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Abstract: Simple hydrological models, such as the Seasonal Water Yield Model developed by the
Natural Capital Project (InVEST SWYM), are attractive as data requirements are relatively easy to
satisfy. However, simple models may produce unrealistic results when the underlying hydrological
processes are inadequately described. We used the variation in performance of the InVEST SWYM
across watersheds to identify correlates of poorly modeled outcomes of InVEST SWYM. We grouped
749 watersheds from across North America into five bioclimatic regions using nine environmental
variables. For each region, we compared the predicted flow patterns to actual flow conditions over
a 15-year period. The correlation between the modeled and actual flows was highly dispersed and
relatively poor, with 92% of r2 values less than 0.5 and 42% less than 0.1. We linked cryospheric
variables to model performance in the bioclimatic region with the poorest model performance (the
Low elevation Boreal Sub-humid region—LeBSh). After incorporating cryospheric conditions into
the InVEST SWYM, predictions improved significantly in 30% of the LeBSh watersheds. We provide
a relatively straightforward approach for identifying processes that simple hydrological models may
not consider or which need further attention or refinement.

Keywords: hydrological models; InVEST SWYM Natural Capital Project; model processes; model fit;
environmental regions

1. Introduction

Globally, human populations are dependent upon water resources for their life-sustaining supply
of fresh water as well as for their economic value [1]. The ability to reliably model watershed processes
is a critical component in allowing decision-makers and managers to maintain and improve aquatic
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ecosystem services (e.g., drinking water supply, recreational opportunities, and energy production) [2].
The use of such models is also beneficial for predicting potential outcomes resulting from changes in
precipitation or extreme climate events. For example, models can be used to identify areas susceptible
to flooding or drought [3] under changing climate scenarios. However, hydrological processes are
difficult to model as they are affected by complex factors such as climatic conditions, soil characteristics,
land cover type, and topographic features, which vary spatially and temporally [4,5]. In the last
20 years, the geographic information system technology has allowed the development of physical
hydrological models to enable the inclusion of these complex factors [6] such as Penn State Integrated
Hydrologic Modeling System Soil and Water (PHIM), the Soil and Water Assessment Tool (SWAT) [7]
and the Soil and Water Integrated Model (SWIM) [8]. Models can perform well when the appropriate
data is available. Nevertheless, in the absence of robust and readily available datasets, simpler models
are attractive to guide management and mitigation efforts aimed at optimizing ecosystem services.

All hydrological models present uncertainty related to their modeled processes and underlying
structure [9–11]. While the performance of process-based models should be robust against changing
conditions, model structures can become invalid if the dominant processes underlying the model
change [10,11]. As above, the data requirements needed to run some of these models, and obtain
useful results, are sometimes complex and/or difficult to satisfy. These requirements can make
them difficult or even impossible to use for some regions, primarily due to the lack of available data
for the region being studied. Therefore, before applying a hydrological model, it is necessary to
verify the transferability of the model structures under different environmental conditions [11–13]
and to determine which inputs have the greatest effect on the model results for each region.
This verification would allow users to focus their efforts on collecting key data of sufficient quality to
obtain meaningful results.

In this context, simpler models are potentially more attractive due to their ease of use and reduced
data requirements [14]. For example, a suite of tools developed by the Natural Capital Project as the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) framework [15] have become a
popular choice in the analysis of a diverse set of ecosystem services. Ochoa and Cardona [16] found that,
since 2009, InVEST has been the most used tool for modeling ecosystem services. The InVEST Seasonal
Water Yield Model (SWYM) component has been used to asses water yield [16] in geographically
diverse locations such as Hawaii, Indonesia, and China [6,17,18]. The use of InVEST SWYM allows the
exploration of different scenarios such as climate and/or land use change [19,20] as do other complex
models such as SWAT. However, complex models need post-processing to allow decision-makers
to assess the ecosystem services studied. In contrast, the InVEST SWYM model produces results
that ultimately refer to the ecosystem services themselves and present them graphically for ease
of visualization, permitting decision-makers to focus on the outcomes quickly and easily [6,14].
Nonetheless, the minimal data requirements of a simpler model, particularly in combination with poor
quality data, may produce results that do not represent reality, demanding extensive and complicated
calibration and verification processes that may or may not improve results significantly. This result
would ultimately defeat the purpose of using an easily applied model and is particularly important
when applying the same model structure across regions with different environmental conditions.

For the purposes of our study, we focused on the InVEST SWYM as this model allows users to rank
specific parcels (or pixels) of land for conservation or development based on their relative contributions
to specific components of the hydrological cycle [15]. That is, the InVEST SWYM model partitions
precipitation into either quick flow or base flow (runoff versus groundwater recharge) by calculating
a water balance for each individual pixel of the watershed of interest [14,21]. The information
required by the SWYM is easily obtained globally from publicly available data sources and includes
monthly precipitation, topography, evapotranspiration, land-use, soil type, and land-cover data.
Our objective was to analyze the performance of the InVEST SWYM across several environmental
regions and use differences in performance across regions to isolate key variables that would improve
the model. We propose that the results will differ depending on regional differences in environmental
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features, which will be especially critical in widely applied models such as InVEST SWYM due to the
simplification of their processes, variables, and the parameters they incorporate in order to facilitate
implementation. To test our hypothesis, we grouped 749 watersheds from across North America into
five groups according to nine environmental variables and analyzed (1) how well the river flows
modeled with InVEST SWYM corresponded with historical data in a regional context, and (2) assessed
which environmental variables had the greatest influence on the modeled results.

2. Materials and Methods

Our methodological approach followed three main steps, which we detail below and outline in
Figure 1.
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Figure 1. Flowchart of methods. The main steps of the methodology (dark grey boxes without outline),
sub-steps of the methodology within the main steps (light grey boxes with black dashed outline),
data collected (white boxes with black dashed outline), methodology results (white boxes with red
solid outline).

2.1. Running the InVEST Model

The data required to run the InVEST SWYM (Figure 1 and Appendix A, Table A1) were collected
for a 15-year time period, spanning 1 January 2000 to 31 December 2014. Data were gathered to
allow for the analysis of watersheds ranging in size from 174 km2 to 10,814 km2 with a geographic
distribution covering most of North America between 26.9◦ and 60.9◦ N and 53.6◦ and 137.1◦ W.
We used the daily Climate Prediction Center (CPC) Global Unified Precipitation and Temperature data
(https://www.esrl.noaa.gov/psd/) and MOD16 monthly reference evapotranspiration rasters from
the Numerical Terradynamic Simulation Group (NTSD; http://www.ntsg.umt.edu) for our analyses.
The climate data were the only data that varied with each run of the model. All other data required by
the InVEST SWYM stayed constant for the duration of the runs. This allowed us to use single global
rasters for soils [22], the digital elevation model (DEM), and land use/land cover [23]. The soil data
were available at seven different depths ranging from 0 cm to 200 cm. For our analyses, we selected
the 30 cm depth as we felt it was a reasonable transition point between runoff versus groundwater

https://www.esrl.noaa.gov/psd/
http://www.ntsg.umt.edu
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recharge. A quick comparison between the surface layers (0 cm and 30 cm) found that, in general,
they had similar soil classifications. For the DEM data, we used the HydroSHEDS [24] hydrologically
conditioned elevation data. The individual 5 × 5 tiles were stitched together using GDAL Warp [25] to
produce a single North American DEM. See Appendix A, Table A1 for a complete list of data sources
and attributions.

We selected watersheds for inclusion in our analysis based on a list of 1545 gauging stations
with validated flow data (available from The Global Runoff Data Centre, 56,068 Koblenz, Germany
(GRDC)). Gauging station data were limited to stations in North America with daily flow data
from 1 January 2000 to 31 December 2014. The GRDC also provides watershed boundaries for
each of the gauging stations. That is, each gauging station is the pour point for the associated
watershed shapefile [26]. We used each gauging station specific watershed shapefile to clip the global
raster files (e.g., DEM, precipitation, temperature, soils, evapotranspiration and land use/land cover)
during each run of the InVEST model to ensure that the results were specific to the watershed being
modeled. The resulting 749 modeled watersheds represent a broad range of environmental conditions
(e.g., annual precipitation, the annual number of days with below freezing temperatures, thermal
amplitude, and altitudinal difference), which can be observed in Appendix A, Table A1.

The InVEST SWYM model requires monthly total precipitation and not daily totals; however,
it also requires the number of precipitation events per month for the watershed that is being modeled
as data input. To calculate the number of precipitation events per month, we averaged the total daily
precipitation across all pixels contained within the boundaries of each GRDC watershed shape file.
Days with an average precipitation per pixel of greater than 0.1 mm were counted as precipitation
events and monthly totals were tabulated for inclusion in the SWYM run. Due to the requirement
for monthly precipitation, we converted daily total precipitation to monthly total precipitation by
summing the daily precipitation values at each pixel of the raster to create monthly precipitation rasters.

Running the InVEST SWYM model for a single watershed or set of parameters is easily
accomplished through the graphical user interface of the application; however, as we wanted to run the
model for 749 watersheds over a 15-year period we used the InVEST Python application programming
interface (API) (Figure 1). Details of the API are available from http://invest.readthedocs.io/en/latest/.
Using the InVEST API allowed us to easily clip the rasters for each watershed to the boundaries and to
re-project it to the relevant UTM based coordinate reference system (CRS) of each watershed prior to
running the model. It also allowed us to programmatically update the parameters so that we could
step through all combinations of watershed × year. As part of the re-projection step, we also resampled
the DEM rasters to a pixel size of 90 × 90 m because the InVEST model expects the pixels of the DEM
raster to have sides of equal length. The InVEST SWYM has several parameters that can be optimized
to improve model performance (α, β, γ and flow accumulation threshold). As we ran the model for
749 watersheds, it was not feasible to optimize these parameters for each watershed. As such we used
the default settings from the SWYM for α, β and γ (α = 1/12, β = 1.0, γ = 1.0). We did set the threshold
value to 125, which coincides with a 1 km2 contribution area. Explanations of each of the parameters
can be found on the Natural Capital Projects website (http://data.naturalcapitalproject.org/nightly-
build/invest-users-guide/html/seasonal_water_yield.html).

2.2. InVEST Model Output

Among several other model outputs, the InVEST SWYM produces 12-monthly raster files (per year
run) of predicted total monthly Quick Flow (QF or runoff) per pixel (Figure 1). The total predicted monthly
runoff (QF) for the watershed is then calculated as the sum of all pixels within the monthly QF raster.
We extracted these monthly predicted QF values for every combination of watershed × year × month.
This provided us with a set of monthly predicted flow for each watershed over the 15-year period.
These data were then compared to GRDC gauging station data of observed monthly flow for each
watershed (Figure 1).

http://invest.readthedocs.io/en/latest/
http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/seasonal_water_yield.html
http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/seasonal_water_yield.html
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2.3. Comparative Analysis of Predicted versus Observed Flow

To compare the predicted flow from the InVEST SWYM model to the observed flow of the gauging
station data, we squared the Pearson’s product-moment correlation (r) for each watershed (Figure 1) to
create a simple standardized measure of model performance. A squared Pearson’s product-moment
correlation allowed us to focus on the strength and not the direction (positive or negative) of the
predicted flow patterns. As we were not examining the significance of r, normality was not required in
the underlying data. This straightforward approach allowed us to determine whether the predicted
flow from the SWYM co-varied with the actually observed flow for each month of the study period for
each watershed and to test for regional patterns in SWYM performance with respect to broad-scale
climate variables.

2.4. Defining Regions and Characterization of Climate Variables for Each Region

We used a Principal Component Analysis (PCA) and a Hierarchical Cluster Analysis (HCA) to
examine how the model results were influenced by climate (minimum and maximum temperature,
precipitation, vapor pressure, solar radiation, and days below zero) and geographical variables
(mean, maximum, and minimum elevation) for each watershed (Figure 1). This combined analytical
approach has been shown to be efficient in uncovering patterns in climatic and geographic variables
(e.g., References [27,28]). Before running the PCA, we standardized all environmental variables of the
watersheds (Appendix B, Table A2) using the “scale” function in base R. We did this to ensure that all
the terms were non-dimensional and the significant differences in the magnitude between variables
were minimized. We then used the PCA analysis from the “vegan” package [29] to summarize the
significant environmental variability. We used significant PCA axes selected by the Broken Stick
method [30], using the “bstick” and “screeplot” functions of “vegan” [29]. Subsequently, we retained
only these significant axes of the PCA site scores to perform the HCA based on Euclidean distances.
For this, we employed the “agnes” function of the “cluster” package [31]. We visually assessed the
dendrogram to determine which tree produced distinct groups and minimized noise when plotting.
We used the “cutree” function of the “cluster” package [31] to produce the groups. All analyses were
performed using R version 3.4.0 [32]. We created boxplots of the environmental variables for each
bioclimatic region, which allowed us to explore the variation between regions and to visualize five
summary statistics (the median, two hinges (first and third quartiles) and two whiskers). We also
created boxplots for the results for each region of the InVEST SWYM.

Finally, we performed an AIC-based multiple regression to analyze which environmental variables
(independent variables) affected the results of the hydrological model in each bioclimatic region
(measured above as r2 between observed and predicted flow; dependent variable) (Figure 1). The AIC
analysis allowed us to determine the most parsimonious group of variables that best predicted the
fit of the model for each environmental region. Once defined, we conducted a targeted multiple
regression analysis to identify which of the AIC-derived variables explained most of the variance in
the model fit (Figure 1). Each independent variable in the multiple regressions had an associated beta
coefficient (β) indicating how much the standard deviation of the dependent variable increased when
the independent variable was increased by one standard deviation (SD), assuming other variables in
the model were unchanged. The net values of β are a measure of the total effect of the independent
variables, so the independent variable with the highest net value of β is the one with the greatest
total effect over the dependent variable. Thus, in this study, the analysis of net values of β showed
the relative importance of the environmental variables for the variability of r2 between observed and
model-predicted flow. We also used partial correlations to verify our results. This analysis was carried
out using the software Statistica 7.
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2.5. Improving Model Performance

After analyzing the InVEST SWYM results and determining the key environmental factors
associated with each of the bioclimatic regions, we then carried out a case study (Figure 1) to re-evaluate
model performance when additional parameters were included. To do this, we selected the bioclimatic
region containing the most watersheds in this study. This region, the Low elevation Boreal Sub-humid
(LeHSh) one, was also the region in which the InVEST SWYM had the lowest mean r2 values (Figure 1).
The environmental variables associated with this region suggested cryospheric conditions might be an
important factor.

The InVEST SWYM assumes that precipitation falls as rain and is immediately available for
partitioning into the different hydrological pathways [15]. However, precipitation that falls as snow
or ice can accumulate and act as a reservoir in watersheds that experience periods of below freezing
temperatures [33]. The accumulated ice and snow can be released either gradually, as a single pulse,
or be locked away for prolonged periods of time (e.g., glaciers). Consequently, we coupled a snow
accumulation and ablation model to the InVEST Seasonal Water Yield Model (SWYM + SNOW17) to
account for the effect of cryospheric conditions when using the water yield model [34]. This resulted in
a second set of predicted flows for each watershed in the LeHSh region that had been cryospherically
conditioned by the SNOW-17 model. The predicted flow patterns from the SWYM + SNOW-17 model
were compared to the observed flow patterns of the gauging station data using the squared Pearson’s
product-moment correlations for each watershed (Figure 1).

The SNOW-17 snow accumulation and ablation model [34] uses temperature and precipitation
data to model how much precipitation accumulates as snow or ice versus falling as rain. It also models
the conversion of accumulated snow or ice to either water or water vapor. For the purposes of our study,
the SNOW-17 model was used to determine how much precipitation fell as rain, which was available to
the InVEST SWYM immediately; how much accumulated as snow and was unavailable to the InVEST
SWYM; the conversion of accumulated snow to water, which was available to the InVEST SWYM for
flow partitioning versus being lost to evaporative processes. The additional data requirements of the
SNOW-17 model were easily satisfied by using the daily climate data already collected for the InVEST
model as discussed in the analysis of the fit of the hydrological model section above.

3. Results

3.1. Analysis of the Fit of the InVEST SWYM

When analyzing 749 watersheds from across North America, we found the correlations between
modeled flows and actual flows to be highly dispersed and relatively poor. Ninety-two percent of the
r2 values were less than 0.5 and 42% were less than 0.1 (Figure 2).
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3.2. Analysis of the Fit of InVEST SWYM by Region

The first two components of the PCA analysis explained 81% of the total variance within the
watersheds (Figure 3 and Table 1). The first PCA axis explains 53% of the variance (Figure 3C and
Table 1) and is associated with climatic variability; positive scores occur for vapor pressure, minimum,
and maximum temperature, whereas negative scores were associated with the number of days with
below zero temperatures (Figure 3C and Table 2). The PCA axis 2 explains 28% of the variance and is
mainly associated with elevation (Figure 3B and Table 1); positive loadings occur for mean, minimum,
and maximum elevation (Figure 3C and Table 2). Thus, we interpret axis 1 of the PCA as representative
of climatic variability and axis 2 as representative of a topographic gradient.

The cluster analysis based on the two first components of the PCA allowed us to identify five
distinct environmental regions across our study area (Figure 3A,B). Their geographic distribution can
be observed in Figure 4 and their environmental characteristic in Figure 5. Clusters 1 and 2 comprised
all watersheds under Boreal Sub-humid conditions. Cluster 1 grouped 108 watersheds on the North
Western mountain areas of the continent (Mountain Boreal Sub-humid, Figures 3A and 4) and cluster 2
grouped 383 basins on low lands of the North Central and North Eastern regions of North America
(Low elevation Boreal Sub-humid, Figures 3A, 4 and 5). Clusters 3, 4, and 5 comprised all watersheds
under temperate conditions. Cluster 3 is composed of 165 basins located in low elevation humid areas
in Southeastern North America (Low elevation Temperate Humid, Figures 3A, 4 and 5). Cluster 4
grouped 73 basins on mountain arid areas on the Center and Southwest of the continent (Mountain
Temperate Arid, Figures 3A, 4 and 5). Finally, cluster 5 included 22 watersheds under Oceanic
Hyper-humid conditions on mid-elevation areas in the Northwest of the continent (Mid-elevation
Temperate Hyper-humid, Figures 3A, 4 and 5).
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Figure 5. Mean (Inner Square), standard error (bar), 95% confident interval (whisker) of each of the
variables in the environmental regions. From left to right, and top to bottom: precipitation (prec; mm);
maximum temperature (tmax; ◦C); minimum temperature (tmin; ◦C); mean elevation (mean_elev;
ma.s.l.); maximum elevation (max_elev; ma.s.l.); minimum elevation (min_elev; ma.s.l.); amount of
days with below zero temperatures (days.below.zero.mean; days); vapor pressure (vapr; kPa); solar
radiation (srad; kJ m−2 day−1).

Table 1. Importance of components.

Component PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 4.84 2.50 1.17 0.20 0.13 0.07
Proportion of the

variance explained 0.53 0.28 0.13 0.02 0.01 0.01

Cumulative Proportion 0.53 0.81 0.94 0.96 0.98 1

Table 2. Factor loadings of the environmental variables on Principal Component (PC) axes 1 (PC1) and
2 (PC2), expressed as correlations between a variable and a particular axis.

Environmental Variable PC1 PC2

Days below 0 ◦C −0.85 −0.46
Total precipitation 0.58 −0.07

Minimum temperature 0.75 0.56
Maximum temperature 0.87 0.17

Vapor pressure 0.97 −0.01
Solar radiation 0.56 0.71
Mean elevation −0.68 0.72

Minimum elevation −0.67 0.63
Maximum elevation −0.57 0.72
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The InVEST SWYM model produced better results in some regions (LeTH and MeTHh) than in
others (MBSh, LeBSh, and MTA) (Figure 6). The r2 value between actual and modeled flow in LeTH
was 0.3 ± 0.01 (mean ± standard error, respectively), while in the MeTHh the r2 was 0.35 ± 0.05
(Figure 6). These watersheds are under temperate, humid or hyper-humid climate conditions and
mid to low elevation lands (Figure 5). The r2 values between actual and modeled flow were low in
LeBSh (0.16 ± 0.01), MBSh (0.17 ± 0.2), and MTA (0.16 ± 0.2) (Figure 6). In contrast to the former two
environmental regions, where the hydrological model produced better results, the LeBSh and MBSh
were under cold climate conditions, while the LeBSh and MTA were mountainous regions (Figure 5).
In addition, the r2 values between observed and modeled flow were significantly correlated with
different environmental variables in each of the five climatic regions (Table 3).
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3.3. Analyzing Environmental Features to Improve InVEST SWYM Results

The watersheds in the LeBSh environmental region had the lowest mean r2 values of the
correlation between actual and modeled flows (Figure 6). This region contained climatic features
related to cryospheric conditions (Figure 5). The watersheds in this region had more than 120 days
with below zero temperatures and the second highest number of days with below zero temperatures
between the five environmental areas defined in this study, with temperatures reaching −20 ◦C (the
lowest compared with the other four environmental groups) (Figure 5).

For LeBSh, the AIC-based multiple regression indicated that ∼12% (adjusted r2 = 0.12; p < 0.001)
of the variance of the model fit (measured as r2 between observed and model-predicted flow) could
be accounted for by a linear combination of the independent variables defined by the AIC analysis
(minimum and maximum temperature, precipitation, days below zero, maximum and minimum
elevation, and vapor pressure) (Table 3). Net values of the beta coefficient (β) show the importance of
the variables in a linear multiple regression. The variables that best explained the model fit for LeBSh
were the number of days with below zero temperatures (β = −0.18) and the minimum temperature
(β = −0.57); both related by cryospheric conditions (Table 3). Partial correlation shows the same results
as the net values of the β (Table 3). Variables related to topographic features were also important in
explaining the model fit in this region (minimum elevation, β = 0.53; maximum elevation, β = 0.46).
The number of days with below zero temperatures was negatively correlated with the model results.
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This indicates the model performance degrades as the number of days of below freezing temperatures
increases (Table 3). In addition, the minimum temperature was negatively correlated with the model
results, indicating that when minimum temperatures increase, the model results were poorer.

When comparing the LeBSh with the MeTHh group (which is the environmental region where the
model produced the best results), we found that the LeBSh region had poorer model predictions
(r2 = 0.16) than the MeTHh group (r2 = 0.35) (Figure 6). For MeTHh, the AIC-based multiple
regression indicated that ∼80% (adjusted R2 = 0.8; p < 0.001) of the variance of the model fit could
be accounted for by a linear combination of the independent variables defined by the AIC analysis
(precipitation, maximum temperature, solar radiation, and vapor pressure) (Table 3). The variable
that best described the model fit for MeTHh was the maximum temperature (β = 0.67) (Table 3).
The maximum temperature was positively correlated with the model results, indicating that when
maximum temperatures increased, the model results improved.

In addition, in the MeTHh region, the mean number of days with below zero temperatures was
53 (67 days less than in LeBSh) and the mean minimum temperature was −5.5 ◦C (14.5 ◦C higher than
in LeBSh) (Figure 5). The InVEST SWYM, therefore, performed better in regions with a fewer number
of days of below zero temperature and a higher minimum temperature. These results suggest that
cryospheric conditions might be influencing the results of the hydrological model.

After accounting for cryospheric conditions and running the SWYM (SWYM + SNOW-17) for
the watersheds located inside the LeBSh region, correlation values between the actual and modeled
flows improved in 30% (114 watersheds) of the watersheds (Table 4). These improvements can also be
observed in a shift of the histogram distribution, with considerably fewer watersheds in the first bin
(0 to 0.1) and increased in all other bins (Figure 7). The mean r2 value between real and modeled flow
increased by 10%.
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Figure 7. Histograms of the correlation values (r2) between actual and modeled flow with the SWYM
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interval (whisker) of the correlation between actual and modeled flow in the LeBSh environmental
regions with SWYM and SWYM + SNOW17.
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Table 3. AIC-based multiple regression analysis of the r2 between observed and model-predicted flow in the environmental regions. Adjusted r2 of the multiple
regression, β coefficient, and partial correlations (in brackets) for the variables used in the multiple regression. β coefficients and partial correlations values marked in
red are significant at p < 0.05.

Variables

Climatic Regions Adjusted r2 Days below Zero Mean min_elev max_elev mean_elev vapr prec srad tmax tmin

MBSh 0.46 0.58
(0.40)

0.67
(0.41)

−1.10
(−0.49)

−0.55
(−0.22)

−22.00
(−0.22)

0.40
(0.17)

0.21
(0.11)

LeBSh 0.12 −0.58
(−0.16)

0.43
(0.10)

0.46
(0.14)

−0.35
(−0.06)

0.13
(0.03)

0.17
(0.09)

−0.57
(−0.17)

LeTh 0.06 0.01
(0.01)

−0.22
(−0.12)

−0.47
(−0.20)

0.37
(0.25)

0.40
(0.25)

MeTHh 0.80 0.52
(0.69)

0.09
(0.17)

0.67
(0.71)

0.17
(0.24)

MTA 0.17 −0.37
(−0.19)

0.21
(0.16)

0.19
(0.18)

−1.00
(−0.44)

0.76
(0.31)
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Table 4. Number and percentages of watersheds where the correlation between the actual and modeled
flows improved (Fisher r to Z transform, α = 0.05) after running the SWYM accounting for cryospheric
conditions (SWYM + SNOW-17).

Watersheds

Deteriorated No Change Improved Total
3 266 114 383

Percentages (%)
0.8 69.5 29.8 100

4. Discussion

Our assessment of the performance of the InVEST SWYM across the differing environmental
regions demonstrated that the correlation between the modeled and actual flows was highly variable
and relatively poor. To investigate the regional differences further, we grouped the watersheds into
five different environmental regions within North America, similar to those proposed for North
America by Rivas-Martinez [35] and evaluated the differences in model performance to identify key
variables. The results of this analysis indicated that identifying features such as bioclimatic regions and
accounting for these differences can substantially improve the model output. We readily demonstrated
this by examining performance gains due to the incorporation of cryospheric conditions associated with
the region with the poorest model performance (the Low elevation Boreal Sub-humid region–LeBSh).
In this region, the SWYM results were significantly improved by the addition of cryospheric variables.

After we applied a snow accumulation and ablation component (SNOW-17) to the InVEST
SWYM, runoff predictions significantly improved in 30% of the watersheds in the LeBSh region.
Our results, thus, highlight that the benefits of incorporating additional processes, such as the SNOW-17
accumulation and ablation model, into the simple hydrological model can be large relative to the cost
of implementing them. For example, the SNOW-17 model required very little additional data in the
form of daily versus monthly temperature and precipitation data to run. These data are available for
most regions of the world from publicly available sources (see Appendix A, Table A1). Although the
SNOW-17 model did not require a great deal of additional data, it does take into account most of the
physical processes that occur within snow cover [34] and implementing the model was straightforward
with available existing code sources available (e.g., https://github.com/UW-Hydro/tonic/blob/
master/tonic/models/snow17/snow17.py).

It is worth noting that the correlation between the predicted flows using the InVEST SWYM
and the actual flows was overall relatively poor, with 90% of the r2 values less than 0.5. In regions
under temperate climate conditions, the correlation between the predicted and actual flows was
less than 0.5 in 77% of the watersheds. Clearly, variables other than those related to cryospheric
conditions were affecting hydrological model results. As an example, in our study, vapor pressure and
variables related with terrain slope (e.g., mean, min and max elevation) were highly correlated with
the hydrological results in some specific environmental regions (MBSh, and LeBSh). In other studies,
landscape characteristics related to terrain topography (e.g., slope) have been shown to produce major
changes in the hydrological model results [36]. Furthermore, for three environmental regions (LeBSh,
LeTh, and MeTHh), the environmental variables used in this study explain a low percentage of the
variance in model fit suggesting that other variables (e.g., land cover, dams, soil characteristics, etc.)
might be affecting hydrological model results. Under such conditions, the model may need to be
expanded or to consider specific parameters that were not originally incorporated here.

Our results are similar to other studies that highlight the importance of climatic inputs for
hydrological models [37,38]. In particular, the hydrological model we used (InVEST SWYM) is most
sensitive to uncertainty in climate forcing such as precipitation [39–41]. As described by Hamel
and Guswa [41], errors in climate data are spatially heterogeneous and can lead to differences in
the model results in diverse environmental regions, as was the case here. In that regard, there are

https://github.com/UW-Hydro/tonic/blob/master/tonic/models/snow17/snow17.py
https://github.com/UW-Hydro/tonic/blob/master/tonic/models/snow17/snow17.py
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other global products that provide monthly climate information in raster format (e.g., CHELSA;
http://chelsa-climate.org/). It would be worth comparing the results from the InVEST SWYM using
another input dataset to investigate if poor model results are related to data source issues. It is clear
from our work, however, that accounting for unaddressed hydrological processes, or by improving
existing processes in the InVEST SWYM, significant gains in model performance can be made.

Optimizing available model parameters for each watershed may help to account for the variation
within a watershed and improve model performance; however, as mentioned previously, this can be a
time consuming and difficult process. In situations where reliable data do not exist, model calibration
may not be possible. As such, improving the base model by identifying critical limitations through
this type of analysis (versus optimizing for individual watersheds) may prove to be more broadly
beneficial and applicable. We have assumed that the global datasets that we have used (precipitation,
soils, and flow data) are all reasonably accurate for each of the watersheds included in the study and
acknowledge that they may not be the best data to use; however, as mentioned above, some regions
are data poor and these are likely to be the data sets that they turn to for such an analysis. Furthermore,
improving the models based on broadly available data is likely to benefit more end users than to focus
on improvements at the level of the individual watershed.

While our results seem to indicate that the InVEST SWYM performs poorly, it should be made
clear that our analyses were not designed to address this question. We did not explicitly test the
performance of the SWYM. That is, we did not optimize the run parameters (α, β, γ and flow
accumulation threshold) for any of the watersheds and used the model with all of its default settings,
as optimizing for each watershed was not feasible. More importantly, we were looking for indicators
of broad-scale environmental factors that influence hydrologic processes that the model may not
incorporate. Our multiple regression results (Table 3) give some indication of what these variables
might be. Days below zero clearly indicated the importance of cryospheric conditions but the
consistent significant values of variables related to evaporation processes (such as vapor pressure
and temperature) in the regression results indicated that evapotranspiration in certain environmental
regions might be inadequately addressed by the InVEST SWYM (Table 3). To make a robust assessment
of the InVEST SWYMs performance, a careful benchmarking study that involves watershed-specific
variable optimization is required.

Finally, it should be acknowledged that we made several efforts to include Central and South
America’s watersheds in this study with little success. We limited our data acquisition to watersheds
with both flow and climate data covering the 15-year period between 1 January 2000 and 31 December
2014. This excluded all but two watersheds for South America (SA) as most data for this region did not
comply with our criteria. When analyzing the two South American watersheds, we found they had
environmental conditions similar to those of the MTA region (northern watersheds in Figure 8) and
the LeTH region (southern watersheds in Figure 8). The model fits (r2) in these watersheds were 0.33
and 0.24 respectively. However, due to the lack of SA sites, it was not possible to specifically discuss
how the InVEST model performed in this part of the continent but many of the same hydrological and
climate variables may be important in this region where conditions are similar. However, as mentioned
previously, hydrological models have uncertainty related to model structure and their performance
might not be appropriate if the model structure is based on incorrect dominant processes. Thus,
it is necessary to test the transferability of the model structures under the specified environmental
conditions in a particular region. When comparing the Northern with the Southern Hemisphere,
the former is water-rich and contains the majority of the world’s fresh water with 60% of watersheds
experiencing cryospheric conditions versus the Southern Hemisphere, which is water poor, tends to be
more arid and has significantly fewer lakes and rivers [42]. Including South America’s watersheds
could provide greater insights into important hydrological processes by providing additional data
characterizing conditions that are not overwhelmingly moist and cool. However, as demonstrated
by our results, running this model with global data is not always possible in SA, further highlighting

http://chelsa-climate.org/
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the problem of obtaining quality data for these types of analyses and the need for improved data
availability in data-poor regions of the world.Water 2018, 10, x FOR PEER REVIEW  15 of 42 
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5. Conclusions

Our analyses demonstrated that the correlation between actual flow patterns and predicted flow
patterns from the Natural Capital Project’s InVEST SWYM varied depending on the environmental
conditions. However, by isolating the environmental factors that caused the model to generate poorer
results, we were able to identify important environmental variables and improve the performance of
the model. For example, in the Low elevation Boreal Sub-humid region (LeBSh) of North America,
the model produced the poorest results and these were correlated with the cryospheric conditions in
the region (days below freezing temperature and minimum temperature). After we applied a specific
cryospheric model (SNOW-17) to the SWYM, runoff predictions significantly improved in the 30% of
the watersheds included in the aforementioned region, underlining the need to incorporate this and
other standard models of watershed processes into the InVEST SWYM framework whenever possible.

We also highlight the importance of understanding watershed-specific climatic conditions before
implementing a hydrological model. Optimization and calibration should be undertaken whenever
possible, even if data is only available for another watershed in the same region, to address variables
that may be influential for those particular conditions. We have shown that accounting for cryospheric
conditions improved hydrological model results in an environmental region under low elevation,
boreal sub-humid climate. However, other important climatic conditions, such as evapotranspiration,
solar radiation, and slope are usually oversimplified in some hydrological models and would need
specific attention.
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Appendix A

Table A1. Data types and sources required to run the InVEST model.

Data Type Data Source Temporal
Resolution

Pixel Spatial
Resolution

Digital Elevation Model
(DEM)

Hydrologically conditioned elevation
http://hydrosheds.org/download - 90 m

Watershed boundary
shapefiles

http://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/
222_WSB/watershedBoundaries.html?nn=201570 - -

Soils raster

SoilGrids250m–Texture class (USDA system) at 7
standard depths
http://data.isric.org/geonetwork/srv/eng/catalog.
search#/metadata/f9a3a4e0-27a8-4acc-861f-
26c112699c3e

- 250 m

Monthly reference
evapotranspiration (ET)

http://files.ntsg.umt.edu/data/NTSG_Products/
MOD16/MOD16A2_MONTHLY.MERRA_GMAO_
1kmALB/GEOTIFF_0.05degree

Monthly 0.05 degree (~5.5 km)

Precipitation rasters https://www.esrl.noaa.gov/psd/data/gridded/data.
cpc.globalprecip.html Daily 0.5 degree (~55 km)

Temperature rasters https://www.esrl.noaa.gov/psd/data/gridded/data.
cpc.globaltemp.html Daily 0.5 degree (~55 km)

Landuse/landcover
raster https://landcover.usgs.gov/global_climatology.php - 500 m

Gauging station flow
data

http://www.bafg.de/GRDC/EN/Home/homepage_
node.html Daily -

Lake data and shapefiles http://www.hydrosheds.org/page/hydrolakes - -

Climate variables http://worldclim.org/version2 Monthly 5 min (~10 km)

http://hydrosheds.org/download
http://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries.html?nn=201570
http://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries.html?nn=201570
http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/f9a3a4e0-27a8-4acc-861f-26c112699c3e
http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/f9a3a4e0-27a8-4acc-861f-26c112699c3e
http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/f9a3a4e0-27a8-4acc-861f-26c112699c3e
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://landcover.usgs.gov/global_climatology.php
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://www.hydrosheds.org/page/hydrolakes
http://worldclim.org/version2
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Appendix B

Table A2. Raw data used for PCA analysis.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

1 111.8 832.0 2392.0 1434.5 0.6 1375.1 13,114.6 16.8 −9.5
2 83.4 263.0 2392.0 1023.6 0.6 952.1 13,189.4 20.5 −9.8
3 129.6 142.0 2654.0 1386.2 0.6 1241.3 12,173.8 16.5 −10.0
4 96.7 395.0 2365.0 1026.9 0.6 1044.3 13,062.2 19.9 −10.2
5 111.7 314.0 2764.0 1279.2 0.6 1380.2 12,716.2 17.9 −10.3
6 127.6 778.0 2734.0 1736.9 0.5 587.2 14,364.8 17.7 −10.4
7 78.7 589.0 3116.0 1414.8 0.6 753.3 14,591.0 20.4 −10.4
8 92.1 588.0 2237.0 1106.1 0.7 824.0 13,440.7 20.4 −10.5
9 92.1 618.0 2237.0 1131.5 0.7 837.1 13,445.0 20.3 −10.5
10 97.9 651.0 2037.0 1163.9 0.6 907.7 13,340.9 20.0 −10.5
11 97.9 641.0 2037.0 1176.5 0.6 915.2 13,350.6 19.9 −10.6
12 127.5 239.0 2687.0 1336.9 0.5 1050.8 12,741.9 17.5 −10.7
13 126.4 468.0 2608.0 1826.4 0.5 710.3 12,686.3 15.1 −11.0
14 115.9 657.0 2237.0 1374.3 0.6 841.9 13,492.6 19.3 −11.3
15 123.5 636.0 2558.0 1562.8 0.5 793.0 12,447.8 16.3 −11.3
16 106.1 639.0 2202.0 1345.0 0.6 654.1 12,259.7 17.3 −11.5
17 110.3 295.0 2608.0 1446.3 0.5 644.8 12,515.7 17.0 −11.5
18 130.9 529.0 2666.0 1590.8 0.5 803.4 12,735.1 16.6 −11.5
19 103.6 277.0 2666.0 1424.0 0.5 726.2 12,871.8 17.9 −11.5
20 119.8 531.0 2558.0 1412.4 0.5 680.7 12,390.4 16.9 −11.6
21 81.1 592.0 2326.0 1443.7 0.6 965.1 12,906.3 17.5 −11.9
22 87.7 440.0 2618.0 1584.1 0.5 524.1 13,801.6 19.0 −11.9
23 91.4 250.0 2284.0 1089.1 0.6 582.8 12,602.8 18.9 −12.0
24 100.4 287.0 2183.0 1085.2 0.6 596.3 12,566.3 18.8 −12.1
25 109.1 297.0 2139.0 1077.7 0.6 606.8 12,544.6 18.8 −12.1
26 80.3 513.0 2325.0 1369.4 0.6 817.9 12,808.2 17.6 −12.1
27 71.5 312.0 2660.0 1477.0 0.5 1111.6 11,553.6 15.6 −12.2
28 69.5 460.0 2707.0 1670.1 0.5 532.8 14,004.2 19.0 −12.2
29 91.6 333.0 2236.0 1258.6 0.6 520.8 12,228.1 18.0 −12.3
30 98.3 398.0 2362.0 1290.9 0.6 700.4 12,858.5 18.4 −12.6
31 98.3 398.0 2362.0 1291.0 0.6 700.4 12,858.5 18.4 −12.6
32 105.6 633.0 2362.0 1437.7 0.6 877.3 12,681.9 17.0 −12.8
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Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

33 93.0 352.0 2139.0 1377.7 0.5 810.6 12,621.0 17.0 −12.8
34 93.3 565.0 2362.0 1337.1 0.6 719.8 12,794.3 17.9 −12.9
35 109.3 648.0 2773.0 1730.2 0.5 1165.5 12,603.3 15.3 −13.1
36 100.7 365.0 2776.0 1363.5 0.5 1375.0 12,153.5 15.7 −13.4
37 106.7 1254.0 2961.0 1738.3 0.5 619.2 13,308.6 18.1 −13.6
38 101.0 337.0 2801.0 1251.2 0.5 1035.8 12,051.9 16.8 −13.6
39 95.1 1064.0 3037.0 1512.3 0.5 686.4 13,297.1 19.1 −13.7
40 117.3 800.0 2367.0 1461.6 0.6 759.8 13,020.2 17.7 −13.7
41 132.4 530.0 2832.0 1643.2 0.5 1334.2 12,433.4 15.6 −13.8
42 142.6 756.0 3096.0 1628.8 0.5 599.6 11,224.1 15.6 −14.1
43 113.4 1190.0 2622.0 1705.4 0.5 722.2 13,105.8 17.7 −14.2
44 165.4 1132.0 2649.0 1528.8 0.4 620.4 11,826.0 16.0 −14.2
45 122.6 657.0 2859.0 1286.1 0.5 916.8 11,560.2 16.3 −14.2
46 132.8 710.0 2434.0 1334.9 0.5 1107.3 9901.3 13.6 −14.3
47 105.0 1090.0 2771.0 1860.1 0.4 602.4 13,406.9 17.6 −14.3
48 110.1 1036.0 2915.0 1636.5 0.5 660.9 13,099.4 17.9 −14.4
49 130.1 834.0 3115.0 1988.0 0.4 1068.8 12,577.0 14.5 −14.5
50 95.1 1233.0 3092.0 1822.3 0.5 828.9 13,070.7 16.9 −14.5
51 139.9 505.0 3183.0 1729.6 0.5 1289.7 12,419.5 15.1 −14.6
52 160.5 1247.0 2770.0 1812.6 0.3 688.7 11,822.7 14.6 −14.8
53 104.4 956.0 2975.0 1711.1 0.5 665.0 13,184.5 18.0 −14.9
54 156.3 1410.0 3050.0 1983.0 0.4 691.2 12,851.3 15.3 −15.1
55 153.7 936.0 3252.0 1831.5 0.3 811.8 11,574.9 14.1 −15.1
56 156.3 1297.0 3085.0 1942.5 0.4 654.3 12,823.4 16.5 −15.2
57 135.2 1030.0 3050.0 1653.7 0.5 615.3 12,968.0 18.0 −15.3
58 138.9 571.0 2513.0 1215.8 0.5 719.7 11,193.0 16.8 −15.4
59 154.6 1035.0 2950.0 1891.6 0.3 882.2 11,730.4 13.3 −15.4
60 141.3 748.0 2513.0 1319.9 0.4 804.0 11,145.3 15.9 −15.5
61 113.1 1054.0 3085.0 1672.8 0.5 599.1 12,855.9 17.7 −15.6
62 158.9 971.0 3245.0 1901.9 0.3 908.7 11,706.9 13.7 −15.6
63 118.6 1212.0 2583.0 1742.4 0.5 780.8 12,976.9 17.0 −15.7
64 135.2 961.0 3085.0 1536.0 0.5 585.2 12,977.4 18.7 −15.7
65 151.9 952.0 3627.0 1905.3 0.3 770.0 11,886.0 14.5 −15.8
66 154.8 2.0 2435.0 1217.2 0.5 1263.1 9263.4 13.7 −15.8
67 142.4 861.0 2770.0 1405.4 0.4 620.6 11,904.4 17.2 −15.8
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Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

68 141.8 1218.0 2506.0 1595.2 0.4 599.9 12,058.2 16.2 −15.8
69 157.6 739.0 3378.0 1760.1 0.5 946.7 12,471.2 15.6 −15.8
70 161.8 1296.0 3088.0 2034.9 0.4 699.4 12,523.6 15.2 −15.8
71 144.0 573.0 2118.0 1200.8 0.5 792.6 10,945.2 16.2 −15.9
72 139.6 997.0 3177.0 1849.2 0.4 725.2 12,837.8 15.9 −15.9
73 158.8 1007.0 3627.0 2010.9 0.3 853.3 11,895.9 14.2 −16.1
74 143.8 1368.0 3218.0 2082.3 0.4 708.7 12,520.9 14.8 −16.1
75 164.5 1054.0 3094.0 1804.1 0.4 684.1 12,451.2 16.2 −16.2
76 150.3 1056.0 3459.0 1872.4 0.4 686.5 12,597.4 16.2 −16.2
77 150.3 1027.0 3459.0 1864.3 0.4 684.7 12,601.1 16.3 −16.3
78 162.3 1224.0 3459.0 2066.6 0.4 754.2 12,485.0 14.7 −16.3
79 174.2 1216.0 3430.0 2136.1 0.3 887.8 12,208.2 14.1 −16.4
80 165.4 1176.0 3006.0 1770.0 0.5 762.2 12,471.5 15.9 −16.6
81 134.7 925.0 2714.0 1404.2 0.5 595.3 12,107.3 17.9 −16.6
82 152.3 984.0 3277.0 1740.1 0.4 675.0 12,512.7 16.8 −16.6
83 168.6 1375.0 3459.0 2127.9 0.4 826.9 12,377.3 14.4 −16.7
84 146.6 841.0 3251.0 1671.3 0.4 675.8 12,227.6 16.7 −16.8
85 140.7 766.0 3378.0 1911.7 0.4 954.4 12,298.4 15.2 −16.8
86 140.4 687.0 2461.0 1131.4 0.5 843.2 10,930.8 16.5 −17.0
87 182.1 1341.0 3430.0 2164.2 0.3 973.4 12,139.1 14.0 −17.0
88 156.7 704.0 2303.0 1330.6 0.4 658.9 10,566.7 15.2 −17.3
89 183.7 1536.0 3123.0 2183.6 0.3 927.7 12,298.2 14.4 −17.8
90 158.9 475.0 2455.0 1138.1 0.4 607.4 10,691.8 16.5 −17.9
91 153.6 689.0 2042.0 1135.1 0.5 594.7 10,508.4 16.1 −18.3
92 170.3 786.0 2780.0 1431.8 0.4 646.8 10,382.5 15.0 −18.5
93 160.3 736.0 2307.0 1289.7 0.4 608.2 10,166.0 15.1 −19.1
94 168.9 806.0 2356.0 1382.5 0.4 596.8 10,158.9 14.8 −19.4
95 171.9 1680.0 2093.0 1881.8 0.4 526.9 9147.8 13.6 −19.4
96 178.1 795.0 2141.0 1340.8 0.4 574.9 8816.6 14.3 −19.4
97 168.1 725.0 2332.0 1406.2 0.4 601.0 10,089.3 14.5 −19.5
98 188.5 678.0 2324.0 1491.3 0.4 608.7 9919.3 14.2 −19.9
99 179.3 712.0 2533.0 1473.1 0.4 666.5 10,157.7 14.5 −20.1

100 150.7 645.0 2123.0 1224.6 0.4 630.4 9175.7 13.7 −20.2
101 161.1 620.0 2360.0 1146.6 0.4 527.9 9271.7 15.1 −20.6
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Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

102 179.4 756.0 2401.0 1522.0 0.4 469.1 9005.2 14.6 −20.6
103 206.7 759.0 2771.0 1541.2 0.3 650.1 9987.1 14.1 −20.6
104 199.3 785.0 2069.0 1381.1 0.4 620.8 9242.8 14.6 −20.9
105 217.3 520.0 2298.0 1356.3 0.4 571.4 9713.3 15.3 −21.0
106 222.3 715.0 2710.0 1573.6 0.3 616.7 9693.9 14.2 −21.0
107 192.4 869.0 2201.0 1328.9 0.4 546.3 9332.2 16.0 −23.1
108 184.2 908.0 1982.0 1288.3 0.4 534.0 9404.4 16.6 −23.5
109 33.7 294.0 611.0 417.1 1.1 767.6 16,022.2 34.0 −6.9
110 40.3 336.0 505.0 418.4 1.1 855.4 15,635.2 32.8 −7.4
111 39.7 448.0 670.0 552.6 1.0 671.9 16,219.2 33.6 −7.8
112 58.6 −23.0 204.0 70.4 1.0 1237.8 13,436.4 26.6 −7.8
113 44.4 273.0 506.0 392.4 1.1 896.5 15,325.2 32.2 −8.3
114 54.3 −26.0 631.0 170.2 1.0 1151.4 13,444.4 28.0 −8.6
115 64.1 42.0 631.0 206.4 1.0 1152.5 13,353.4 27.6 −9.1
116 46.3 620.0 903.0 765.8 1.0 542.2 16,615.3 33.6 −9.3
117 62.9 92.0 949.0 378.1 1.0 1009.9 13,102.7 26.7 −9.5
118 53.3 364.0 1063.0 628.1 1.0 615.7 15,958.4 33.1 −9.9
119 70.2 185.0 949.0 427.1 1.0 1002.4 12,974.1 26.2 −9.9
120 106.4 24.0 207.0 109.4 0.8 1477.3 12,518.3 22.0 −10.0
121 94.6 −3.0 308.0 80.8 0.8 1548.8 11,086.5 18.8 −10.1
122 54.9 794.0 1465.0 1105.0 0.8 441.0 16,670.5 32.5 −10.2
123 65.3 47.0 396.0 191.6 0.9 1247.0 13,199.6 26.2 −10.5
124 74.9 175.0 425.0 292.8 1.0 1037.7 12,833.2 25.6 −10.6
125 61.9 49.0 525.0 189.7 1.0 1212.0 13,223.2 27.4 −10.6
126 71.3 186.0 343.0 243.7 1.0 888.6 13,133.3 27.7 −10.8
127 93.0 168.0 373.0 239.8 0.9 800.4 12,738.6 26.2 −11.2
128 65.8 352.0 681.0 512.8 1.0 723.4 15,173.8 31.3 −11.2
129 75.8 186.0 311.0 250.2 1.0 962.6 13,172.3 27.4 −11.4
130 72.5 255.0 413.0 336.7 1.1 897.2 14,381.4 30.0 −11.5
131 78.4 172.0 798.0 526.4 0.9 1065.3 12,773.0 24.9 −11.5
132 77.0 315.0 576.0 420.8 0.9 1142.1 12,753.9 24.8 −11.5
133 81.0 304.0 648.0 475.8 0.9 1114.5 12,795.6 25.3 −11.6
134 64.3 788.0 1368.0 1068.9 0.8 461.0 15,814.3 31.3 −11.6
135 76.0 145.0 295.0 223.4 1.0 978.4 13,166.1 27.5 −11.7
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Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

136 94.5 24.0 283.0 171.1 0.8 1390.5 12,385.3 22.5 −11.7
137 89.5 173.0 299.0 223.9 0.9 970.1 12,772.1 24.7 −11.7
138 85.1 231.0 366.0 284.6 0.9 810.5 12,781.8 26.1 −11.7
139 71.9 194.0 422.0 316.0 1.1 913.1 14,201.4 29.6 −11.7
140 71.1 275.0 444.0 353.5 1.0 813.7 14,630.9 30.7 −11.7
141 72.9 142.0 295.0 219.7 1.0 979.0 13,196.0 27.6 −11.7
142 91.5 195.0 299.0 234.5 0.9 974.9 12,764.4 24.6 −11.7
143 68.3 142.0 277.0 205.2 1.1 957.0 13,434.3 28.3 −11.8
144 69.6 501.0 681.0 601.9 1.0 676.1 15,244.7 31.1 −11.8
145 82.0 177.0 368.0 249.2 1.0 862.5 12,867.2 26.7 −11.8
146 80.6 213.0 378.0 277.3 1.0 912.0 12,870.4 26.4 −11.8
147 86.1 2.0 780.0 296.8 0.9 1189.8 13,020.4 26.0 −11.9
148 71.4 329.0 514.0 399.8 1.0 759.2 14,680.7 30.6 −12.0
149 90.1 154.0 411.0 289.1 0.9 1003.9 12,772.5 24.3 −12.1
150 83.0 219.0 383.0 297.5 1.0 870.2 12,788.8 26.3 −12.1
151 78.3 31.0 566.0 231.8 0.9 1145.5 13,067.3 25.8 −12.2
152 94.8 200.0 326.0 262.0 0.9 1012.6 12,740.9 24.2 −12.2
153 71.6 117.0 287.0 212.5 1.0 945.5 13,818.4 28.7 −12.2
154 86.5 237.0 352.0 281.5 0.9 802.3 12,746.7 26.2 −12.2
155 85.1 211.0 366.0 264.9 0.9 770.6 12,734.4 25.9 −12.2
156 90.2 −12.0 351.0 106.7 0.9 1073.4 13,017.0 26.2 −12.3
157 113.8 −21.0 307.0 138.0 0.8 1443.9 12,170.8 21.7 −12.3
158 86.1 134.0 366.0 254.3 0.9 771.1 12,727.1 25.9 −12.3
159 83.8 231.0 791.0 492.4 0.9 897.8 12,595.8 24.3 −12.4
160 76.5 130.0 287.0 218.7 1.0 945.8 13,788.5 28.6 −12.4
161 88.8 93.0 1236.0 490.3 0.9 1137.2 12,845.1 24.3 −12.4
162 78.9 559.0 1007.0 777.3 0.9 585.2 15,076.3 30.3 −12.6
163 100.1 217.0 411.0 318.2 0.9 1025.9 12,752.9 23.9 −12.6
164 102.9 221.0 359.0 293.4 0.9 1069.2 12,706.8 23.6 −12.6
165 96.9 207.0 303.0 234.1 0.9 758.0 12,675.5 24.8 −12.6
166 100.3 267.0 652.0 444.2 0.9 1056.2 12,519.7 24.0 −12.6
167 84.6 63.0 780.0 343.8 0.9 1171.7 12,944.6 25.5 −12.6
168 98.1 71.0 640.0 252.1 0.9 1134.0 12,482.5 24.5 −12.7
169 82.3 925.0 1504.0 1155.7 0.7 409.3 15,110.3 29.7 −12.8
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Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

170 100.2 281.0 1004.0 548.4 0.9 1085.5 12,653.4 23.8 −12.9
171 93.9 427.0 795.0 604.8 0.9 1064.8 12,588.4 23.6 −12.9
172 91.3 230.0 706.0 491.5 0.9 1067.0 12,547.3 23.7 −13.0
173 123.7 32.0 351.0 192.7 0.7 1428.9 11,021.9 19.6 −13.0
174 100.1 292.0 1166.0 621.0 0.8 1150.6 12,697.6 23.4 −13.0
175 79.3 780.0 1304.0 1058.8 0.8 494.7 15,036.9 29.8 −13.0
176 94.5 404.0 795.0 583.9 0.9 1062.1 12,568.8 23.6 −13.0
177 97.4 243.0 817.0 470.8 0.9 1068.7 12,603.5 24.1 −13.0
178 79.5 688.0 1227.0 905.6 0.8 536.0 14,866.2 29.8 −13.2
179 107.6 144.0 351.0 229.5 0.9 1033.3 12,646.2 22.4 −13.2
180 76.6 275.0 470.0 371.2 1.0 837.8 14,176.4 29.3 −13.2
181 130.2 5.0 347.0 199.1 0.7 1601.6 11,043.4 19.6 −13.3
182 108.1 245.0 436.0 354.4 0.9 970.6 12,771.5 23.5 −13.3
183 89.2 327.0 785.0 564.2 0.9 985.1 12,547.1 23.6 −13.3
184 79.9 150.0 304.0 213.2 1.0 940.4 13,625.8 28.1 −13.4
185 108.1 331.0 436.0 379.6 0.9 988.0 12,754.3 23.3 −13.5
186 100.7 185.0 536.0 380.6 0.9 957.4 12,763.7 23.1 −13.6
187 97.8 212.0 381.0 294.2 0.9 808.7 12,628.7 25.1 −13.9
188 98.1 170.0 476.0 255.4 0.9 781.1 12,609.4 25.1 −14.0
189 86.1 174.0 364.0 263.5 1.0 918.0 13,284.9 27.1 −14.1
190 135.5 42.0 530.0 359.7 0.8 1572.3 11,655.9 19.8 −14.1
191 98.5 189.0 522.0 315.1 0.9 862.6 12,746.0 23.1 −14.1
192 84.9 1240.0 1820.0 1431.6 0.6 353.4 14,867.8 27.9 −14.3
193 86.1 199.0 378.0 291.9 1.0 865.5 13,755.2 28.5 −14.3
194 95.7 135.0 395.0 279.2 0.9 813.6 13,016.1 25.3 −14.3
195 88.9 917.0 1424.0 1111.6 0.7 376.3 14,419.2 28.1 −14.3
196 98.7 178.0 521.0 339.9 0.9 814.5 12,566.8 24.6 −14.3
197 88.1 1036.0 1499.0 1244.4 0.6 366.2 14,665.2 28.2 −14.3
198 113.5 15.0 1561.0 308.8 0.8 1118.0 12,800.0 24.7 −14.4
199 85.7 309.0 464.0 396.1 1.0 792.6 13,988.3 28.6 −14.4
200 90.3 438.0 969.0 669.6 0.8 434.9 14,373.6 30.3 −14.4
201 108.2 858.0 1398.0 1115.0 0.6 413.8 13,491.2 22.8 −14.5
202 103.7 12.0 329.0 154.2 0.8 1290.6 12,435.1 22.3 −14.7
203 115.7 161.0 414.0 257.9 0.9 966.1 12,696.1 23.1 −14.7
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204 139.7 831.0 1994.0 1171.1 0.5 653.2 11,374.0 17.4 −14.8
205 86.4 199.0 459.0 353.7 1.0 818.1 13,853.2 28.5 −14.8
206 136.1 811.0 1634.0 1176.9 0.4 594.3 11,659.2 17.8 −14.8
207 111.3 67.0 1252.0 404.5 0.8 1123.0 12,555.6 23.7 −14.9
208 89.9 198.0 378.0 290.9 1.0 882.0 13,438.2 27.2 −14.9
209 106.5 175.0 439.0 273.5 0.8 717.6 12,460.3 23.9 −15.1
210 125.3 57.0 1561.0 372.4 0.8 1148.9 12,678.9 23.9 −15.1
211 92.9 185.0 393.0 273.8 0.9 830.4 13,138.1 26.3 −15.2
212 98.6 686.0 1221.0 873.8 0.7 432.2 14,259.9 28.5 −15.2
213 136.1 706.0 1292.0 900.4 0.5 562.5 11,703.3 19.2 −15.3
214 89.5 283.0 459.0 368.7 1.0 799.8 13,798.5 28.3 −15.4
215 137.4 −1.0 758.0 320.0 0.7 1219.2 10,857.6 18.3 −15.6
216 115.0 82.0 1084.0 469.2 0.8 1240.7 12,368.2 22.9 −15.7
217 114.5 57.0 761.0 317.9 0.8 1045.4 12,410.9 23.8 −15.7
218 156.8 128.0 1664.0 545.7 0.8 1309.0 12,529.6 22.5 −15.7
219 105.3 33.0 385.0 115.4 0.9 953.1 12,491.4 24.4 −15.7
220 96.9 263.0 408.0 343.5 1.0 844.8 13,563.2 27.8 −15.8
221 112.5 979.0 1572.0 1142.3 0.6 470.0 13,137.9 21.7 −15.8
222 112.1 154.0 335.0 232.0 0.8 819.3 12,285.3 22.2 −15.9
223 96.2 299.0 507.0 409.9 0.9 730.1 13,798.0 28.1 −15.9
224 121.2 81.0 455.0 228.1 0.9 936.5 12,585.6 23.6 −15.9
225 109.0 20.0 232.0 116.7 0.8 1182.4 12,402.6 23.2 −15.9
226 118.1 16.0 174.0 83.8 0.8 1151.4 12,303.1 23.1 −16.0
227 96.9 337.0 480.0 415.5 0.9 691.3 13,835.8 28.3 −16.2
228 128.6 289.0 1587.0 625.1 0.8 1149.5 12,358.6 22.1 −16.2
229 139.5 825.0 1370.0 1140.6 0.5 611.4 11,857.1 18.7 −16.2
230 116.8 186.0 354.0 240.8 0.8 810.2 12,287.3 22.2 −16.2
231 92.7 200.0 422.0 334.9 0.9 873.1 13,289.3 26.7 −16.2
232 113.0 81.0 1298.0 367.4 0.8 1140.7 12,351.0 22.9 −16.3
233 109.7 36.0 1358.0 492.7 0.8 1039.1 12,335.1 22.4 −16.3
234 144.3 2.0 539.0 265.4 0.6 1184.1 10,589.6 17.0 −16.3
235 118.2 12.0 1896.0 422.3 0.8 1135.1 12,470.1 22.9 −16.3
236 113.0 902.0 1572.0 1050.7 0.6 444.3 13,183.2 22.1 −16.4
237 99.3 293.0 397.0 347.8 1.0 798.8 13,570.2 27.7 −16.4
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238 136.1 599.0 2047.0 980.8 0.5 613.0 11,008.3 17.6 −16.4
239 107.5 769.0 1572.0 994.2 0.6 415.7 13,256.1 22.7 −16.4
240 142.6 124.0 1085.0 346.1 0.8 1255.4 12,277.7 22.5 −16.5
241 99.1 324.0 507.0 426.7 0.9 728.9 13,683.2 27.6 −16.5
242 107.5 808.0 1572.0 1005.1 0.6 422.2 13,228.7 22.5 −16.5
243 100.9 712.0 1097.0 870.6 0.6 307.7 13,940.6 27.8 −16.5
244 123.9 80.0 1827.0 457.0 0.8 1118.3 12,364.6 22.7 −16.5
245 138.5 635.0 1592.0 885.5 0.5 699.8 11,008.9 18.3 −16.6
246 104.1 246.0 430.0 352.4 0.9 825.4 13,360.8 27.2 −16.6
247 113.7 70.0 391.0 156.0 0.8 1103.5 12,370.8 23.6 −16.7
248 106.8 317.0 574.0 458.2 0.9 611.2 13,854.8 28.2 −16.8
249 99.3 240.0 436.0 354.8 0.9 843.7 13,290.1 26.9 −16.9
250 133.0 655.0 1610.0 1054.4 0.5 586.5 11,914.1 19.1 −16.9
251 130.7 151.0 1029.0 436.9 0.8 1092.8 12,325.7 22.7 −16.9
252 139.8 492.0 1656.0 889.3 0.5 557.6 11,841.4 19.7 −16.9
253 97.9 751.0 1995.0 950.3 0.6 324.4 13,717.7 26.0 −17.0
254 132.5 609.0 1524.0 844.6 0.5 607.4 10,984.0 18.4 −17.1
255 136.9 975.0 1560.0 1148.7 0.5 598.0 12,148.0 19.3 −17.1
256 130.5 651.0 1201.0 847.8 0.5 576.2 11,916.9 20.0 −17.1
257 114.9 754.0 1010.0 841.6 0.7 406.3 13,874.9 26.9 −17.1
258 139.3 692.0 1026.0 823.6 0.5 480.9 11,549.4 19.5 −17.1
259 104.1 289.0 436.0 367.1 0.9 824.9 13,253.5 26.7 −17.2
260 145.9 545.0 990.0 790.2 0.5 478.5 11,463.1 19.4 −17.3
261 114.1 576.0 1010.0 771.4 0.7 416.9 13,850.2 27.3 −17.3
262 134.7 819.0 2714.0 1179.9 0.5 586.9 12,159.2 19.1 −17.4
263 115.9 741.0 1033.0 821.2 0.7 409.3 13,816.0 27.0 −17.5
264 134.3 178.0 704.0 387.8 0.8 1203.9 12,226.3 22.2 −17.5
265 135.8 943.0 1414.0 1083.4 0.5 594.8 12,126.1 19.8 −17.5
266 104.1 228.0 412.0 326.3 0.9 758.5 13,232.1 26.9 −17.6
267 117.7 205.0 577.0 342.6 0.8 791.1 12,593.6 24.4 −17.6
268 138.5 174.0 489.0 332.2 0.8 943.3 12,422.7 22.3 −17.6
269 134.9 714.0 2714.0 1121.4 0.5 584.6 12,151.4 19.1 −17.7
270 126.2 197.0 480.0 323.8 0.8 793.6 12,338.5 23.6 −17.7
271 149.9 926.0 2007.0 1255.7 0.5 604.3 12,407.3 19.4 −17.7



Water 2018, 10, 1496 25 of 42

Table A2. Cont.

Watershed Days.below.Zero.Mean min_elev (m) max_elev (m) mean_elev (m) vapr (kPa) prec (mm) srad (kJ) tmax (◦C) tmin (◦C)

272 126.9 258.0 1117.0 534.9 0.8 1163.1 12,191.4 21.6 −17.7
273 152.9 989.0 1976.0 1263.3 0.5 603.2 12,588.7 20.1 −17.7
274 133.2 907.0 1865.0 1181.0 0.5 496.8 12,807.1 20.9 −17.8
275 125.0 266.0 1089.0 498.9 0.7 1293.3 12,164.3 21.4 −17.8
276 125.2 739.0 1424.0 1047.9 0.6 383.0 13,520.8 23.2 −17.8
277 118.2 17.0 544.0 228.1 0.8 1130.1 12,280.3 22.0 −17.9
278 142.7 719.0 1214.0 857.0 0.5 554.6 10,820.6 18.4 −17.9
279 121.7 660.0 911.0 783.6 0.7 414.9 13,712.5 26.7 −17.9
280 144.5 883.0 1546.0 1109.4 0.5 614.8 12,504.5 20.2 −18.0
281 125.2 734.0 1335.0 905.2 0.6 393.5 13,521.2 23.7 −18.1
282 120.9 90.0 1262.0 441.7 0.7 1073.2 12,327.9 21.9 −18.2
283 137.8 875.0 1186.0 1016.9 0.5 574.6 12,270.3 20.1 −18.2
284 118.9 503.0 911.0 708.7 0.7 425.1 13,655.2 26.8 −18.3
285 113.1 181.0 536.0 333.4 0.9 835.6 12,756.8 25.1 −18.4
286 121.5 564.0 924.0 688.3 0.7 423.7 13,614.9 26.8 −18.4
287 134.9 720.0 2338.0 1037.8 0.5 588.4 12,313.2 19.9 −18.4
288 142.1 855.0 1133.0 976.3 0.5 590.4 12,557.1 20.5 −18.4
289 125.2 173.0 677.0 342.0 0.8 1264.8 12,250.5 21.9 −18.5
290 134.5 732.0 978.0 827.6 0.6 368.7 13,380.9 25.8 −18.5
291 113.8 262.0 425.0 330.9 0.9 703.9 13,055.5 26.8 −18.6
292 132.6 306.0 539.0 400.0 0.8 1010.2 12,458.4 21.6 −18.6
293 121.4 525.0 997.0 672.2 0.7 425.2 13,573.7 26.7 −18.7
294 139.1 875.0 1065.0 972.3 0.6 585.9 12,319.8 20.3 −18.7
295 119.9 298.0 536.0 399.7 0.8 829.1 12,607.8 24.3 −18.9
296 136.3 660.0 1140.0 835.4 0.6 538.5 11,989.7 20.1 −18.9
297 120.0 83.0 517.0 244.9 0.8 863.3 12,529.8 22.9 −19.0
298 147.6 575.0 1067.0 797.1 0.6 500.3 11,865.2 20.2 −19.0
299 149.7 718.0 1194.0 905.6 0.6 561.6 12,094.4 19.9 −19.1
300 136.1 748.0 993.0 889.6 0.6 362.1 13,455.2 26.9 −19.1
301 115.4 203.0 547.0 352.2 0.8 816.3 12,660.2 25.2 −19.1
302 139.9 785.0 1002.0 876.9 0.6 501.4 12,639.6 20.8 −19.1
303 125.6 208.0 568.0 398.3 0.8 831.2 12,255.0 23.5 −19.2
304 135.3 838.0 1160.0 972.3 0.6 414.2 13,520.6 23.1 −19.2
305 131.7 313.0 598.0 473.9 0.8 804.1 12,169.8 22.8 −19.2
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306 130.9 61.0 914.0 404.6 0.7 1176.5 12,244.6 21.2 −19.2
307 129.6 654.0 925.0 792.1 0.6 531.3 12,501.4 21.1 −19.3
308 147.6 589.0 1379.0 826.5 0.6 518.7 11,860.0 20.2 −19.4
309 139.9 842.0 1105.0 936.1 0.6 517.0 12,636.5 20.6 −19.4
310 127.3 9.0 754.0 371.1 0.7 1151.1 12,148.3 20.8 −19.4
311 122.3 314.0 553.0 422.6 0.8 830.2 12,410.4 23.8 −19.4
312 120.2 256.0 385.0 321.8 0.8 562.3 13,077.7 26.8 −19.5
313 122.1 159.0 527.0 287.1 0.8 1073.3 12,413.8 22.1 −19.5
314 147.5 568.0 1350.0 924.8 0.5 562.6 11,896.6 19.6 −19.5
315 133.9 459.0 576.0 506.2 0.8 800.0 12,255.3 23.1 −19.5
316 131.6 684.0 1160.0 893.9 0.6 397.4 13,506.9 23.3 −19.6
317 137.1 853.0 1050.0 932.4 0.6 384.8 13,531.5 23.4 −19.7
318 148.8 655.0 1366.0 1004.7 0.6 569.1 11,999.5 19.4 −19.7
319 137.7 655.0 1002.0 786.2 0.6 476.7 12,675.3 21.1 −19.7
320 127.6 905.0 1466.0 1075.6 0.6 361.1 13,592.8 24.3 −19.8
321 145.7 652.0 1045.0 827.2 0.5 508.9 10,952.8 18.6 −19.9
322 150.1 729.0 1248.0 967.7 0.6 568.4 12,030.4 19.6 −19.9
323 133.1 35.0 667.0 307.0 0.7 1110.9 12,043.0 20.6 −20.0
324 125.2 917.0 1439.0 1104.4 0.6 365.3 13,572.8 24.4 −20.0
325 122.7 268.0 623.0 353.3 0.8 509.1 13,087.5 27.1 −20.1
326 118.9 38.0 869.0 383.3 0.8 1107.4 12,359.6 21.7 −20.1
327 140.0 280.0 650.0 475.6 0.7 1067.7 12,220.8 21.3 −20.1
328 139.5 148.0 650.0 348.9 0.7 1087.6 12,091.1 21.0 −20.2
329 122.4 254.0 603.0 364.0 0.8 598.9 12,912.0 26.0 −20.2
330 131.3 729.0 1311.0 961.2 0.6 393.3 13,540.0 24.0 −20.3
331 131.0 832.0 1466.0 1038.1 0.6 351.7 13,598.1 24.8 −20.3
332 137.5 8.0 638.0 293.2 0.7 1078.3 11,986.8 20.8 −20.3
333 136.9 857.0 1439.0 1086.2 0.6 353.0 13,583.7 24.8 −20.4
334 131.4 659.0 871.0 724.5 0.6 500.7 12,377.7 20.7 −20.4
335 143.8 682.0 788.0 737.8 0.6 482.4 12,534.4 21.1 −20.6
336 138.1 155.0 780.0 364.1 0.7 1116.6 12,057.6 20.9 −20.6
337 123.7 118.0 916.0 381.7 0.7 1081.9 12,327.5 21.6 −20.7
338 139.5 767.0 998.0 881.3 0.6 356.2 13,565.7 26.2 −20.8
339 161.1 613.0 1036.0 776.5 0.5 457.4 11,381.5 19.7 −20.8
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340 126.5 188.0 412.0 326.1 0.8 774.4 12,409.4 24.0 −20.8
341 135.5 792.0 1003.0 885.2 0.6 364.5 13,532.4 24.6 −20.8
342 159.2 642.0 951.0 771.7 0.5 464.9 11,275.3 19.3 −20.9
343 151.1 534.0 1216.0 746.3 0.6 537.6 11,983.6 20.3 −21.0
344 148.5 741.0 880.0 787.9 0.6 346.0 13,110.1 23.1 −21.0
345 140.6 539.0 777.0 648.3 0.7 404.0 13,226.2 24.5 −21.0
346 127.8 242.0 472.0 345.2 0.8 490.8 12,911.9 26.3 −21.0
347 155.1 123.0 894.0 552.9 0.7 1473.8 12,162.4 20.3 −21.0
348 141.5 539.0 777.0 643.3 0.7 405.0 13,222.1 24.5 −21.0
349 140.4 119.0 636.0 343.2 0.7 1084.2 12,037.6 21.1 −21.1
350 138.2 631.0 1016.0 730.6 0.6 516.9 12,215.7 20.7 −21.1
351 164.6 454.0 1094.0 806.7 0.5 459.8 11,277.5 19.6 −21.2
352 147.1 619.0 729.0 681.0 0.6 407.7 12,617.2 21.3 −21.3
353 142.5 625.0 880.0 757.5 0.6 339.1 13,194.3 24.0 −21.3
354 132.6 395.0 652.0 495.0 0.7 445.1 13,007.8 26.1 −21.4
355 141.5 243.0 616.0 455.0 0.7 1028.7 12,142.5 20.8 −21.6
356 154.3 551.0 773.0 667.1 0.5 437.4 11,659.7 20.6 −21.6
357 135.6 404.0 657.0 491.2 0.7 431.4 13,033.6 25.8 −21.6
358 145.6 629.0 904.0 715.9 0.6 403.2 12,918.2 22.1 −21.6
359 141.0 499.0 757.0 606.2 0.7 425.7 13,160.8 24.7 −21.7
360 142.7 203.0 665.0 469.1 0.7 765.3 12,061.4 21.4 −21.7
361 131.3 371.0 583.0 446.4 0.8 668.6 12,618.9 24.7 −21.8
362 154.2 533.0 958.0 690.6 0.6 500.9 11,838.0 20.1 −21.8
363 143.2 720.0 870.0 776.6 0.6 352.5 13,099.8 23.0 −22.0
364 150.3 597.0 741.0 678.4 0.6 404.7 12,723.4 21.4 −22.0
365 142.7 687.0 870.0 772.1 0.6 348.4 13,118.9 23.0 −22.0
366 148.7 561.0 777.0 653.3 0.6 410.1 12,593.0 21.2 −22.0
367 143.2 614.0 736.0 670.8 0.6 478.3 12,287.3 20.8 −22.2
368 151.8 550.0 694.0 617.4 0.6 451.9 11,715.6 20.7 −22.3
369 153.7 556.0 1008.0 727.8 0.6 512.6 11,907.7 19.8 −22.4
370 134.9 303.0 560.0 404.7 0.7 682.7 12,174.7 23.2 −22.4
371 158.9 555.0 746.0 642.4 0.5 433.2 11,572.3 20.8 −22.5
372 158.1 437.0 734.0 566.5 0.5 458.5 11,393.2 21.0 −22.6
373 143.6 669.0 855.0 759.9 0.6 364.8 13,081.9 22.7 −22.6
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374 147.7 218.0 617.0 402.7 0.7 918.4 12,070.8 20.4 −22.6
375 143.5 549.0 669.0 589.0 0.7 416.7 13,081.6 24.0 −22.7
376 140.5 554.0 741.0 621.6 0.6 486.8 12,192.6 20.5 −22.7
377 144.1 600.0 729.0 654.0 0.6 471.3 12,322.7 20.8 −22.8
378 144.7 442.0 780.0 571.9 0.7 442.3 12,966.3 24.0 −23.0
379 155.5 493.0 679.0 578.1 0.7 411.6 12,932.2 22.7 −23.0
380 145.9 438.0 674.0 494.6 0.7 491.9 12,784.3 23.8 −23.0
381 154.0 490.0 696.0 605.0 0.7 432.7 12,839.9 22.8 −23.0
382 147.7 517.0 842.0 653.3 0.7 435.8 12,958.6 23.3 −23.1
383 152.9 545.0 663.0 599.5 0.6 353.8 13,070.6 23.0 −23.1
384 148.0 564.0 781.0 657.8 0.6 461.4 12,237.8 20.2 −23.1
385 146.5 380.0 722.0 493.0 0.7 507.7 12,759.8 23.6 −23.2
386 154.5 543.0 687.0 611.3 0.5 457.5 11,632.0 21.0 −23.2
387 152.1 458.0 690.0 549.3 0.7 394.5 12,920.0 23.0 −23.2
388 146.7 604.0 731.0 658.0 0.6 485.2 12,215.0 20.4 −23.3
389 143.5 217.0 722.0 469.4 0.7 510.2 12,708.7 23.7 −23.3
390 147.1 169.0 563.0 384.7 0.7 979.5 12,212.5 20.7 −23.3
391 144.5 273.0 722.0 478.7 0.7 509.5 12,715.6 23.6 −23.3
392 144.5 326.0 722.0 481.8 0.7 510.0 12,725.1 23.6 −23.4
393 157.2 433.0 855.0 612.8 0.5 439.4 11,433.7 20.9 −23.5
394 144.1 540.0 864.0 664.7 0.6 475.4 12,172.2 20.0 −23.5
395 147.9 637.0 708.0 665.5 0.6 484.7 12,264.1 20.7 −23.5
396 159.1 550.0 692.0 632.7 0.6 446.7 12,712.9 21.9 −23.6
397 139.9 220.0 643.0 438.4 0.7 1025.0 12,182.2 20.8 −23.6
398 159.7 523.0 708.0 633.0 0.6 409.5 12,552.8 20.8 −23.7
399 146.4 325.0 525.0 393.4 0.7 714.7 12,024.6 22.4 −23.7
400 146.3 310.0 556.0 419.5 0.7 764.5 12,015.2 22.4 −23.7
401 155.5 259.0 477.0 318.3 0.7 937.0 12,114.1 21.0 −23.8
402 154.7 477.0 685.0 536.0 0.7 462.2 12,680.7 22.3 −23.9
403 147.1 545.0 864.0 644.8 0.6 496.7 12,092.4 19.9 −23.9
404 160.8 339.0 1075.0 693.0 0.5 447.1 11,055.5 20.0 −23.9
405 137.1 232.0 405.0 328.0 0.8 558.0 12,419.2 23.8 −23.9
406 146.7 349.0 525.0 406.8 0.7 742.4 11,990.1 22.3 −23.9
407 149.2 337.0 465.0 382.0 0.7 687.6 12,003.4 22.2 −24.1
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408 140.9 260.0 394.0 329.1 0.7 617.6 12,367.7 23.4 −24.1
409 139.4 302.0 396.0 354.5 0.7 619.8 12,449.8 23.3 −24.2
410 155.9 468.0 685.0 538.9 0.7 466.7 12,624.6 22.0 −24.2
411 144.3 218.0 341.0 286.0 0.7 614.6 12,400.6 23.3 −24.2
412 144.6 222.0 307.0 248.6 0.8 525.6 12,599.5 23.8 −24.2
413 149.7 264.0 689.0 505.3 0.7 515.5 12,492.6 21.9 −24.4
414 145.7 222.0 719.0 341.6 0.7 504.9 12,564.6 23.2 −24.4
415 149.3 339.0 573.0 454.0 0.7 752.4 11,976.6 21.8 −24.4
416 149.9 216.0 828.0 429.1 0.7 513.9 12,474.4 22.2 −24.5
417 148.4 202.0 577.0 330.8 0.7 828.1 11,999.1 21.0 −24.5
418 160.1 519.0 589.0 559.9 0.6 425.5 12,613.0 21.8 −24.6
419 152.1 267.0 828.0 534.9 0.7 516.2 12,476.8 21.8 −24.6
420 148.7 188.0 539.0 326.5 0.7 826.3 11,930.7 20.5 −24.7
421 150.7 311.0 455.0 379.2 0.7 643.0 12,099.2 22.2 −24.7
422 147.9 278.0 719.0 423.3 0.7 495.8 12,577.7 22.8 −24.7
423 150.3 227.0 541.0 439.7 0.7 867.4 11,949.9 19.4 −24.8
424 160.1 498.0 669.0 563.0 0.6 453.2 12,508.0 21.6 −24.8
425 156.5 478.0 754.0 589.4 0.6 471.1 11,959.5 20.0 −24.9
426 173.1 291.0 761.0 462.3 0.5 1026.5 10,772.8 17.1 −24.9
427 151.5 624.0 869.0 688.3 0.6 498.6 11,875.5 19.8 −24.9
428 156.6 413.0 738.0 486.2 0.6 453.6 12,160.9 20.7 −25.0
429 146.8 577.0 810.0 661.5 0.6 505.2 11,981.4 20.0 −25.0
430 158.5 337.0 1059.0 594.9 0.5 435.1 10,855.0 20.1 −25.0
431 159.0 407.0 601.0 471.6 0.6 463.0 12,290.8 20.8 −25.1
432 159.6 435.0 780.0 632.3 0.6 518.7 12,464.7 21.1 −25.1
433 156.5 523.0 751.0 623.5 0.7 500.0 12,535.1 21.5 −25.1
434 157.7 354.0 625.0 469.1 0.6 423.3 12,508.9 22.0 −25.1
435 155.5 588.0 751.0 657.1 0.7 503.5 12,521.4 21.3 −25.1
436 160.5 497.0 661.0 574.3 0.6 484.2 12,463.4 21.3 −25.1
437 143.6 540.0 867.0 636.4 0.6 495.2 12,000.8 20.1 −25.1
438 145.8 187.0 532.0 362.8 0.7 769.4 11,963.1 21.3 −25.1
439 159.7 298.0 811.0 535.7 0.6 537.5 12,330.7 21.0 −25.2
440 152.3 207.0 489.0 329.3 0.7 825.5 11,926.7 20.9 −25.2
441 159.5 466.0 593.0 506.4 0.6 451.7 12,430.9 21.5 −25.3
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442 153.6 99.0 661.0 275.5 0.7 971.8 12,078.4 20.7 −25.3
443 149.8 246.0 770.0 547.4 0.6 473.1 11,722.1 20.1 −25.3
444 147.9 381.0 556.0 447.6 0.7 749.6 11,922.6 22.5 −25.4
445 162.3 419.0 766.0 575.6 0.6 524.2 12,353.8 20.7 −25.5
446 157.5 278.0 766.0 530.1 0.6 522.2 12,392.9 21.2 −25.5
447 153.2 181.0 427.0 296.3 0.7 816.3 11,893.6 21.0 −25.7
448 179.6 127.0 680.0 402.9 0.5 901.9 10,509.4 15.6 −25.7
449 162.0 365.0 707.0 518.1 0.6 469.4 12,329.3 21.2 −25.7
450 162.5 354.0 765.0 554.3 0.6 479.6 12,256.3 20.9 −25.7
451 150.4 189.0 438.0 324.3 0.7 599.0 12,120.6 22.1 −25.8
452 154.8 342.0 483.0 394.0 0.7 659.4 11,972.5 21.8 −25.8
453 152.6 350.0 458.0 401.8 0.7 731.5 11,875.5 23.1 −25.9
454 155.1 348.0 483.0 405.4 0.7 678.0 11,920.1 21.8 −25.9
455 154.3 437.0 578.0 478.5 0.7 742.5 11,897.6 21.7 −26.0
456 154.9 211.0 291.0 252.2 0.7 528.1 12,340.3 22.5 −26.0
457 159.5 263.0 911.0 384.2 0.5 411.8 11,231.3 21.1 −26.0
458 161.3 351.0 743.0 485.8 0.5 416.6 11,019.7 21.0 −26.2
459 206.7 517.0 1490.0 854.0 0.4 485.8 9836.7 17.9 −26.3
460 151.2 244.0 838.0 514.1 0.6 430.7 11,545.6 20.3 −26.6
461 153.9 270.0 665.0 502.7 0.6 450.5 11,601.7 20.3 −26.6
462 152.4 261.0 581.0 369.9 0.6 418.1 11,525.5 20.7 −26.8
463 180.3 60.0 408.0 225.9 0.6 801.6 11,531.1 19.8 −27.0
464 158.7 366.0 468.0 407.4 0.6 694.3 11,824.2 21.9 −27.1
465 196.9 895.0 1523.0 1142.8 0.4 513.3 9804.4 17.4 −27.3
466 175.2 261.0 1000.0 757.3 0.4 422.9 10,925.0 19.0 −27.3
467 155.3 234.0 671.0 446.5 0.6 446.4 11,431.7 20.3 −27.3
468 162.9 186.0 849.0 413.3 0.5 406.0 11,245.6 20.8 −27.6
469 162.7 257.0 794.0 360.0 0.5 392.3 11,104.4 21.3 −27.7
470 160.5 282.0 417.0 340.6 0.6 648.4 11,794.2 21.7 −27.9
471 160.5 207.0 619.0 438.9 0.6 449.8 11,321.1 20.5 −27.9
472 165.5 282.0 596.0 402.7 0.5 451.5 11,246.0 20.1 −27.9
473 159.8 −3.0 190.0 91.9 0.6 706.1 11,752.8 20.7 −28.2
474 168.9 208.0 310.0 247.3 0.6 518.4 11,936.9 21.8 −28.3
475 161.5 260.0 465.0 374.8 0.6 697.3 11,747.7 21.6 −28.4
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476 180.3 286.0 789.0 445.6 0.5 372.8 10,796.2 20.5 −28.4
477 166.7 243.0 436.0 322.8 0.6 706.2 11,728.3 21.1 −28.7
478 179.3 292.0 360.0 341.2 0.5 360.0 10,857.7 21.0 −28.9
479 174.4 163.0 265.0 217.0 0.6 516.5 11,803.9 21.6 −29.1
480 165.3 154.0 356.0 234.9 0.6 647.1 11,666.7 20.4 −29.4
481 174.5 403.0 633.0 509.8 0.5 514.7 11,430.5 19.4 −29.4
482 178.0 341.0 618.0 442.6 0.5 551.4 11,524.2 19.8 −29.5
483 180.2 65.0 154.0 113.3 0.6 592.4 11,518.6 18.6 −30.1
484 187.1 411.0 638.0 492.8 0.5 499.2 11,251.4 19.0 −30.7
485 182.0 191.0 276.0 238.5 0.6 504.8 11,727.6 20.9 −30.9
486 188.5 108.0 203.0 159.7 0.5 498.3 11,525.1 20.1 −31.3
487 185.5 185.0 387.0 253.3 0.5 513.6 11,572.0 20.2 −31.4
488 192.9 165.0 366.0 235.4 0.5 498.8 11,423.1 19.7 −31.8
489 200.2 58.0 268.0 149.0 0.5 449.3 11,361.6 18.4 −32.4
490 200.9 147.0 351.0 235.3 0.5 467.6 11,275.8 18.8 −32.6
491 202.7 55.0 251.0 159.0 0.5 448.0 11,206.2 17.9 −32.7
492 0.0 −27.0 39.0 9.7 2.0 1230.0 17,244.4 33.3 10.4
493 0.0 −18.0 59.0 22.7 2.0 1235.7 17,459.4 33.9 10.3
494 0.0 −14.0 114.0 36.9 2.0 1282.6 17,270.0 33.9 10.0
495 0.0 −28.0 63.0 11.9 2.0 1246.5 17,198.1 33.3 9.9
496 0.0 −21.0 96.0 28.0 1.9 1290.2 17,166.6 33.8 8.5
497 0.0 −27.0 96.0 27.3 1.9 1298.5 17,154.2 33.9 8.4
498 0.0 −33.0 93.0 23.9 1.9 1301.5 17,000.2 33.8 7.6
499 0.3 −28.0 72.0 25.8 1.8 1342.4 16,699.5 34.0 5.7
500 0.5 61.0 169.0 106.7 1.7 1047.9 16,154.1 35.3 3.9
501 0.1 715.0 726.0 721.4 1.5 653.3 17,112.8 35.0 3.7
502 0.5 −19.0 140.0 70.2 1.7 1422.7 16,435.1 34.1 3.6
503 0.7 8.0 111.0 49.7 1.7 1422.1 16,373.3 34.2 3.5
504 0.7 4.0 140.0 80.7 1.6 1366.0 16,348.2 34.1 3.4
505 0.3 −17.0 121.0 55.5 1.7 1251.8 16,232.4 34.4 3.3
506 0.9 206.0 616.0 417.3 1.6 874.1 16,779.6 34.8 3.1
507 1.6 22.0 156.0 79.7 1.6 1512.8 16,273.1 33.9 2.7
508 2.3 8.0 209.0 96.6 1.6 1378.9 16,189.5 33.8 2.5
509 1.1 −10.0 180.0 103.4 1.7 1606.6 16,129.7 33.9 2.5
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510 1.9 −13.0 200.0 98.9 1.6 1507.0 16,173.4 33.8 2.1
511 1.7 10.0 241.0 112.8 1.6 1111.4 16,097.9 34.8 2.1
512 0.0 7.0 1953.0 707.8 1.0 430.6 18,401.7 31.0 1.9
513 2.7 22.0 169.0 114.6 1.6 1560.8 16,035.9 33.7 1.7
514 3.1 59.0 236.0 142.9 1.6 1062.7 16,138.4 34.7 1.5
515 2.2 −23.0 208.0 95.9 1.6 1515.9 16,148.1 34.2 1.4
516 3.5 264.0 537.0 402.8 1.4 742.2 17,051.0 34.7 1.1
517 0.0 2.0 2051.0 698.9 0.9 402.0 18,484.1 32.4 1.0
518 2.6 −6.0 208.0 103.5 1.6 1492.7 16,076.3 34.1 0.7
519 2.7 −20.0 206.0 79.7 1.5 1212.5 15,985.3 34.2 0.7
520 3.8 10.0 1598.0 574.3 0.9 1592.8 14,638.3 21.2 0.6
521 3.5 363.0 752.0 602.0 1.3 626.2 17,569.6 34.8 0.6
522 4.8 193.0 497.0 348.5 1.4 813.1 16,960.5 35.0 0.4
523 5.3 43.0 200.0 113.0 1.5 1151.3 15,915.0 34.6 0.3
524 0.0 192.0 2071.0 975.7 0.8 564.3 18,173.3 26.8 0.2
525 4.9 194.0 454.0 329.2 1.4 804.2 16,953.4 35.2 0.2
526 0.2 18.0 1027.0 347.7 1.0 1187.3 15,970.2 23.9 0.1
527 5.2 69.0 207.0 133.0 1.5 1460.2 15,970.5 33.9 −0.1
528 0.0 226.0 1226.0 745.2 0.9 836.1 17,088.1 29.3 −0.3
529 4.5 108.0 408.0 242.9 1.4 1291.9 15,776.4 33.2 −0.4
530 5.4 48.0 217.0 132.6 1.5 1455.0 15,879.3 33.8 −0.4
531 6.6 103.0 397.0 236.2 1.4 932.2 16,467.2 35.2 −0.4
532 5.1 −28.0 226.0 47.7 1.4 1207.5 15,534.5 33.6 −0.5
533 5.9 8.0 200.0 99.6 1.5 1440.8 15,810.0 33.8 −0.5
534 9.9 38.0 1872.0 766.6 0.8 1840.6 14,333.4 22.1 −0.5
535 5.2 88.0 217.0 145.5 1.5 1450.6 15,849.7 33.7 −0.7
536 7.7 367.0 793.0 563.1 1.2 628.2 17,714.6 35.4 −0.8
537 4.1 612.0 900.0 790.3 1.1 461.5 18,191.5 35.3 −1.0
538 9.0 0.0 63.0 38.6 1.5 1388.7 15,493.8 33.8 −1.2
539 6.1 117.0 538.0 218.9 1.4 1317.7 15,685.1 32.9 −1.3
540 8.9 55.0 200.0 124.0 1.5 1451.6 15,716.7 33.6 −1.4
541 6.1 37.0 1048.0 208.9 1.4 1276.4 15,716.7 33.0 −1.4
542 6.2 186.0 699.0 322.2 1.4 1434.8 15,592.5 32.4 −1.5
543 9.8 −24.0 123.0 42.7 1.4 1203.9 15,118.2 33.1 −1.8
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544 8.4 13.0 557.0 114.2 1.4 1351.8 15,478.4 33.7 −1.8
545 0.9 229.0 2673.0 1027.9 0.8 510.7 18,219.6 28.7 −1.9
546 1.8 −15.0 2279.0 781.7 0.8 1467.1 15,674.2 24.0 −2.0
547 9.9 89.0 441.0 237.6 1.4 1440.9 15,514.6 32.9 −2.0
548 8.6 −33.0 267.0 70.5 1.3 1189.3 15,128.5 32.9 −2.1
549 10.4 65.0 805.0 254.7 1.4 1311.4 15,673.6 33.3 −2.1
550 10.5 −23.0 267.0 87.4 1.3 1184.5 15,143.5 32.8 −2.1
551 0.2 138.0 1313.0 615.2 0.9 451.9 17,621.5 30.0 −2.3
552 11.9 102.0 404.0 213.5 1.4 1070.1 15,981.1 34.2 −2.4
553 10.1 263.0 794.0 443.9 1.2 644.0 17,395.5 36.2 −2.4
554 14.0 120.0 387.0 223.2 1.4 1084.8 15,940.2 34.2 −2.5
555 10.5 329.0 794.0 508.5 1.2 611.2 17,599.9 36.1 −2.5
556 14.3 99.0 813.0 246.2 1.4 1231.8 15,585.7 33.3 −2.5
557 10.5 356.0 794.0 523.9 1.2 603.8 17,644.5 36.1 −2.6
558 6.9 78.0 1312.0 299.8 1.3 1295.0 15,430.6 32.0 −2.6
559 12.1 25.0 324.0 167.3 1.3 1158.7 15,170.9 32.6 −2.6
560 10.2 157.0 1267.0 338.8 1.3 1450.5 15,314.7 31.7 −2.6
561 9.6 −26.0 224.0 67.9 1.3 1147.5 15,032.9 32.9 −2.7
562 13.7 150.0 791.0 232.8 1.3 1235.5 15,519.9 33.2 −2.7
563 14.3 78.0 224.0 148.2 1.4 1427.1 15,294.4 33.0 −2.9
564 11.2 43.0 267.0 129.6 1.3 1143.0 15,078.7 32.5 −2.9
565 10.7 −18.0 224.0 77.2 1.3 1136.1 15,028.0 32.8 −3.0
566 14.3 118.0 1747.0 356.3 1.2 1233.0 15,210.6 31.3 −3.0
567 21.7 17.0 2608.0 748.7 0.8 1379.8 14,117.2 21.5 −3.1
568 11.5 360.0 1076.0 713.6 1.1 556.3 17,793.6 35.1 −3.3
569 9.7 133.0 1747.0 381.9 1.2 1244.5 15,164.3 31.0 −3.3
570 4.2 268.0 2279.0 1116.8 0.7 1400.3 15,908.9 23.8 −3.4
571 12.5 458.0 1076.0 767.3 1.1 535.9 17,902.3 34.8 −3.4
572 20.7 173.0 411.0 280.6 1.3 948.6 15,981.5 34.0 −3.5
573 12.2 203.0 1267.0 416.1 1.3 1504.7 15,119.7 30.9 −3.5
574 10.0 −19.0 194.0 69.8 1.3 1127.6 14,837.7 32.2 −3.7
575 23.3 338.0 753.0 511.8 1.2 1225.6 15,270.8 31.2 −4.1
576 25.5 33.0 2824.0 927.5 0.7 1115.7 14,655.4 22.4 −4.2
577 23.7 210.0 598.0 360.6 1.2 1171.9 15,310.7 32.3 −4.2
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578 25.2 178.0 779.0 448.5 1.2 1187.1 15,206.5 31.4 −4.3
579 27.0 598.0 1919.0 827.7 1.1 1525.5 15,117.9 28.1 −4.4
580 23.5 631.0 1868.0 875.7 1.1 1799.4 15,199.2 28.0 −4.5
581 25.1 186.0 1247.0 395.4 1.2 1210.0 14,862.0 30.5 −4.5
582 21.7 89.0 2711.0 1149.8 0.7 1237.8 15,462.6 23.5 −4.6
583 29.4 157.0 403.0 265.4 1.2 982.8 15,684.7 33.7 −4.7
584 26.1 304.0 755.0 483.1 1.2 1166.4 15,173.3 31.2 −4.7
585 26.9 52.0 203.0 124.6 1.3 1345.9 14,986.2 32.3 −4.8
586 19.9 523.0 892.0 679.9 1.1 579.3 17,479.6 34.8 −4.9
587 26.0 87.0 1271.0 318.9 1.2 1091.7 14,637.7 30.6 −4.9
588 25.5 235.0 996.0 510.7 1.2 1454.7 14,644.0 29.9 −4.9
589 31.1 143.0 1185.0 384.4 1.2 1091.8 14,575.4 30.1 −5.0
590 25.5 −7.0 3066.0 1303.7 0.7 1144.8 17,088.5 26.0 −5.1
591 34.0 467.0 2005.0 982.9 1.1 1286.6 14,677.0 26.9 −5.5
592 19.5 557.0 2369.0 1143.0 0.6 877.2 13,860.1 18.6 −5.6
593 41.9 324.0 2824.0 1074.1 0.7 1004.2 14,877.3 22.0 −5.7
594 27.5 568.0 1888.0 1148.9 1.0 1643.8 14,853.9 26.0 −5.7
595 27.9 271.0 1254.0 510.0 1.2 1283.7 14,390.7 29.4 −5.7
596 33.3 324.0 1421.0 646.0 1.1 1156.1 14,285.7 28.7 −5.9
597 29.6 344.0 1254.0 672.7 1.1 1252.4 14,276.1 28.4 −5.9
598 35.1 81.0 381.0 226.9 1.2 1154.7 15,188.2 32.3 −5.9
599 37.7 660.0 1717.0 948.8 1.1 1255.5 14,465.6 26.8 −6.3
600 25.1 546.0 1717.0 862.9 1.1 1160.0 14,406.5 27.3 −6.3
601 35.1 91.0 451.0 261.1 1.2 1149.9 15,121.9 31.9 −6.4
602 35.1 128.0 451.0 291.7 1.2 1136.5 15,080.9 31.6 −6.5
603 36.7 287.0 529.0 410.6 1.2 1108.3 15,012.7 31.1 −6.6
604 36.0 228.0 474.0 329.1 1.2 1138.0 15,044.0 31.8 −6.6
605 34.7 90.0 483.0 298.0 1.2 1126.0 15,005.1 31.4 −6.7
606 33.7 51.0 539.0 222.7 1.2 1142.7 14,976.3 31.6 −6.7
607 37.9 190.0 483.0 338.9 1.2 1102.7 14,993.2 31.2 −6.7
608 37.5 126.0 483.0 320.0 1.2 1106.4 14,961.4 31.2 −6.8
609 47.3 469.0 1319.0 786.7 1.1 1031.4 13,919.0 27.2 −6.9
610 36.9 204.0 531.0 363.3 1.2 1089.4 14,897.6 31.2 −6.9
611 43.3 197.0 1043.0 525.4 1.1 1178.2 13,712.5 28.2 −6.9
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612 38.1 174.0 531.0 351.2 1.2 1084.6 14,878.9 31.2 −7.0
613 36.1 51.0 539.0 266.0 1.2 1125.4 14,935.5 31.3 −7.0
614 40.3 167.0 324.0 269.5 1.2 1152.4 14,050.7 30.0 −7.0
615 34.3 130.0 1314.0 496.3 1.0 1036.6 14,118.4 28.4 −7.0
616 43.9 134.0 319.0 234.7 1.2 1169.5 14,119.2 29.8 −7.2
617 39.2 95.0 527.0 280.6 1.2 1045.4 14,714.2 30.8 −7.4
618 47.8 124.0 1892.0 621.8 0.7 486.0 14,106.2 24.4 −7.7
619 51.9 74.0 587.0 192.6 1.0 1052.8 13,648.4 29.3 −7.7
620 45.2 168.0 319.0 246.1 1.1 1146.4 13,942.3 29.5 −7.8
621 55.6 70.0 1775.0 713.9 0.7 447.3 14,365.0 24.5 −8.0
622 47.9 86.0 180.0 136.7 1.2 1123.7 14,209.4 30.6 −8.0
623 44.3 203.0 484.0 314.6 1.1 976.7 15,034.1 31.9 −8.1
624 50.3 89.0 196.0 151.7 1.2 1058.6 14,328.0 30.5 −8.3
625 47.5 79.0 236.0 146.3 1.2 1069.8 14,239.4 30.5 −8.3
626 51.1 159.0 401.0 271.5 1.1 1076.7 13,645.5 28.9 −8.4
627 53.7 195.0 487.0 311.9 1.1 1112.7 13,276.1 28.4 −8.4
628 54.0 160.0 1467.0 653.3 1.0 1010.4 13,623.9 26.5 −8.5
629 53.1 415.0 1472.0 808.7 1.0 1138.7 13,742.4 26.3 −8.5
630 52.1 106.0 1467.0 543.4 1.0 1005.2 13,497.9 26.8 −8.8
631 55.5 188.0 372.0 273.4 1.1 1015.9 13,314.6 28.3 −8.9
632 52.1 144.0 1467.0 579.8 1.0 1024.2 13,463.4 26.4 −9.0
633 46.7 160.0 332.0 242.6 1.1 1011.7 14,745.7 31.1 −9.0
634 57.8 142.0 285.0 221.9 1.1 963.6 14,420.6 30.6 −9.0
635 51.0 96.0 236.0 166.7 1.2 1035.2 14,102.5 30.1 −9.0
636 71.5 383.0 1448.0 717.1 1.0 1282.4 13,348.7 26.0 −9.0
637 47.5 321.0 1603.0 719.4 0.7 504.5 13,712.9 23.9 −9.1
638 71.5 510.0 1448.0 784.6 1.0 1270.8 13,355.9 25.5 −9.2
639 71.5 629.0 1472.0 946.9 0.9 1219.3 13,575.3 24.9 −9.3
640 63.1 752.0 1603.0 961.1 0.7 740.9 13,615.4 21.5 −9.4
641 58.3 140.0 359.0 257.9 1.1 1058.9 13,694.0 28.8 −9.4
642 61.6 518.0 1448.0 994.8 0.9 1199.4 13,337.3 24.2 −9.5
643 55.8 77.0 257.0 184.1 1.2 1009.9 14,053.4 30.0 −9.5
644 66.3 486.0 1475.0 990.0 0.9 1226.3 13,338.9 24.4 −9.5
645 63.8 147.0 359.0 266.3 1.1 1047.9 13,651.0 28.6 −9.7
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646 63.1 170.0 323.0 247.9 1.1 1037.4 13,682.7 28.8 −9.7
647 55.7 108.0 241.0 192.8 1.2 1036.1 13,884.7 29.6 −9.7
648 57.4 150.0 307.0 238.3 1.1 1001.9 14,330.8 30.4 −9.8
649 54.3 113.0 257.0 193.2 1.1 1008.5 13,984.0 29.8 −9.8
650 67.5 721.0 1007.0 793.4 0.9 1213.6 13,196.4 25.1 −9.8
651 67.4 130.0 466.0 300.8 1.1 976.2 13,417.4 28.1 −9.8
652 66.8 222.0 359.0 293.9 1.1 1043.7 13,574.9 28.4 −10.0
653 67.5 224.0 385.0 318.8 1.1 1035.9 13,514.5 28.0 −10.2
654 72.3 197.0 376.0 307.4 1.1 960.7 13,396.7 28.1 −10.3
655 62.3 502.0 976.0 718.5 0.9 1083.8 13,066.6 25.1 −10.5
656 65.7 229.0 376.0 286.3 1.1 983.4 13,425.8 28.0 −10.6
657 17.6 −35.0 1019.0 219.7 0.9 2078.3 9709.9 16.5 −1.4
658 8.9 −21.0 1119.0 221.7 1.0 2143.4 11,357.7 20.5 −2.8
659 6.4 8.0 1150.0 253.0 0.9 1768.9 11,671.4 21.0 −2.9
660 10.7 11.0 2169.0 464.1 0.9 3121.6 11,241.4 18.3 −3.2
661 50.0 92.0 4363.0 729.6 0.8 1944.2 12,047.2 19.1 −4.2
662 17.9 28.0 2084.0 776.1 0.8 2840.0 11,338.5 17.3 −4.5
663 20.9 −27.0 4313.0 875.1 0.7 1852.0 12,105.0 18.9 −4.8
664 33.7 −24.0 3263.0 654.2 0.8 1591.2 11,650.7 18.8 −4.9
665 41.6 69.0 2114.0 1110.1 0.7 2533.7 11,454.9 15.6 −5.1
666 66.1 −22.0 2365.0 739.8 0.8 2007.3 11,976.0 19.0 −5.4
667 41.6 196.0 2114.0 1166.5 0.7 2597.2 11,473.1 15.4 −5.4
668 46.7 −26.0 3701.0 771.7 0.7 1942.7 12,278.5 18.9 −5.5
669 55.1 171.0 3116.0 1092.0 0.7 1644.4 13,945.1 18.9 −5.5
670 69.4 73.0 3693.0 957.3 0.7 1976.6 12,417.8 18.1 −6.0
671 36.7 262.0 3116.0 1174.9 0.6 1609.1 13,987.6 18.6 −6.0
672 83.7 308.0 3693.0 1238.3 0.6 1846.9 12,535.6 17.0 −7.1
673 47.7 −20.0 2623.0 1154.7 0.6 1576.7 11,833.1 16.8 −7.5
674 85.8 −33.0 3219.0 1113.2 0.6 1573.2 12,020.3 17.5 −8.1
675 116.3 72.0 3160.0 1144.4 0.6 1916.1 12,109.6 17.2 −8.3
676 110.9 36.0 3219.0 1206.9 0.6 1559.3 12,095.3 17.1 −8.9
677 128.7 18.0 1881.0 839.0 0.6 2244.7 9594.1 14.4 −9.7
678 76.7 17.0 2735.0 1377.6 0.5 1370.2 11,176.6 15.8 −10.7
679 0.0 1343.0 5473.0 2300.3 0.8 383.1 17,379.4 27.3 −0.4
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680 0.9 1272.0 2830.0 1529.5 0.8 521.4 19,198.4 33.9 −2.1
681 5.9 886.0 2558.0 1264.7 0.8 363.5 19,046.0 34.0 −2.8
682 5.9 387.0 2389.0 1105.7 0.6 141.5 19,455.9 34.9 −4.3
683 13.0 1035.0 2940.0 2000.0 0.7 467.6 19,143.1 29.8 −5.7
684 14.4 1214.0 3601.0 2007.6 0.7 450.9 19,105.4 29.9 −6.2
685 40.7 617.0 4254.0 1205.8 0.6 751.8 15,602.6 24.6 −7.9
686 47.7 1303.0 2618.0 1753.6 0.7 410.0 17,808.2 30.0 −8.5
687 29.7 1042.0 3457.0 2058.4 0.6 557.1 19,122.3 27.8 −8.6
688 48.9 1497.0 3536.0 1992.6 0.7 444.1 18,552.7 28.0 −9.1
689 36.9 1271.0 3446.0 1890.4 0.5 417.3 17,452.3 26.2 −9.5
690 28.8 1038.0 3298.0 2074.9 0.6 458.3 19,234.0 28.5 −9.6
691 21.5 1241.0 3294.0 2093.4 0.6 443.3 19,328.8 28.9 −9.9
692 87.5 945.0 2697.0 1520.9 0.5 478.1 14,769.5 21.0 −10.1
693 75.8 603.0 2559.0 1379.4 0.6 502.2 14,576.7 21.1 −10.2
694 94.7 775.0 2449.0 1450.1 0.6 503.6 14,666.9 20.8 −10.3
695 41.1 1303.0 3730.0 2052.6 0.4 327.6 17,702.5 26.2 −10.3
696 101.0 1301.0 2917.0 1879.8 0.5 334.3 15,695.1 23.3 −10.4
697 86.7 1185.0 2672.0 1546.1 0.6 651.0 15,273.4 21.5 −10.9
698 98.8 1239.0 2512.0 1597.3 0.5 496.3 15,458.9 22.3 −11.1
699 30.7 1418.0 3294.0 2262.6 0.6 456.6 19,268.1 27.7 −11.3
700 92.5 1235.0 2672.0 1571.8 0.6 588.4 15,293.5 21.8 −11.4
701 78.9 795.0 3253.0 1706.6 0.5 320.7 16,182.4 25.6 −11.5
702 127.6 872.0 2867.0 1727.9 0.5 519.1 14,566.2 19.9 −11.6
703 66.3 1718.0 4019.0 2260.4 0.6 446.4 17,935.2 26.1 −11.7
704 81.3 1272.0 2381.0 1570.8 0.5 376.2 14,951.1 21.6 −11.7
705 59.3 1910.0 3382.0 2254.8 0.6 341.2 18,721.0 27.4 −11.8
706 54.9 1739.0 2790.0 2131.5 0.6 328.6 18,559.7 28.5 −12.1
707 72.6 1169.0 3502.0 2020.9 0.5 258.7 17,365.9 28.3 −12.1
708 111.4 624.0 3162.0 1563.0 0.5 542.8 15,034.1 22.1 −12.6
709 87.1 923.0 3028.0 1742.2 0.5 397.9 13,946.9 19.3 −12.6
710 124.7 767.0 3112.0 1787.6 0.5 516.4 15,353.9 22.4 −12.6
711 110.8 1497.0 2986.0 2039.6 0.4 382.7 16,291.0 23.8 −12.7
712 110.8 1685.0 2736.0 2029.3 0.4 381.2 16,302.5 24.1 −12.8
713 104.3 1359.0 3172.0 1896.2 0.5 361.4 13,927.8 19.9 −12.9
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714 118.1 725.0 3162.0 1701.7 0.5 576.7 14,949.9 20.8 −13.0
715 90.8 1202.0 3028.0 1931.7 0.5 407.2 14,064.6 18.6 −13.0
716 84.8 770.0 2779.0 1220.0 0.6 357.4 13,748.5 24.8 −13.0
717 129.1 990.0 3112.0 1944.9 0.4 543.1 15,163.2 20.7 −13.1
718 89.2 1266.0 2794.0 1732.6 0.5 432.7 13,773.5 22.0 −13.1
719 121.5 793.0 3162.0 1789.2 0.5 584.1 14,893.4 19.9 −13.2
720 80.5 973.0 2997.0 1440.0 0.5 387.7 13,905.9 24.6 −13.3
721 101.7 941.0 2819.0 1367.3 0.5 400.6 13,523.2 22.2 −13.4
722 121.5 920.0 2690.0 1767.2 0.5 619.3 14,733.6 19.5 −13.4
723 121.5 1413.0 2690.0 1806.3 0.5 633.2 14,620.2 19.0 −13.6
724 98.4 1125.0 2590.0 1451.1 0.5 592.6 13,407.1 20.2 −13.7
725 102.3 2088.0 3385.0 2574.0 0.4 443.4 17,839.1 23.1 −13.7
726 110.5 918.0 3107.0 2154.0 0.4 495.7 14,553.0 18.3 −13.8
727 89.4 1022.0 2831.0 1651.3 0.5 472.2 13,687.4 20.0 −13.8
728 105.8 1154.0 2661.0 1429.5 0.5 423.9 13,444.1 21.6 −14.0
729 107.5 1173.0 3755.0 2162.5 0.4 417.5 14,558.2 21.0 −14.2
730 102.1 1038.0 2661.0 1315.1 0.5 419.5 13,465.3 22.1 −14.4
731 131.7 1797.0 3221.0 2369.6 0.4 477.8 14,876.1 17.7 −14.5
732 102.7 1959.0 3611.0 2226.8 0.5 324.7 15,545.4 23.4 −14.6
733 141.1 1711.0 4060.0 2688.9 0.4 391.3 15,046.7 17.8 −14.6
734 107.9 1408.0 3684.0 2239.3 0.4 325.0 14,704.5 20.0 −14.8
735 125.9 1946.0 3908.0 2503.9 0.4 487.0 15,640.0 21.1 −15.1
736 112.1 1515.0 3628.0 2174.2 0.5 385.8 16,397.8 25.6 −15.2
737 102.3 802.0 2661.0 1155.8 0.6 381.0 13,541.1 23.6 −15.2
738 131.7 1890.0 3145.0 2220.1 0.4 478.0 14,880.7 18.6 −15.4
739 119.5 1728.0 3335.0 2151.2 0.5 322.1 16,013.7 24.8 −15.8
740 130.0 1874.0 3978.0 2254.1 0.5 271.3 15,993.8 23.4 −15.8
741 144.5 1379.0 3645.0 2435.6 0.4 607.5 14,165.5 18.0 −15.9
742 99.2 2044.0 3815.0 2603.6 0.6 616.5 17,812.7 23.7 −16.3
743 133.9 1906.0 2723.0 2137.2 0.5 484.0 15,171.8 22.3 −16.4
744 142.4 1437.0 3345.0 1984.9 0.5 577.2 14,589.5 21.6 −16.6
745 141.9 1546.0 3645.0 2537.9 0.4 614.7 14,227.1 17.5 −16.7
746 154.0 1942.0 3740.0 2499.2 0.4 627.4 14,603.7 18.1 −16.8
747 155.0 1511.0 3264.0 2039.1 0.5 627.4 14,495.7 21.2 −17.0
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748 167.9 2059.0 3091.0 2495.1 0.4 665.6 14,493.4 18.3 −17.3
749 144.2 1979.0 4118.0 2477.9 0.4 340.4 15,424.4 20.6 −17.4
750 148.3 1979.0 4283.0 3009.7 0.4 525.5 16,624.6 20.5 −19.3
751 153.3 2331.0 4181.0 3115.2 0.4 524.6 16,293.0 19.3 −19.4
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