows, the maximum available volume of 
each water source, as well as the cost of each water resource, which can be fixed or variable. This 
methodology could be applied to any water pressurized systems and for their validation; it was 
applied in a real case study. The procedure has greater applicability and serves as a supporting 
mechanism for water irrigation managers to improve the sustainability of their systems.  

2.1. Formulation Model 

This section proposes the mathematical programming formulation for the management of the 
water sources problem [39]. This programming incorporates fuzzy costs in order to analyze the 
variation of source acquisition as a function of water costs. The hydraulic balance is proposed in 
Equation (2). The hydraulic balance is subject to different restrictions of the maximum flow and 
consumed volume. These constraints are defined in Equations (3)–(10). Moreover, the mathematical 
model considers the costs, which can be fixed or variable as they depend on the electric power price. 
The consideration of the costs is given in Equation (1), as well as the constrain (11). The sets of indexes, 
parameters, and decision variables in the fuzzy model are defined as follows:  

Indexes: 

i ∈ I  Procurement water sources of the water network 
m ∈ M Procurement methods 
t ∈ T  Time periods; in this case, 8760 periods were considered (one year) 
k ∈ K Months in the year 

Sets: 𝑀௧௄  Set of time periods in month k (720 periods for months that have 30 days) 

Constants of the model: 

dt Required demand in period t (in m3); it includes the evaporation, leakages, and  
non-measured volume of the water network; the data were obtained through the irrigation 
water manager 

CMit  Maximum flow for source i in period t (in m3/h) 
CMTi Monthly maximum volume for source i (in m3) 
CHi,m Monthly available time for the procurement from source i with method m (in hours); CH is 

used when the water source requires grid consumption to procure it 
SMINt Safety stock of stored volume in period t (in m3) 
SMAXt Maximum stored volume in period t (in m3) 𝑐𝑝𝑣෦ ௜௠௧ Variable cost for source i with method m in period t (in €/m3) 𝑐𝑝𝑓෪ ௜௠௧ Fixed cost for source i with method m in period t (in €/m3) 𝑐𝚤෥௧  Storage cost in period t (in €/m3) 𝑐𝑓෪௜௠  Fixed cost for source i with method m over the planning horizon (in €/m3) 
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Decision variables: 

St  Storage in period t (in m3) 
Qimt  Flow from source i with method m in period t (in m3/h) 
Yimt  1 if any amount of water is required from source i with method m in period t, and  

0 otherwise 
Fim 1 if any procurement from source i with method m is placed over the planning horizon, and 

0 otherwise 

Objective function: 𝑀𝑖𝑛 𝑧 ൌ෍𝑐𝚤෥௧ ⋅ 𝑆௧௧ ൅෍෍෍𝑐𝑝𝑣෦ ௜௠௧ ⋅ 𝑄௜௠௧௧௠௜൅෍෍෍𝑐𝑝𝑓෪ ௜௠௧ ⋅ 𝑌௜௠௧ ൅෍෍𝑐𝑓෪௜௠ ⋅ 𝐹௜௠௠௜௧௠௜  

(1) 

Objective Function (1) aims to minimize the total costs related to the procurements of water from 
the different sources, including storage costs and also fixed and variable procurement costs. Figure 1 
shows a triangular possibility distribution, which represents the fuzziness of storage costs,  𝑐𝚤෥௧ ൌ ൫𝑐𝑖௧௡, 𝑐𝑖௧௢, 𝑐𝑖௧௣൯ , variable procurement cost, 𝑐𝑝𝑣෦ ௜௠௧ ൌ ൫𝑐𝑝𝑣௜௠௧௡, 𝑐𝑝𝑣௜௠௧௢,𝑐𝑝𝑣௜௠௧௣൯, fixed 
procurement costs, 𝑐𝑝𝑓෪ ௜௠௧ ൌ ൫𝑐𝑝𝑓௜௠௧௡, 𝑐𝑝𝑓௜௠௧௢,𝑐𝑝𝑓௜௠௧௣൯, and fixed procurement costs over the 
planning horizon, 𝑐𝑓෪௜௠ ൌ ൫𝑐𝑓௜௠௡, 𝑐𝑓௜௠௢,𝑐𝑓௜௠௣൯. This type of possibility distribution is represented by a 
triangular fuzzy number determined by the average or the most frequent value, the most optimistic, 
and the most pessimistic. For example, Figure 3 represents the possibility distribution for the fuzzy 
storage costs. 

 
Figure 1. Triangular possibility distribution. 

This is subject to: 𝑆௧ ൌ 𝑆௧ିଵ ൅෍෍𝑄௜௠௧ − 𝑑௧௠௜                 ∀𝑡 (2) 

Constraint (2) corresponds to the storage balance equation in the reservoirs. 𝑆௧ ൌ 𝑆௧ିଵ ൅෍෍𝑄௜௠௧ − 𝑑௧௠௜                 ∀𝑡 (3) 

𝑆௧ ≤ 𝑆𝑀𝐴𝑋௧           ∀𝑡 (4) 

Constraints (3) and (4) establish the safety stock and maximum storage capacity  
constraint, respectively. 
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෍𝑄௜௠௧ ≤ 𝐶𝑀௜௧௠       ∀𝑖∀𝑡 (5) 

Constraint (5) limits the required amounts from each source in each time period with respect to 
its maximum supply capacity. ෍𝑌௜௠௧ ≤ 1௠             ∀𝑖∀𝑡 (6) 

Constraint (6) ensures that only one method is used for each source in each period. 𝑄௜௠௧ ≤ 𝐶𝑀௜௧ ⋅ 𝑌௜௠௧     ∀𝑖∀𝑚∀𝑡 (7) 

Constraint (7) generates the activation of decision variable Yimt when decision variable Qimt is 
higher than 0. ෍ ෍ 𝑄௜௠௧ ≤ 𝐶𝑀𝑇௜௧௧ఢெ೟಼௠      ∀𝑖 (8) 

෍ 𝑌௜௠௧ ≤ 𝐶𝐻௜௠௧ఢெ೟಼      ∀𝑖∀𝑚 (9) 

Constraints (8) and (9) correspond to the limitation of the monthly volume for each source and 
the time limitation for each source and method, respectively. 𝑆௧,𝑄௜௠௧  ϵ ℝ (10) 𝑌௜௠௧,𝐹௜௠ ϵ ሼ0,1ሽ (11) 

The real and binary values for decision variables are determined by Constraints (10) and (11). 

2.2. Solution Approaches 

In this section, different approaches for considering fuzzy costs in mathematical programming 
models are applied to the previously presented model. The considered approaches are the first index 
of Yager, the third index of Yager, and Lai and Hwang’s approach.  

A mathematical programming model with fuzzy costs may be formulated as follows: Min 𝑧 = ෍𝑐̃௝𝑥௝௝∈ே  (12) 

s. t.      ෍𝑎௜௝𝑥௝ ≤ 𝑏௜௝∈ே       𝑖 ∈ 𝑀  

𝑥௝ ∈ ℝ     𝑗 ∈ 𝑁  

aij, bi ∈ M, j ∈ N, and 𝑐̃௝ ∈ 𝐹ሺℝሻ where 𝐹ሺℝሻ is the set of fuzzy numbers whose membership 
function 𝜇௝ represents the lack of precision of the values in objective function costs. The membership 
function is defined as follows: 𝜇௝:ℝ → ሺ0, 1ሿ      𝑗 ∈ 𝑁  

If triangular fuzzy numbers are considered in the form 𝑐̃௝ = ൫𝑟௝ , 𝑐௝ ,𝑅௝൯ , where rj, cj, and Rj 
correspond to the left (optimistic), center, and right (pessimistic) values, the membership function is 
given in the following way: 
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∀𝑢 ∈ ℝ, 𝑗 ∈ 𝑁,   𝜇௖ೕሺ𝑢ሻ =
⎩⎪⎨
⎪⎧ ℎሺ𝑢ሻ = ൫𝑢 − 𝑟௝൯൫𝑐௝ − 𝑟௝൯ ,       𝑟௝ ≤ 𝑢 ≤ 𝑐௝
𝑔ሺ𝑢ሻ = ൫𝑅௝ − 𝑢൯൫𝑟௝ − 𝑐௝൯ ,       𝑐௝ ≤ 𝑢 ≤ 𝑅௝0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

According to Herrera and Verdegay [40,41], if the linear expression 𝑦෤ = ∑ 𝑐̃௝𝑥௝௝  is considered, in 
which 𝑐̃௝  are the fuzzy numbers with memebership functions similar to (13) and xj ≥ 0, then the 
membership function of 𝑦෤ can be formulated as follows: 

𝜇ሺ𝑧ሻ = ⎩⎪⎨
⎪⎧ ሺ𝑧 − 𝑟𝑥ሻሺ𝑐𝑥 − 𝑟𝑥ሻ     𝑖𝑓 𝑟𝑥 ≤ 𝑧 ≤ 𝑐𝑥,ሺ𝑅𝑥 − 𝑧ሻሺ𝑅𝑥 − 𝑐𝑥ሻ     𝑖𝑓 𝑐𝑥 ≤ 𝑧 ≤ 𝑅𝑥,0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (14) 

where 𝑟 = ሺ𝑟ଵ, … , 𝑟௡ሻ, 𝑐 = ሺ𝑐ଵ, … , 𝑐௡ሻ , and 𝑅 = ሺ𝑅ଵ, … ,𝑅௡ሻ . The lateral margins (right and left, 
respectively) of the fuzzy number 𝑐̃௝ correspond to the expressions 𝑑 ⋅ 𝑥 and 𝑑′ ⋅ 𝑥 if the vectors d 
and d’ are defined such that 𝑑 = 𝑅 − 𝑐 and 𝑑ᇱ = 𝑐 − 𝑟.  

In order to obtain the optimal solution for (12), a ranking function f could be applied as Herrera 
and Verdegay [40,41] demonstrated. According to them, the first and third indices of Yager 
correspond to the following formulations. 

2.2.1. First Index of Yager 

The first function defuzzifies the uncertain costs by applying the concept of the center of gravity 
considering the following expression: 

𝑓ଵ൫𝑢෤௝൯ = ׬ 𝑔ሺ𝑧ሻ𝜇௨෥ೕሺ𝑧ሻ𝑑𝑧ଵ଴ ׬ 𝜇௨෥ೕሺ𝑧ሻ𝑑𝑧ଵ଴  (15) 

Where the measure of the importance of the value z is expressed by g(z). If linear weights and 
triangular fuzzy numbers are considered, the problem (12) corresponds to the following  
equivalent formulation [40,41]: Min 𝑧 = ሺ𝑐 + ሺ𝑑 − 𝑑′ሻ/3ሻ𝑥 (16) s. t.            𝐴𝑥 ≤ 𝑏  𝑥௝ ∈ ℝ         𝑗 ∈ 𝑁  

2.2.2. Third Index of Yager 

The expression of the third index of Yager is as follows: 𝑓ଷ൫𝑢෤௝൯ = න 𝑀൫𝑈௝ఈ൯𝑑𝛼ଵ
଴  (17) 

where 𝑈௝ఈ is the α-level set of 𝑢෤௝ and 𝑀൫𝑈௝ఈ൯ is the mean value of the elements of 𝑈௝ఈ. Therefore, 
the optimal solution of (12) could be obtained by solving the following problem [40,41]: Min 𝑧 = ሺ𝑐 + ሺ𝑑 − 𝑑′ሻ/4ሻ𝑥 (18) s. t.          𝐴𝑥 ≤ 𝑏  𝑥௝ ∈ ℝ       𝑗 ∈ 𝑁  
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2.2.3. Lai and Hwang’s Approach 

Considering the problem defined by (12), each fuzzy cost is formulated as a triangular fuzzy 
number, which defines a fuzzy objective function with a triangular shape defined by the pessimistic, 
average or central, and optimistic values, according to the considered uncertain costs. In this sense, 
Lai and Hwang proposed to transform a mathematical programming model with fuzzy costs into a 
multiobjective mathematical programming model. This transformation was composed by three 
objective functions, which had the aim of minimizing the average costs (z1), as well as the difference 
between pessimistic and average costs (z3). Besides, simultaneously, the model maximized the 
difference between normal and optimistic costs (z2). Thus, minimization of the original fuzzy 
objective can be obtained by pushing these three critical points in the direction of the left-hand side. 
Therefore, the following auxiliary problem is obtained taking into account the previous 
nomenclature: Min 𝑧ଵ =  𝑐𝑥 (19) Max 𝑧ଶ =  𝑑𝑥  Min 𝑧ଷ =  𝑑′𝑥  s. t.           𝐴𝑥 ≤ 𝑏  𝑥௝ ∈ ℝ      𝑗 ∈ 𝑁  

In order to solve the obtained multiobjective mathematical programming model, several 
approaches can be applied, for example based on the use of fuzzy sets theory and goal programming. 
Readers are referred to the studies by Alavidoost et al. [42] and Torabi and Hassini [43] .  

2.3. Application of the Solution Approaches 

2.3.1. First Index of Yager 

According to the first index of Yager [40,41] the following equivalent model is obtained: 
Objective function: 𝑀𝑖𝑛 𝑧 = ෍𝑐𝑖௧௡ + 𝑐𝑖௧௢ + 𝑐𝑖௧௣3 ⋅ 𝑆௧௧ + ෍෍෍𝑐𝑝𝑣௜௠௧௡ + 𝑐𝑝𝑣௜௠௧௢ + 𝑐𝑝𝑣௜௠௧௣3 ⋅ 𝑄௜௠௧௧௠௜+ ෍෍෍𝑐𝑝𝑓௜௠௧௡ + 𝑐𝑝𝑓௜௠௧௢ + 𝑐𝑝𝑓௜௠௧௣3 ⋅ 𝑌௜௠௧௧௠௜+ ෍෍𝑐𝑓௜௠௡ + 𝑐𝑓௜௠௢ + 𝑐𝑓௜௠௣3 ⋅ 𝐹௜௠௠௜  

(20) 

and Constraints (2) to (11). 

2.3.2. Third Index of Yager 

An auxiliary crisp model is obtained by applying the third index of Yager [44,45] for ranking 
fuzzy numbers as follows: 

Objective function: 
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𝑀𝑖𝑛 𝑧 = ෍𝑐𝑖௧௡ + 2𝑐𝑖௧௢ + 𝑐𝑖௧௣4 ⋅ 𝑆௧௧ + ෍෍෍𝑐𝑝𝑣௜௠௧௡ + 2𝑐𝑝𝑣௜௠௧௢ + 𝑐𝑝𝑣௜௠௧௣4 ⋅ 𝑄௜௠௧௧௠௜+ ෍෍෍𝑐𝑝𝑓௜௠௧௡ + 2𝑐𝑝𝑓௜௠௧௢ + 𝑐𝑝𝑓௜௠௧௣4 ⋅ 𝑌௜௠௧௧௠௜+ ෍෍𝑐𝑓௜௠௡ + 2𝑐𝑓௜௠௢ + 𝑐𝑓௜௠௣4 ⋅ 𝐹௜௠௠௜  

(21) 

and Constraints (2) to (11). 

2.3.3. Lai and Hwang’s Approach 

The work in [46] introduced a solution method using uncertain costs, in which a fuzzy objective 
function is modelled with triangular possibility distributions into three different objective functions. 
According to [46], the original model for the management of water sources is converted into the 
following multiple objective model: 𝑀𝑖𝑛 𝑧ଵ = ෍𝑐𝑖௧௡ ⋅ 𝑆௧௧ + ෍෍෍𝑐𝑝𝑣௜௠௧௡ ⋅ 𝑄௜௠௧௧௠௜+ ෍෍෍𝑐𝑝𝑓௜௠௧௡ ⋅ 𝑌௜௠௧ + ෍෍𝑐𝑓௜௠௡ ⋅ 𝐹௜௠௠௜௧௠௜  

(22) 

𝑀𝑎𝑥 𝑧ଶ = ෍ሺ𝑐𝑖௧௡ − 𝑐𝑖௧௢ሻ ⋅ 𝑆௧௧ + ෍෍෍ሺ𝑐𝑝𝑣௜௠௧௡ − 𝑐𝑝𝑣௜௠௧௢ሻ ⋅ 𝑄௜௠௧௧௠௜+ ෍෍෍ሺ𝑐𝑝𝑓௜௠௧௡ − 𝑐𝑝𝑓௜௠௧௢ሻ ⋅ 𝑌௜௠௧ + ෍෍ሺ𝑐𝑓௜௠௡ − 𝑐𝑓௜௠௢ሻ ⋅ 𝐹௜௠௠௜௧௠௜  

(23) 

𝑀𝑖𝑛 𝑧ଷ = ෍൫𝑐𝑖௧௣ − 𝑐𝑖௧௡൯ ⋅ 𝑆௧௧ + ෍෍෍൫𝑐𝑝𝑣௜௠௧௣ − 𝑐𝑝𝑣௜௠௧௡൯ ⋅ 𝑄௜௠௧௧௠௜+ ෍෍෍൫𝑐𝑝𝑓௜௠௧௣ − 𝑐𝑝𝑓௜௠௧௡൯ ⋅ 𝑌௜௠௧ + ෍෍൫𝑐𝑓௜௠௣ − 𝑐𝑓௜௠௡൯ ⋅ 𝐹௜௠௠௜௧௠௜  

(24) 

This model minimizes the most possible value of the uncertain costs (14), whereas it maximizes 
the possibility of obtaining the lowest costs (15) and minimizes the possibility of obtaining the highest 
costs (16). The rest of the model is composed of Constraints (2) to (11). 

In order to solve the previous multiple objective model, applying the fuzzy goal programming 
approaches of Zimmermann [47], Werners [48], Selim and Ozkarahan [49], and Torabi and  
Hassini [43], the membership functions (μ1, μ2, μ3) for each objective function (z1, z2, z3) are 
formulated according to [50] as follows: 

𝜇ଵ = ⎩⎪⎨
⎪⎧ 1 𝑧ଵ < 𝑧ଵ௟𝑧ଵ௨ − 𝑧ଵ𝑧ଵ௨ − 𝑧ଵ௟ 𝑧ଵ௟ < 𝑧ଵ < 𝑧ଵ௨0 𝑧ଵ > 𝑧ଵ௨  (25) 
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𝜇ଶ = ⎩⎪⎨
⎪⎧ 1 𝑧ଶ > 𝑧ଶ௨𝑧ଶ − 𝑧ଶ௟𝑧ଶ௨ − 𝑧ଶ௟ 𝑧ଶ௟ < 𝑧ଶ < 𝑧ଶ௨0 𝑧ଶ < 𝑧ଶ௟  (26) 

𝜇ଷ = ⎩⎪⎨
⎪⎧ 1 𝑧ଷ < 𝑧ଷ௟𝑧ଷ௨ − 𝑧ଷ𝑧ଷ௨ − 𝑧ଷ௟ 𝑧ଷ௟ < 𝑧ଷ < 𝑧ଷ௨0 𝑧ଷ > 𝑧ଷ௨  (27) 

where 𝑧ଵ௟ , 𝑧ଶ௟ , 𝑧ଷ௟  and 𝑧ଵ௨, 𝑧ଶ௨, 𝑧ଷ௨  are the lower and upper bounds of each objective function. These 
values can be determined by the decision-maker according to his/her experience and personal criteria 
or by minimizing and maximizing separately each objective function as suggested by several authors 
such as [45] or [49]. Figure 4 shows the boundaries of the membership curves denoted by  
Equations (25)–(27) related to the objective functions. 

 
Figure 4. Membership curves for the objective functions for 𝜇ଵ (a), 𝜇ଶ (b), and 𝜇ଷ (c)  
(adapted from [46–49]). 

2.3.4. The Zimmerman Solution Method 

The previous multiple objective linear programming model can be transformed into an 
equivalent model with a single objective, according to the approach of [46], maximizing an auxiliary 
variable 𝜆଴ ϵ ሾ0,1ሿ, which represents the minimum degree of fulfilment of all the objectives: 𝑀𝑎𝑥 𝜆଴ (28) 

subject to: 𝑧ଵ ≤ 𝑧ଵ௨ − 𝜆଴ሺ𝑧ଵ௨ − 𝑧ଵ௟ሻ (29) 𝑧ଶ ൒ 𝑧ଶ௟ + 𝜆଴ሺ𝑧ଶ௨ − 𝑧ଶ௟ ሻ (30) 𝑧ଷ ≤ 𝑧ଷ௨ − 𝜆଴ሺ𝑧ଷ௨ − 𝑧ଷ௟ ሻ (31) 

and Constraints (2) to (11). 

2.3.5. The Werners Solution Method 

According to [47], the multiple objective model can be transformed into an equivalent single 
objective models as follows: 𝑀𝑎𝑥 𝜆ሺ𝑥ሻ = 𝛾𝜆଴ + ሺ1 − 𝛾ሻ 13 ሺ𝜆ଵ + 𝜆ଶ + 𝜆ଷሻ (32) 

subject to: 𝑧ଵ ≤ 𝑧ଵ௨ − ሺ𝜆଴ + 𝜆ଵሻሺ𝑧ଵ௨ − 𝑧ଵ௟ሻ (33) 𝑧ଶ ൒ 𝑧ଶ௟ + ሺ𝜆଴ + 𝜆ଶሻሺ𝑧ଶ௨ − 𝑧ଶ௟ ሻ (34) 
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𝑧ଷ ≤ 𝑧ଷ௨ − ሺ𝜆଴ + 𝜆ଷሻሺ𝑧ଷ௨ − 𝑧ଷ௟ ሻ (35) 

and Constraints (2) to (11).  
Besides, λ0 has an equivalent meaning to Zimmermann’s solution method. In contrast, γ 

corresponds to the compensation coefficient among the objectives.  

2.3.6. Selim and Ozkarahan’s Solution Method 

Based on the solution method proposed by [47,48], a new fuzzy goal programming approach 
was proposed based on a weighted sum to incorporate the relative importance degree of each 
objective function in order to represent the decision-maker’s preferences. The equivalent model 
obtained applying the Selim–Ozkarahan solution method is presented as follows: 𝑀𝑎𝑥 𝜆ሺ𝑥ሻ = 𝛾𝜆଴ + ሺ1 − 𝛾ሻሺ𝑤ଵ𝜆ଵ + 𝑤ଶ𝜆ଶ + 𝑤ଷ𝜆ଷሻ (36) 

and Constraints (2) to (11) and (33) to (35).  

2.3.7. Torabi and Hassini’s Solution Method 

The fuzzy goal programming approach proposed by [49] considers a convex combination of the 
minimum satisfaction degree and the weighted sum of the membership function values for each 
objective function. In this sense, the obtained single objective equivalent crisp model applying the 
Torabi–Hassini approach is: 𝑀𝑎𝑥 𝜆ሺ𝑥ሻ = 𝛾𝜆଴ + ሺ1 − 𝛾ሻሺ𝑤ଵ𝜇ଵ + 𝑤ଶ𝜇ଶ + 𝑤ଷ𝜇ଷሻ (37) 

and Constraints (2) to (11) and (29) to (31). 
Among the solution approaches considered, the first and third indices of Yager are characterized 

by their simplicity of application since they perform the defuzzification of uncertain values through 
average operations. The model considers the central, the more optimistic, and the more pessimistic 
values of the triangular fuzzy numbers. However, the approach proposed by Lai and Hwang is based 
on the resolution of a multi-objective mathematical programming model. If this proposal is compared 
with Yager’s indices, this presents a higher level of difficulty in order to obtain a solution by using 
additional proper solution methods, such as weighting objectives, the ξ-constraint, metaheuristics, 
or goal programming, among others. In this study, different fuzzy goal programming approaches 
have been considered. The obtained solution by applying Zimmerman’s [47] solution method might 
be neither unique nor efficient because it is focused on the optimization of the objective with a lower 
degree of satisfaction according to the decision-maker. Similar to Zimmerman’s approach, the 
Werners [48] solution method does not take into account the preferences of the decision-maker 
regarding their relative importance, although it introduces a compensation coefficient among them. 
In order to overcome the previous deficiencies, Selim and Ozkarahan [49] and Torabi and  
Hassini [43] presented solution methods in which the coefficient of compensation allowed accounting 
for the effect of the change in objective weights. According to [42], in these two approaches, a small 
change in the coefficient of compensation may yield a large amount of variability in the obtained 
solution (especially for lower values), and therefore, it is difficult to set this value in a precise way. 
Moreover, the formulations of Selim and Ozkarahan [49] and Torabi and Hassini [43] are more 
complex than those of Zimmerman or Werners and need more decision variables and computational 
time, but nevertheless, they can obtain better results. 

3. Results and Discussion 

3.1. Case Study 

A real irrigation network was analyzed in order to show the innovation developed by this 
research. The water supply was used by [39] in order to analyze the necessary storage to supply the 
irrigation demand. The water system under study was located in Alicante province, supplying  
260 hectares where there were vineyard crops. The water system was supplied from a small reservoir 
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(its useful volume was 527,500 m3). The storage is defined as a function of water level using  
Equation (38): 

S = 1259 WL2 + 43,556 WL (38) 

where S is the storage in m3 and WL is the water level of the reservoir in m. 
The consumption nodes (there were 110 irrigation consumption nodes) were located between 

380 and 590 m above sea level. The pipelines that transport the water to the consumption nodes were 
manufactured from, iron and their range of diameters was from 80 to 550 mm. 

The model was implemented with the MPL modelling language v5.0 [51], and the resolution 
was carried out with the optimization solver Gurobi v7.5.2 [52] in which a time limit of 180 s was set. 
Finally, it is worth mentioning that a Microsoft Access 2010 database managed the input and output 
data of the model.  

The data used in this model were the same as those used by [39] to make a comparison between 
both mathematical programming methods applied on the same water system. However, in this case, 
the total costs were determined considering the cumulative storage cost to make possible the 
comparison among the different proposed methods. Figure 2 shows the water demand of the case 
study for each month, as well as the annual cumulative required water. This water demand was 
satisfied from different water sources. Source 1 came from water transfer of another basin, and its 
price was fixed over time. The water of Source 2 was obtained from wastewater treatment, and its 
price was also fixed over time. Finally, the water from Source 3 came from desalination. The prices 
of Sources 4 and 5 were variable since they came from wells, and therefore; their prices depended on 
the energy price.  

 
Figure 2. Data of the water demand according to [30]. 

Table 2 shows water prices for each of the five water sources. When the price was variable 
(Sources 4 and 5), the water price was also variable, and therefore, Table 2 shows the price for each 
period depending on the type of agreement (Table 3). The possibility distributions associated with 
uncertain costs were modelled using triangular fuzzy numbers, which were constructed setting a 
maximum deviation of 15% for the most optimistic costs and 25% for the most pessimistic costs with 
respect to the most frequent ones. 
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Table 2. Water prices as a function of the different sources according to [39]. 

Source Method 
Price 
(€/m3) 

Source 1 Fixed 0.25 
Source 2 Fixed 0.35 
Source 3 Fixed 0.60 

Source 4 

Variable − 
P1 0.56 
P2 0.50 
P3 0.35 
P4 0.30 
P5 0.20 
P6 0.12 

Source 5 

Variable − 
P1 0.70 
P2 0.65 
P3 0.49 
P4 0.42 
P5 0.35 
P6 0.25 

With regard to the variable costs, they were related to the energy price. In Spain, there are 
different agreements that regulate this aspect. One of the agreements considers six periods from P1 
to P6. Each period depends on the hour and date according to Table 3. 

Table 3. Period differentiation as a function of hour and month to define the energy consumption. 

Ho
ur 

Month 

Janu
ary 

Febru
ary 

Mar
ch 

Ap
ril 

M
ay 

1–
15 
Ju
ne 

16–
30 
Ju
ne 

Jul
y 

Aug
ust 

Septem
ber 

Octo
ber 

Novem
ber 

Decem
ber 

0 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
1 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
4 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
5 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
7 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 
8 P2 P2 P4 P5 P5 P4 P2 P2 P6 P4 P5 P4 P2 
9 P2 P2 P4 P5 P5 P3 P2 P2 P6 P4 P5 P4 P2 
10 P1 P1 P4 P5 P5 P3 P2 P2 P6 P4 P5 P4 P1 
11 P1 P1 P4 P5 P5 P3 P1 P1 P6 P4 P5 P4 P1 
12 P1 P1 P4 P5 P5 P3 P1 P1 P6 P4 P5 P4 P1 
13 P2 P2 P4 P5 P5 P3 P1 P1 P6 P4 P5 P4 P2 
14 P2 P2 P4 P5 P5 P3 P1 P1 P6 P4 P5 P4 P2 
15 P2 P2 P4 P5 P5 P4 P1 P1 P6 P4 P5 P4 P2 
16 P2 P2 P3 P5 P5 P4 P1 P1 P6 P3 P5 P3 P2 
17 P2 P2 P3 P5 P5 P4 P1 P1 P6 P3 P5 P3 P2 
18 P1 P1 P3 P5 P5 P4 P1 P1 P6 P3 P5 P3 P1 
19 P1 P1 P3 P5 P5 P4 P2 P2 P6 P3 P5 P3 P1 
20 P1 P1 P3 P5 P5 P4 P2 P2 P6 P3 P5 P3 P1 
21 P2 P2 P3 P5 P5 P4 P2 P2 P6 P3 P5 P3 P2 
22 P2 P2 P4 P5 P5 P4 P2 P2 P6 P4 P5 P4 P2 
23 P2 P2 P4 P5 P5 P4 P2 P2 P6 P4 P5 P4 P2 
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Moreover, the maximum supply capacity of each source is shown in Table 4. The data are 
expressed in hourly and monthly capacity per source. Additionally, Sources 4 and 5 had a limited 
number of hours for supplying water depending on the month and the selected method (Table 5). 

Table 4. Maximum supply capacity of each source. 

Source 
Hourly Capacity (m3) 

CMit 
Monthly Capacity (m3) 

CMTit 
1 120 40,000 
2 306 500,000 
3 324 75,000 
4 360 75,000 
5 450 125,000 

Table 5. Limitation of hours for supplying water for Sources 4 and 5. 

  Hours of Water Service Per Month 
Source Method 1 2 3 4 5 6 7 8 9 10 11 12 

4 2 132 120 0 0 0 0 286 0 0 0 0 126 
4 3 220 200 0 0 0 0 66 0 0 0 0 210 
4 4 0 0 126 0 0 126 0 0 120 0 126 0 
4 5 0 0 210 0 0 210 0 0 200 0 210 0 
4 6 0 0 0 336 336 0 0 0 0 352 0 0 
4 7 392 352 408 384 408 384 392 744 400 392 384 456 
5 2 132 120 0 0 0 0 286 0 0 0 0 126 
5 3 220 200 0 0 0 0 66 0 0 0 0 210 
5 4 0 0 126 0 0 126 0 0 120 0 126 0 
5 5 0 0 210 0 0 210 0 0 200 0 210 0 
5 6 0 0 0 336 336 0 0 0 0 352 0 0 
5 7 392 352 408 384 408 384 392 744 400 392 384 456 

3.2. Results 

Table 6 summarizes the solutions yielded by the proposed models. From Table 6, it can be 
determined that the two models, based on the first and third indices of Yager, provided the worst 
results in terms of total costs compared to Lai and Hwang’s approach. In this sense, Lai and Hwang’s 
approach (1992) generated four different fuzzy solutions, depending on the solution method applied. 
Among them, Selim and Ozkarahan’s approach obtained the best solution in terms of most possible 
(z1), most optimistic (z2), and most pessimistic (z3) total costs. Therefore, the decision-maker could 
develop a water management plan with a triangular possibility distribution for total storage and 
procurements costs (z1, z2, z3) = (278,450, 236,683, 348,063). 
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Table 6. Optimization results of the model statistics (€). 

 

First 
Index 

of 
Yager 

Third 
Index 

of 
Yager 

Lai and Hwang Approach 

Zimmerman’s 
Approach 

Werners’ 
Approach 

Selim and 
Ozkarahan’s 

Approach 

Torabi and 
Hassini’s 
Approach 

Total costs (z) 285,753 284,076 - - - - 
Most possible 
total costs (z1) - - 278,579 278,567 278,450 278,531 

Most optimistic 
total costs (z2) 

- - 236,792 236,782 236,683 236,752 

Most pessimistic 
total costs (z3) 

- - 348,224 348,209 348,063 348,164 

Computational 
Time 

- 30% 294% 350% 322% 229% 

Solution parameter settings: γ = 0.4; w1 = 0.6; w2 = 0.2; w3 = 0.2. 

Table 6 also shows the computational time used by each model as the percentage of the one used 
by the first index of Yager to highlight the order of magnitude of additional computation. As can be 
seen, although there were differences among the different methods, these were not significant as the 
solutions tended to be rather fast.  

If Table 6 is analyzed in order to compare the results for each model used, considering the first 
index of Yager (FY) as the basis of the comparison, the total cost of the third index of Yager was 1% 
lower. The most possible total costs (z1) when Lai and Hwang’s approach was used was 97.4% 
comparing it to FY. The different approaches varied between 278,450 (Selim and Ozkarahan’s 
approach) and 278,579 € (Zimmerman’s approach). However, the variation between the maximum 
and minimum costs was 0.05%. Therefore, the use of the different approaches was indifferent with 
respect to obtaining the optimal solution. When the most optimistic and pessimistic costs were 
analyzed (Table 6), a reduction of 17.8% was obtained, while the pessimistic costs showed an increase 
of 21.86 %. The annual volume used of each source as a function of the considered solution approach 
is shown in Table 7. Besides, Table 7 shows the percentage used of each considered water source for 
each solution approach. 
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Table 7. Comparison of annual volume and percentage of use. 

Source Method Annual Volume 
(m3/Year) 

% Use with Respect to Annual Capacity of Each Water 
Source Used 

First Index of Yager 
4 7 347,743 38.64% 

Third Index of Yager 
4 7 347,743 38.64% 

Zimmerman’s approach 
1 1 36 0.01% 
4 7 347,743 38.64% 

Werners’ approach 
1 1 2565 0.53% 
2 1 343,111 5.72% 
3 1 1797 0.20% 

Selim and Ozkarahan’s approach 
1 1 4489 0.94% 
2 1 951 0.02% 
4 7 346,457 38% 

Torabi and Hassini’s approach 
1 1 1970 0.41% 
2 1 5454 0.09% 
4 7 340,049 37.78% 

 
Figure 3 shows an example of the water system management by using linear programming with 

Selim and Ozkarahan’s approach. When all results over time were examined, Source 1 had a 
frequency of 19.7%. The frequency related to Source 2 was 1.13%, and the rest of the time, the water 
was obtained from Source 4 considering the energy period P6. Therefore, Source 4 was the main one 
used to minimize the exploitation cost of the water system. This trend was similar for the different 
statistics models developed in this research, where Source 4 was the main source to supply the water 
demand, considering P6. 

 
Figure 3. Example of demanded sources in the third week of June by applying Selim and  
Ozkarahan’s approach. 
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Regarding the operation of the irrigation system, Figure 6 shows the third week of June, for 
which the cumulative volume in the reservoir (i.e., storage) oscillated between 46,308 and 44,815 m3. 
This trend was stable over the planning horizon once the water system reached continuous time. 
Therefore, the planning demonstrated that it was not necessary to reach the maximum water level in 
the reservoir in the winter season since the water sources were enough to meet the annual water 
demand, minimizing the exploitation costs. Accordingly, the proposed model showed a significant 
improvement in comparison with the results given by the water manager, enhancing the current 
management [26]. In this sense, the proposed model allowed distributing the energy, storage, and 
management costs over the planning horizon simultaneously with incomes provided from selling 
water to farmers. Otherwise, the current planning method used by water manager concentrates most 
of the amounts of required water in winter months, and consequently, it is necessary to have large 
flows of cash available or, in some cases, to apply for loans from credit institutions.  

Table 8 presents the computational efficiency of the evaluated models. The results, from a 
computational viewpoint, were obtained by setting an upper bound of CPU time limited at 180 s and 
a stopping criterion for the gap of 0.5% so that the computational process stopped if either criterion 
was met. Moreover, data related to the number of constraints, decision variables, integer elements, 
and the nonzero and density of the coefficient matrix (defined as the percentage of nonzero 
coefficients in the total number of coefficients) are shown. The number of decision variables should 
be obtained by multiplying the size dimensions of each variable. However, in order to obtain a better 
computational performance, some filters related to impossible combinations of decision variables 
related to the case study were applied. As the evaluated models had a similar structure and the same 
input data, number of variables, integers, and constraints, the comparison presented very small or 
null variations. For example, the number of integer elements was the same for all the considered 
approaches, while the number of constraints and variables was slightly higher for Lai and Hwang’s 
approach, and particularly so for Werners’ and Selim and Ozkarahan’s approaches. On the other 
hand, the number of nonzero elements was considerable higher for all the solution methods 
associated with Lai and Hwang’s approach in comparison with Yager’s indices.  

Table 8. Model statistics. 

 
First 

Index of 
Yager 

Third 
Index of 

Yager 

Lai and Hwang Approach 

Zimmerman’s 
Approach 

Werners’ 
Approach 

Selim and 
Ozkarahan’s 

Approach 

Torabi and 
Hassini’s 
Approach 

Constraints 455,654 455,654 455,661 455,661 455,661 455,661 
Variables 96,372 96,372 96,376 96,379 96,379 96,376 
Integers 43,812 43,812 43,812 43,812 43,812 43,812 

Nonzeros 2,417,737 2,417,737 2,803,234 2,803,237 2,803,237 2,803,234 
Density 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 

Iterations 19,875 19,858 68,620 36,858 35,569 34,532 
Solution 
time (s) 

22 28 85 97 91 76 

Table 8 also shows how Lai and Hwang’s approach required a considerably higher amount of 
CPU time compared to Yager’s approaches. Moreover, the different approaches to solve Lai and 
Hwang’s model also needed a higher number of iterations to obtain an optimal mixed integer linear 
programming solution, especially Zimmerman’s solution method. Additionally, although Lai and 
Hwang’s approach had a larger number of constraints and integer variables, this does not imply 
additional information storage requirements, but an increased modelling complexity. Finally, 
Werners’ model and mainly Selim-Ozkarahan’s and Torabi-Hassini’s approaches required more 
parameter settings for the decision-maker. 
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4. Conclusions 

Different solution approaches were applied and evaluated in terms of model complexity and 
computational efficiency, and the solution accomplished was presented. Lai and Hwang’s approach, 
which was solved by Werners’ method, implied more modelling complexity and CPU time, but 
provided more flexibility for decision-makers to achieve a fuzzy solution according to  
their preferences.  

When the comparison was applied to a real water network, Lai and Hwang’s approach reached 
the best solution in which the reduction of total costs was near 20% compared to the first index of 
Yager. The decrease of operational costs was very significant since this reduction was directly related 
to the reduction of energy consumption (e.g., pumped water or wastewater treatment, which 
established the water price). Therefore, a sustainability increase was reached when the decrease of 
costs was achieved.  

Finally, the manuscript enables developing further lines of research. These lines can be focused 
on: (1) testing the models with real-world problems in a rolling horizon; (2) comparing the models 
with other solution approaches; (3) using other membership functions patterns; (4) including carbon 
footprint and the selection of sources of energy; (5) incorporating financial issues in order to optimize 
the generated cash flows and therefore improve the cost effectiveness. 
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