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Abstract: Accurately measuring regional evapotranspiration (ET) is of great significance for studying
global climate change, regional hydrological cycles, and surface energy balance. However, estimating
regional ET from mixed vegetation types is still challenging. In this study, the Surface Energy Balance
Algorithm for Land (SEBAL) and the Surface Energy Balance System (SEBS) models were applied to
estimate surface ET in a small agricultural watershed. Landsat8 satellite images were used as input
data to the single-source models. The two models were validated at single point and ecosystem scales.
The results showed that both models overestimated ET observations in paddy fields and orange
groves but underestimated them in dry farmland. The error was mainly caused by the heterogeneity
of the mixed pixels. The linear spectral mixture model and a set of equations were introduced to
reduce the simulation error. The revised results showed that the relative precision of SEBAL was
improved by 9.87% and 10.06%, respectively. This research is expected to provide new ideas for
future development of accurate remote-sensing ET estimations on heterogeneous surfaces.
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1. Introduction

Evapotranspiration (ET) is a major component of global hydrological cycles and provides
an important nexus between terrestrial water, carbon and surface energy exchange. In addition,
ET is inherently difficult to measure and estimate, especially on large spatial scales. Obtaining accurate
ET estimates has great significance for understanding regional hydrological cycles and energy balance.
Currently, the global water resource situation is becoming more and more serious, and the importance
of water resources is becoming increasingly significant. Therefore, the constantly increasing requests for
quantitative management of water resource demand have prompted further research on ET estimation.

Traditional methods for estimating ET include the evaporating dish and the Lysimeter [1].
These methods are applicable on a field scale, while the development of remote-sensing technology and
the continuous improvement of satellite image resolution provide a reliable guarantee for obtaining
periodic regional surface ET values in a timely manner. Unlike traditional methods which estimate
ET directly, the remote sensing method calculates ET step-by-step using various inversion algorithms.
In recent decades, a large number of remote-sensing regional ET models have been developed and
applied. The first type of model is the statistical empirical models which establish relationships
between site meteorological observations and ET data associated with remote-sensing parameters
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(vegetation index, surface temperature, soil moisture) and expand relationships to describe regional
ET [2–4]. The second type of model is the single-source energy balance models: the Surface Energy
Balance Index [5], the Surface Energy Balance Algorithm for Land (SEBAL [6–9]); the Surface Energy
Balance System (SEBS [10]); the Simplified Surface Energy Balance Index [11], and Mapping ET with
Internalized Calibration [12]. The third type of model is the two-source energy balance models that
distinguish soil and vegetation contributions, including the S-W model [13], the N95 model [14],
and the Atmosphere–Land Exchange Inverse model [15].

Among these models, SEBAL and SEBS have been widely used in various countries around
the world by many researchers [16–20]. ET is estimated from a single measurement point and then
expanded to a regional scale using SEBAL and SEBS. These models break through the limitations
of traditional methods, provide a new way of estimating regional ET, and ensure high estimation
accuracy. Therefore, remote-sensing methods have an irreplaceable role in estimating ET at the
regional scale [21]. Taking advantage of remote-sensing technology to estimate ET and analyze its
spatial variation characteristics at the regional scale has far-reaching significance for studying climate
change, maintaining balanced ecosystems, and ensuring acceptable utilization efficiency for regional
water resources.

Current research is focused on estimating overall ET at the large regional scale. However, it
has overlooked the estimation error from mixed pixels of different crop types that occurs at the
regional scale, leading to less-than-precise estimations [18,22–24]. Freund et al. [25] concluded that
averaging over spatial heterogeneity leads to overestimation of ET in large scale Earth system models.
Byun et al. [26] also found that SEBS overestimated trends in the estimation of latent heat flux over
heterogeneous surfaces in cropland and mixed forest. Surface heterogeneity brings error to regional
ET estimation and has greatly restricted the estimation accuracy of single-pixel vegetation ET at the
regional scale [27,28].

The objective of this study was to eliminate/reduce this estimation error and to improve the
estimation accuracy. Therefore, this paper will focus on single-source model application and the
resulting improvements. A small watershed in typical Southern hilly farmland located in Jiangxi
Province, China was chosen for this study. Bowen ratio energy balance system, Automatic Weather
Station (AWS) and large aperture scintillometer (LAS) observations were used for comparative
verification with SEBAL and SEBS at single-point and ecosystem scales. In combination with land-cover
type maps of 30 m and 0.5 m resolution, surface evaporation was analyzed under various land-cover
types. Finally, the linear spectral mixture model (LSMM) was used to resolve the remote-sensing ET
estimation error of mixed pixels at the ecosystem scale in the two models. It is expected that this study
will provide new ideas for the future development of remote-sensing ET models. These research results
could help people to monitor the water situation of different crops in small agricultural watersheds
in a timely and accurate manner, provide scientific evidence to guide crop irrigation, and support
management and evaluation of regional water resources.

2. Materials

2.1. Study Area

The study area is a core experimental area (5.5 km × 5.5 km) in a small Sunjia watershed,
and is located on the Liujiazhan reclamation farm, Yujiang County, Yingtan City, Jiangxi Province
(116◦55′ E, 28◦15′ N), about 4 km from the Chinese Academy of Red Soil Ecological Experimental
Station. The Liujiazhan reclamation farm is composed of low, hilly, red soil, with a surface elevation of
38~55 m above sea level, slowly varying terrain, and a slope of less than 8◦. There are three vegetation
types in the observation area: double-cropped rice, peanut/sweet potato rotation, and orange groves.

The study area has a subtropical monsoon climate with an average annual precipitation of
1795 mm, and an ET of 1318 mm. The average annual temperature is 18.4 ◦C, and sunshine duration is
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1739.9 h. The rainy season (April–June) accounts for about 50 percent of annual precipitation. ET from
July to September is nearly 50 percent of the annual amount.

2.2. Ground Measurements

In the study area, meteorological measurements were taken at two national meteorological stations
and three HOBO U-30 (ONSET Inc., Folsom, CA, USA) automatic weather stations (air temperature,
precipitation, land-surface temperature, atmospheric pressure, wind speed, relative humidity, sunshine
duration, and solar radiation) at a height of 2 m above the ground. ET data at the site scale were
obtained by the Bowen ratio energy balance system (Campbell Scientific Inc., Logan, UT, USA), and
the vertical gradient observations were 1.5 m and 3 m. Automatic weather stations and Bowen ratio
energy balance systems were set up on three different crop types (location are shown in Figure 1c).
Regional ET data were obtained by a large-aperture scintillometer (LAS, Kipp & Zonen Inc., Delft,
The Netherlands). The LAS effective height was 9 m, and the spatial interval between the transmitter
and receiver was 840 m (Figure 1c). Soil heat flux was measured by three soil heat flux plates (HFP-01,
Hukse Flux, Delft, The Netherlands) buried in the soil at a depth of 5 cm at the same location as the
Bowen ratio energy balance system. Observations were taken every 15 min, on average. The flux
contribution source area of LAS was estimated by the footprint model [29,30]. The footprint function
can be expressed as

fLAS =
∫ x1

x2

W(x) f
(
x− x′, y− y′, zLAS

)
dx (1)

W(x) = 4π2υ2
LAS

∫ ∞

0
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[
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]
×
[

2J1
(
0.5υD x

d
)

0.5υD x
d
×

2J1
(
0.5υD

(
1− x

d
))
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d
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where fLAS is the footprint function, x1 and x2 are the positions of the transmitter and receiver, x
and y are the propagation distances along the LAS path (m), x’ and y’ are the coordinates of each
point in the upwind direction over the LAS path, ZLAS is the effective measurement height (m),
W(x) is the weight function over the LAS path, d is the path length (m), υLAS is the optical wave
number, υ is the turbulence spatial spectrum wave number, D is the aperture diameter of LAS, φ(υ)
is the three-dimensional spectrum of refractive index fluctuations (0.033υ

−11
3 ), and J1(m) is the Bessel

function of the first kind of order one.

Figure 1. Map of the land cover types and instrument locations. (a) Land cover type (30 m resolution
form Landsat8); (b) Land Cover Type (0.5 m resolution form Pleiades); (c) The large aperture
scintillometer (LAS) source areas (90% flux contribution) and instrument locations, identical to the
areas in the black boxes on (a,b).

The LAS resolution of the source area was 30 m, and the date of the footprint weight map was on
Day Of Year (DOY) 284, 2015 (encompassing 90% of the flux contribution), as shown in Figure 1c.
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2.3. Remote-Sensing Data

The remote-sensing datasets used in this study were derived from Landsat8 data. The input data
for SEBAL and SEBS were obtained by clipping a 5.5 km × 5.5 km image for the study area. The used
data time is shown in Table 1.

The Landsat8 satellite was launched on 11 February 2013, and images the entire Earth’s surface
every 16 days. Landsat 8 carries two instruments: OLI (Operational Land Imager) and TIRS (Thermal
Infrared Sensor). The OLI consists of nine spectral bands with a spatial resolution of 15 m for
panchromatic bands and 30 m spatial resolution for multispectral bands. The approximate scene size is
a 185 km cross-track field of view. The TIRS provides two thermal bands; the two bands complement
each other and effectively separate surface and atmospheric temperatures as well as compensating
for atmospheric effects. The TIRS radiation resolution is higher than the original resolution. The two
thermal bands were collected at 100 m but were resampled at 30 m to match the OLI multispectral
bands. Landsat8 can provide reliable data for research and applications in agriculture, water resources,
forest, urban planning, and environmental studies.

The classification of land-cover types in the study area was based on Pleiades satellite data with
a resolution of 0.5 m. Pleiades is a follow-on satellite of SPOT and is composed of Pleiades-1A and
Pleiades-1B, two very high-resolution optical Earth-imaging satellites. Pleiades-1A and Pleiades-1B
were launched on 17 December 2011 and 2 December 2012, respectively. The Pleiades provide coverage
of Earth’s surface with a repeat cycle of 26 days. The Pleiades consist of five spectral bands with spatial
resolution of 0.5 m for panchromatic bands and 2 m spatial resolution for the multispectral bands, with
a 20-km swath. On one hand, the Pleiades maintain the band set and stereo imaging characteristics
of SPOT; on the other hand, they were redesigned for the spatial resolution, observational flexibility,
and data acquisition method. Currently, Pleiades is one of a number of Earth observation satellites
that offers a high level of technology, observational precision, and timeliness.

Table 1. Day of Years (DOYs) of remote-sensing images used in this study.

Year DOY

2013 134, 182, 214, 278
2014 073, 121, 217, 281, 291
2015 252, 284 *

Note: Images marked with * was the input image used to extract the abundance.

3. Methods

3.1. Theoretical Basis of SEBAL

SEBAL, proposed by Bastiaanssen et al. [7,8], is a typical single-source ET model based on the
surface energy balance equation. The model is featured in the minimum requirements for near-surface
meteorological measurements. There are three steps to compute ET in SEBAL. First, relevant surface
parameters (albedo, vegetation index, emissivity, surface temperature) are derived from remote-sensing
data under sunny weather conditions. Second, net radiation flux and soil heat flux at the ecosystem
scale are computed by combining the surface parameters with the corresponding surface meteorological
observation data (air temperature, wind speed, average vegetation height). Third, both sensible and
latent heat flux are estimated using the linear relationship between surface temperature and the
air–temperature difference between hot and cold pixels within the remote-sensing image, as well as
iterative computations, according to the Monin–Obukhov similarity theory. For details of the theory,
parameter inputs, and calculations, please refer to Bastiaanssen et al. [6–9].
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3.1.1. Soil Heat Flux in SEBAL

Soil heat flux is the change in heat storage in soil and vegetation due to conduction. In SEBAL,
Bastiaanssen’s [9] empirical parametric equation is used to consider the surface albedo, the vegetation
index, and the land-surface temperature:

G =
Ts − 273.15

α

(
0.0038α + 0.0074α2

)(
1− 0.98NDVI4

)
Rn (3a)

G = 0.41Rn − 51 (3b)

G = 0.3Rn (3c)

where G is the soil heat flux, Rn is the surface net radiation flux, Ts is the land surface temperature
(◦C), α is the surface albedo, and NDVI is the Normalized Difference Vegetation Index. Formula (3a) is
suitable for vegetated areas, (3b) is suitable for water bodies, and (3c) is suitable for urban bare land.

3.1.2. Sensible Heat Flux in SEBAL

Sensible heat flux is the heat loss/gain to the air by convection due to a temperature difference.
The SEBAL model computes sensible heat flux using the following equation:

H =
ρ× Cp × dT

rah
(4)

rah =
ln
(

z2
z1

)
− ψh(z2)

+ ψh(z1)

k2u200

[
ln
(

200
z0m

)
− ψm(200)

]
(5)

where ρ is the air density (kg/m3), Cp is the specific heat of air at a constant pressure (1004 J/kg/K),
dT is the air temperature difference (T1 − T2) (K) between heights z1 and z2, rah is the aerodynamic
resistance (s/m), u200 is the wind speed at the blending height (assumed to be 200 m above the ground),
k is the Karman constant (0.41), z0m is the surface momentum roughness length for each pixel, ψm(200)
is the stability correction function for momentum at 200 m, z2 is 2 m, z1 is 0.1 m, and ψh(z2)

and ψh(z1)

are the stability correction functions for heat transfer at 2 m and 1 m respectively.
In SEBAL, the surface momentum and thermal roughness lengths for each pixel can be calculated

by two methods [9]:
z0m = exp[(a× NDVI/α) + b] (6)

z0h = z0m/ exp
(

kB−1
)

(7)

where a and b are correlation constants that can be derived from the NDVI and the surface albedo (α)
fitted to multiple pixels in the study area. The surface albedo can help to achieve a better distinction
between vegetation pixels at different heights that have similar NDVI. Z0h is the thermal roughness
length. kB−1 is an area constant (2.3) in SEBAL.

The SEBAL model computes dT for each pixel by assuming a linear relationship between dT
and Ts:

dT = aTs + b (8)

where a, b are the correlation coefficients in the SEBAL calculation that chooses cold and hot
“anchor” pixels.

SEBAL determines the boundary conditions (zero ET and maximum ET) of the surface energy
balance based on hot and cold pixels. Cold pixels are generally selected from well-watered and fully
covered agricultural fields, such as paddy fields. They are assumed to have approximately constant
near-surface air temperatures and surface temperatures. However, water bodies cannot be chosen as
cold pixels, because the soil heat flux in water is greater than that on land. Hot pixels are generally
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selected from dry and bare agricultural fields where it is assumed that no ET taking place. Both cold
and hot pixels must be selected from a uniform surface to reduce errors caused by mixed pixels.

When a wet paddy field is chosen as the cold pixel source, the ET rate is usually about 5% larger
than the reference ET. Therefore, the sensible heat flux in cold pixels can be expressed as

Hcold = Rn − G− 1.05λETr. (9)

If no precipitation has occurred within the four days prior to the image date, then EThot is assumed
to be zero for a hot (dry) agricultural field having no green vegetation and with a dry soil surface layer.
Therefore, the sensible heat flux in hot pixels can be expressed as Hhot = Rn − G. Hence, dTcold and
dThot can be determined by

dTcold = Hcold × rah_cold/
(
ρcold × Cp

)
, dThot = Hhot × rah_hot/

(
ρhot × Cp

)
(10)

and the coefficients a and b can be obtained by

a =
dThot − dTcold

Thot − Tcold
, b =

dTcoldThot − dThotTcold
Thot − Tcold

. (11)

3.1.3. Daily ET in SEBAL

In SEBAL, the latent heat flux is obtained as follows:

λET = Rn − G − H (12)

where λET is the instantaneous latent heat flux (w/m2).
The hourly ET can be calculated by integrating the instantaneous values of the latent heat fluxes

and transforming them in mm/h.
The evaporative fraction (hourly ET/hourly reference ET) is assumed to be constant over a 24 h

period. Therefore, daily ET can be calculated by

ETdaily = Λ× ETr_daily (13)

where Λ is the evaporative fraction, and ETr_dalily is the daily reference ET.

3.2. Theoretical Basis of SEBS

SEBS, proposed by Su [10], is an improved version of SEBAL. The model has an improved surface
roughness length algorithm for heat and is more adaptable for regional-scale applications and has
become more popular [10,31].

SEBS consists of three main modules: (1) SEBAL which uses remote-sensing data to calculate ET;
(2) a new algorithm for kB−1 in which the kB−1 scheme proposed by Menenti and Choudhury [5] is
used for the fully vegetated area, while the kB−1 scheme proposed by Brutsaert [32] is used for bare
soil. A new calculation method for the kB−1 coefficients was applied to accommodate the incomplete
vegetation coverage and to more accurately estimate surface roughness length for heat. (3) The
measurement height is determined to be either in the atmospheric surface layer (ASL) or in the
planetary boundary layer (PBL) based on the height obtained using the Monin–Obukhov Similarity
(MOS) theory [33] and the Bulk Atmospheric Boundary Layer Similarity (BAS) theory [32]. For details
of the particular theory and input requirements of SEBS, please refer to Su [10].
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3.2.1. Soil Heat Flux in SEBS

In SEBS, the soil heat flux is calculated using a relationship between vegetation coverage and net
radiation flux:

G = Rn[Γc + (Γs − Γc)(1− fc)] (14)

where Γc is the soil heat flux ratio for a fully vegetated area, Γs is the ground heat flux ratio for bare
soil, and fc is the vegetation fraction. In this study, Γc = 0.05 [34], and Γs = 0.315 [3].

3.2.2. Sensible Heat Flux in SEBS

Sensible heat flux in SEBS is computed by the following equations:

u =
u∗
k

[
ln
(

z− d0

z0m

)
− ψm

(
z− d0

L

)
+ ψm

(z0m

L

)]
, (15)

L = −
ρCpu3

∗θv

kgH
, (16)

H = ku∗ρCp(θ0 − θa)

[
ln
(

z− d0

z0h

)
− ψh

(
z− d0

L

)
+ ψh

(z0h
L

)]−1
, (17)

where z is the height above the surface (m), u is the wind speed (m/s), u* is the friction velocity (m/s),
ρ is the air density (kg/m3), k is the Karman constant (0.41), d0 is the zero plane displacement (m), Z0m
is the roughness length for momentum, Z0h is the roughness length for heat, θ0 and θa are the potential
temperatures at the surface and at height z, respectively (K), Ψm and Ψh are the stability correction
factors for sensible heat and momentum transfer, respectively, g is the acceleration due to gravity
(m/s), Cp is the specific heat of air at a constant pressure (1004 J/kg/K), H is the sensible heat flux
(W/m2), L is the Obukhov length (m), and θv is the potential virtual temperature near the surface (K).

The roughness length for heat (Z0h) varies with land-cover type, atmospheric circulation, and
surface thermodynamic characteristics. Based on the work of Massman [35], Su [31] proposed a simple
model for the roughness length for heat and an extended model for the residual impedance kB−1:

z0m = 0.005 + 0.5
[

NDVI
NDVImax

]2.5
, (18)

z0h = z0m/ exp
(

kB−1
)

, (19)

kB−1 =
kCd

4Ct
u∗

u(h) (1− e−nec/2)
f 2
c + 2 fc fs

k• u∗
u(h)•

z0m
h

C∗t
+ kB−1

s f 2
s , (20)

where f c is the fractional canopy coverage, f s = 1 − f c, Cd is the vegetation drag coefficient (0.2),
Ct is the heat transfer coefficient of leaves (0.01), Ct

* is the heat transfer coefficient of soil, nec is the
within-canopy wind speed profile extinction coefficient, u* is the friction velocity, u(h) is the horizontal
wind speed at the canopy top. The roughness Reynolds number Re* = hsu*/ν was also proposed,
where hs is the roughness length of the soil and ν is the kinematic viscosity of the air.

3.2.3. Daily ET in SEBS

In SEBS, the estimation of the relative evaporative fraction considers the limiting case in dryness
and wetness using Equation (23). In the case of extremely dry surfaces, H reaches its maximum and
ET approaches zero, due to the lack of soil moisture. In the case of extremely wet surfaces, ET reaches
its potential rate. The relative evaporative fraction is determined by the following equation:

Λr = 1− H − Hwet

Hdry − Hwet
. (21)
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The evaporative fraction is expressed as the ratio of ET to available energy at the surface (Rn − G),
as follows:

Λ =
λE

H + λE
=

λE
Rn − G

=
Λr × λEwet

Rn − G
. (22)

When the evaporative fraction is determined, daily ET can be inferred as follows:

ETdaily = 8.64× 107 ×
24
Λ
0
× Rn − G0

λρw
(23)

where ETdaily is the daily ET(mm·d−1),
24
Λ
0

is the mean daily evaporative fraction estimated by the

evaporation ratio constant principle [13], Rn and G0 are the mean daily net radiation and mean daily
soil heat fluxes.

3.3. Theoretical Basis of LSMM

Though SEBAL and SEBS have been widely used, these two energy balance models have also
showed some poor performances in areas with mixed vegetation types at the regional scale. There are
many sources of error in SEBAL and SEBS ET simulations, for example, errors in the inputs, including
air temperature, wind speed, albedo, vegetation index, surface temperature and roughness length.
In previous studies, however, there was no agreement regarding which parameters or variables have
the greatest impact on the error of ET estimations. Timmermans et al. [36] attributed the error to
the parameter of roughness length, the study by Van der Kwast et al. [37] suggested that surface
temperature leads to uncertainty in the model, Harman [38] considered the applicability of the
atmospheric stability correction method as a source of error, and some other researchers pointed out
that the model’s uncertainty is caused by the selected end-members at the hot/cold pixels, the dry/wet
limit criteria and the different sizes of area of interest [39,40]. However, most of these studies indicated
that the heterogeneity of the flux sites might be the main source of the error in the single-source energy
balance model.

LSMM proved to be an effective way of eliminating/reducing the error caused by mixed pixels
on non-homogeneous underlying surfaces. In the Amazon, where vegetation is abundant and the
structure is complex, LSMM was applied to classify vegetation [41] and to accurately estimate forest
and savanna biomass [42]. Musa et al. [43] and Onwuka et al. [44] utilized LSMM to extract the high
objectivity of land use and cover change dynamics in Nigeria. Hu et al. [45] improved the accuracy of
canopy leaf area index estimation in flux tower sites by LSMM. Weng et al. [46] successfully estimated
impermeable surfaces using LSMM. Zhang et al. [47] improved the parameters of a multi-source
parallel model with LSMM, and the modified model outperformed the initial model in accuracy for
urban ET estimation. The accuracy of linear spectral unmixing has an important impact on the accuracy
of ET estimation.

In the LSMM, the pixel reflectance in a spectral band is expressed as a linear combination of each
end-member reflectance and a weighting coefficient determined by the proportion of the pixel area
reflected [48]. LSMM uses a linear relationship to express the proportions of various land-cover types
and their spectral responses within a single pixel in remote-sensing images. The linear spectral mixture
model is as follows:

Rλ =
N

∑
i=1

fi · Ri,λ + eλ, (24)

where Rλ is the reflectance or radiance of a pixel in band λ which contains one or more end-members,
Ri,λ is the reflectance or radiance of end-member i in band λ, eλ is the residual, fi is the proportion

of end-member within the pixel, and
N
∑

i=1
fi = 1 The fi of each end-member can be obtained by the

least-squares technique [49].
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In the current study, the minimum noise fraction (MNF) was used to separate principal
components and noise from remote-sensing images to generate each mutually independent spectrum.
In most images, the vast majority of the useful information was contained in the first three bands.
Since the MNF method for determining the end-member components is imprecise and somewhat
approximate, the pixel purity index (PPI) was used as an indicator for further determination of
high-purity pixels in remote-sensing images in this study. The PPI is the frequency of the extreme
point in each pixel; higher PPI values indicate a higher pixel purity. Next, an iterative calculation
was performed to extract pixel points with PPI greater than 3.0 (the larger the PPI value, the purer
the pixels). This removes most of the impure points from the original image and greatly reduces
the noise of end-member components. N-dimensional visualization tools were then used to analyze
the results of N-dimensional divergence. Combined with the investigation of known pure pixels,
the two-dimensional scatter plots of the first three bands after MNF transformation were rotated
and compared to interpret Landsat8 data in the study area. The end-member components of pure
pixels at the top of each edge of a three-dimensional polyhedron were determined, and end-member
average spectral curves for double-cropped rice, peanut/sweet potato rotation, and orange groves were
extracted and analyzed. Afterwards, several end-member components were extracted and calculated
by LSMM, ensuring that pixel abundance values fell between 0 and 1.

In LSMM, three kinds of end-member average spectral curves were extracted for rice, peanuts,
and orange groves. Then, the abundances of the three kinds of end-members were obtained. Based on
the abundance values for the three land-cover types from 10 clear-sky images in 2013–2015, a set of
overdetermined equations was obtained using Equation (27), and the least-squares method was used
to obtain approximate solutions.



ETt(rice) × X× fi(rice) + ETt(peanut) × Y× fi(peanut) + ETt(orange) × Z× fi(orange) = ETit

ETt(rice) × X× f(i+1)(rice) + ETt(peanut) × Y× f(i+1)(peanut) + ETt(orange) × Z× f(i+1)(orange) = ET(i+1)t
ETt(rice) × X× f(i+2)(rice) + ETt(peanut) × Y× f(i+2)(peanut) + ETt(orange) × Z× f(i+2)(orange) = ET(i+2)t
...
ETt(rice) × X× f(i+n)(rice) + ETt(peanut) × Y× f(i+n)(peanut) + ETt(orange) × Z× f(i+n)(orange) = ET(i+n)t

(25)

where frice, fpeanut, and forange are the abundances in each pixel of rice, peanuts, and orange groves,
respectively, i indicates a data point, t indicates the image time and X, Y, Z are the contribution rates of
rice, peanuts, and orange groves, respectively, to ET in mixed pixel i.

4. Results and Discussion

4.1. Validation of Soil Heat Flux

The flow of heat through a unit area of surface soil is the soil heat flux, which is proportional
to the soil’s vertical temperature gradient. The SEBAL and SEBS models use different algorithms to
estimate soil heat flux, as shown in Figure 2. The SEBAL model distinguishes between vegetation,
water, and urban areas, using Rn, Ts, α, and NDVI to calculate soil heat flux. The SEBS model uses
Γc, Γs, and vegetation coverage to calculate soil heat flux. Figure 2 shows the spatial distribution of
instantaneous average soil heat flux from 11 images of Landsat8. In SEBAL, the soil heat flux ranged
from 15.5 W/m2 to 228.64 W/m2, and the average for the study area was 69.34 W/m2. In SEBS,
the soil heat flux ranged from 23.64 W/m2 to 214.85 W/m2, and the average for the study area was
70.03 W/m2. The soil heat flux distribution trend was roughly the same in both SEBAL and SEBS
(Figure 2a,b), with the largest soil heat flux being in dry farmland [50].
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Figure 2. The distribution of soil heat flux (a) Surface Energy Balance Algorithm for Land (SEBAL),
(b) Surface Energy Balance System (SEBS).

Then, the instantaneous results of the two models with the observed values from three soil
heat flux plates on three different crop types were compared (Figure 3). The R2, BIAS, and RMSE
of the simulation results of SEBAL in the paddy field were 0.922, −1.22 W/m2 and 6.44 W/m2,
respectively, while in SEBS, they were 0.962, −0.29 W/m2 and 3.51 W/m2, respectively. The R2, BIAS,
and RMSE of the simulation results of SEBAL in day farmland were 0.981,−5.15 W/m2 and 6.98 W/m2,
respectively, while in SEBS, they were 0.872, −9.86 W/m2 and 14.81 W/m2, respectively. the R2, BIAS,
and RMSE of the simulation results of SEBAL in the orange grove were 0.828, −4.60 W/m2 and
8.35 W/m2, respectively, while in SEBS, they were 0.964, −2.41 W/m2 and 4.05 W/m2, respectively.
Thus, the simulation results of SEBS in the paddy field and orange grove were closer to the observed
values than the results using SEBAL (Figure 3a,c). However, the soil heat flux simulated by SEBAL
in dry farmland was closer to the observed value (Figure 3b). The comparative results show that the
SEBS model is relatively better in areas with high vegetation coverage (paddy field and orange grove),
meanwhile SEBAL is better in areas with lower vegetation coverage (dry farmland).

Figure 3. Comparison of simulated soil heat flux with the observed values by soil heat flux plates:
(a) double cropping rice, (b) peanut/sweet potato rotation, (c) orangery.

4.2. Validation of Sensible Heat Flux

When considering the influence of geomorphic topographic relief over heterogeneous terrain,
the surface kinetic parameters used in surface ET research are mainly the roughness length for
momentum, zom, and the zero plane displacement, d0. As described before, the methods for the surface
kinetic parameters are different between SEBAL and SEBS, which led to a significant difference in the
distribution of roughness for momentum between SEBAL and SEBS (Figure 4). The number of pixels
from the minimum zom to the maximum zom decreased progressively in SEBAL. However, in SEBS,
the basic distribution pattern of the number of pixels from the minimum zom to 0.36 showed very little
dispersion, but once zom became greater than 0.36, the number of pixels plummeted.
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Figure 4. Number of pixels statistics of roughness length for momentum (Z0m) (a) SEBAL, (b) SEBS.

The sensible heat flux is determined by the temperature gradient between the surface and the
atmosphere. The two models used different kinetic parameter calculation methods to estimate H,
and they also differed in the selection of atmospheric stability correction methods. This could lead to
differences between their sensible heat flux estimates. However, the overall trends for sensible heat
flux estimated by the two models were roughly the same (Figure 5). H in dry farmland was larger than
for other crop types. This trend is consistent with previous research [51,52]. At the ecosystem scale,
the errors between the regional average simulated by the models and the observed value from LAS are
mainly caused by the heterogeneity of the surface [53].

Figure 5. (a–c) Comparison of simulated sensible heat flux with the observed values by Bowen at
a single point: (a) double cropping rice; (b) peanut/sweet potato rotation; (c) orangery; (d) Comparison
of the simulated sensible heat flux with the observed values from LAS at the ecosystem scale.

4.3. Validation of Daily ET

The measured values based on the Bowen/AWS and LAS were used to validate the ET simulated
by the two single-source models at both site pixel and ecosystem scales. The results are shown in
Figure 6. In SEBAL, the daily ET of each pixel ranged from 0.6 mm to 10.9 mm, the average daily
ETs from the paddy field, dry farmland and orange grove were 5.157 mm, 2.861 mm and 4.349 mm,
respectively. In SEBS, the daily ET of each pixel ranged from 0.9 mm to 11.5 mm, and the average
daily ETs for the paddy field, dry farmland and grove were 4.973 mm, 2.363 mm and 4.212 mm
(Figure 6), respectively.
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Based on the comparison with the results of the LAS footprint model, the mean absolute percent
difference (MAPD) of the regional average daily ET in SEBAL was 15.27%, whereas, in SEBS, the MAPD
of the regional average daily ET was 26.07% (Figure 6). The relative precision at the site scale
for double-cropped rice, peanut/sweet potato rotation, and orange groves was 119.04%, 83.22%,
and 115.08% in SEBAL and 114.80%, 68.73%, and 111.46% in SEBS, respectively. At the ecosystem scale,
the relative precision of SEBAL and SEBS weas 86.75% and 79.32%, respectively (Figure 7a).

According to the above validation results, both the SEBAL and SEBS models tended to
overestimate actual observations in the paddy field and orange grove pixels but tended to
underestimate actual observations in dry farmland (Figures 6 and 7a). Site investigations and the
land-cover classification shown in Figure 1a,b revealed that vegetation pixels at a spatial resolution
of 30 m exhibited surface heterogeneity due to the influence of planting factors. Therefore, this
study assumed that the errors in the results were due to the mixed-pixel problem, which resulted in
a substantial decrease in the simulation accuracy of the models and appeared to be the cause of over-
and underestimates of various phenomena.

Figure 6. The evapotranspiration (ET) value contrast before and after improvement: (a) SEBAL,
(b) SEBS.

Figure 7. Comparison of simulated ET with the observed values: (a) The result of the original model;
(b) the improved simulation results.
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4.4. LSMM Improvements

Surface heterogeneity caused by mixed pixels has a significant impact on model simulation. Errors
in water and heat flux estimation caused by mixed pixels cannot be neglected. Thus, the LSMM was
introduced to minimize errors caused by mixed pixels and to improve the estimation accuracy of the
model. First, the mixed pixels in remote-sensing images were decomposed, and abundance values and
root mean square errors (RMSE) were obtained for the three land-cover types. The results are shown
in Figure 8. The RMSE statistics show that despite the RMSE maximum value of 0.2, approximately
90% of the pixels had RMSE values ranging from 0 to 0.06. The accuracy of linear spectral unmixing
meets the requirements.

Figure 8. Abundance distribution of three crop types and the RMSE of mixed pixel decomposition.
(a) The abundance in each pixel in double cropping rice; (b) the abundance in each pixel in
peanut/sweet potatoes; (c) the abundance in each pixel in orange groves; (d) the RMSE of mixed
pixel decomposition.

Then, the abundances of the three kinds of end-member were used as inputs for Equation (27).
The ET contribution rates of the three kinds of land-cover type (rice, peanuts, and orange groves) to
each mixed pixel were produced. Finally, these contribution rates were used to revise the SEBAL and
SEBS simulation results. The pre-improved data simulated by SEBAL and SEBS were more discrete in
all kinds of land cover types (Figures 6 and 7a), while the improved results were more significantly
concentrated (Figures 6 and 7b). Figure 6 shows both the pre-improved (before) and improved (after)
results from SEBAL and SEBS. The ET estimates for paddy fields, dry farmland, and orange groves
by SEBAL and SEBS were both significantly improved by applying LSMM. The regional average ET
values after applying LSMM were also closer to the measured values. The relative precision of ET
estimated by the two models, with and without application of LSMM are given in Table 2. The relative
precision at a site scale for double-cropped rice, peanut/sweet potato rotation, and orange groves were
improved by 8.05%, 7.76%, and 5.55% in SEBAL, and 10.07%, 17.83%, and 7.41% in SEBS, respectively.
The RMSE at a site scale for double-cropped rice, peanut/sweet potato rotation, and orange groves
were improved by 0.49 mm/day, 0.35 mm/day, and 0.21 mm/day in SEBAL, and 0.49 mm/day,
0.59 mm/day, and 0.29 mm/day in SEBS, respectively. At a, ecosystem scale, the mean absolute
percent differences (MAPD) of the improved regional average daily ET in both SEBAL and SEBS were
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much smaller than those for pre-improved conditions. The relative precision of SEBAL and SEBS
was improved by 7.87% and 10.06%, respectively. The RMSEs of SEBAL and SEBS were improved by
0.31 mm/day and 0.38 mm/day, respectively. Although the total area of double-cropped rice in the
study area was larger than that of peanuts, the area abundance of peanuts was more significant than
that of rice in the observation area of the instrument (Figure 8). The orangery area was small, and
the distribution was more dispersed. Thus, while both single-source models overestimated rice and
orangery ET estimates, the overall relative precision of the regional average ET compared to the LAS
observations was low (Table 2).

Table 2. Statistics of SEBAL and SEBS estimated versus observed ET at single point and ecosystem
scales (MAD: mean absolute difference; MAPD: mean absolute percent difference; RMSE: root mean
squared error).

Model Double
Cropping Rice

Peanut/Sweet
Potato Rotation Orangery Regional

Average

SEBAL

Relative
Precision

Pre-improved 119.04% 83.22% 115.08% 86.75%
Improved 110.99% 90.98% 109.53% 94.62%

MAD
Pre-improved 0.834 0.577 0.57 0.524

Improved 0.476 0.31 0.36 0.213

MAPD
Pre-improved 16.17% 20.16% 13.11% 15.27%

Improved 9.90% 9.91% 8.70% 5.70%

RMSE
(mm/day)

Pre-improved 0.86 0.67 0.55 0.62
Improved 0.37 0.32 0.34 0.31

SEBS

Relative
Precision

Pre-improved 114.80% 68.73% 111.46% 79.32%
Improved 104.73% 86.56% 104.05% 89.38%

MAD
Pre-improved 0.641 0.687 0.433 0.818

Improved 0.205 0.462 0.153 0.42

MAPD
Pre-improved 12.89% 29.07% 10.28% 26.07%

Improved 4.52% 15.52% 3.89% 11.88%

RMSE
(mm/day)

Pre-improved 0.71 0.91 0.49 0.72
Improved 0.22 0.32 0.20 0.34

5. Summary and Conclusions

This study examined ET in a typical small, hilly, agricultural watershed in Yingtan City, Jiangxi
Province, China. This agricultural watershed is an agroforestry system including paddy fields, dry
farmland, and orange groves. Landsat8 satellite data with a spatial resolution of 30 m were used
to invert various energy components and daily ET values for the study area. The differences in
various energy components and parameters were investigated by SEBAL and SEBS simulations for
three vegetation types (paddy fields, dry farmland, and orange groves). Bowen/AWS and LAS
observational data were used to verify ET estimates of the two kinds of single-source energy balance
models. This study also introduced the LSMM approach to unmix the images to reduce ET errors due
to mixed pixels caused by surface heterogeneity and to improve model estimation accuracy.

The two models were validated at single point and ecosystem scales. The results of the two models
showed that paddy field and orange grove pixels were overestimated to varying degrees, whereas dry
farmland pixels were underestimated.

The land-cover classification (Figure 1) showed that vegetation pixels at a spatial resolution
of 30 m exhibit surface heterogeneity due to the influence of planting factors. Therefore, LSMM
was used to unmix the image of the study area and to obtain the abundance of paddy fields, dry
farmland, and orange grove in each pixel. The results of the ET simulations with SEBAL and SEBS
were then revised by incorporating the flux contribution rate of each end-member, as calculated by the
least-squares method according to the overdetermined equations. The revised results show that the
problem of over- and underestimation in various pixels in the two models was better solved.
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There have been few available Landsat8 clear-sky images for the study area in recent years, and
there are discontinuities in the remote-sensing data available for use. Therefore, this study could
not improve model precision over time. The authors intend to expand the scope of the research in
follow-up studies by developing an improved mixed-pixel decomposition model at multiple sites
in China in different seasons and different growth periods. These studies will explore the impact of
different time scales on the model and further improve the equations. It is anticipated that LSMM can
be used to solve the problem of heterogeneity error at flux sites around the world.
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