A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Chamber
2.2. Experimental Design and Instrumentation
2.2.1. Spectral Intensity Bioaerosol Sensor (SIBS)
2.2.2. Aerojet Glass Cyclone
2.2.3. Eight-Stage Non-Viable Andersen Sampler
2.2.4. Six-Stage Viable Andersen Sampler
2.3. Sampling and Downstream Bioaerosol Analysis
2.3.1. Spectral Intensity Bioaerosol Sensor (SIBS)
2.3.2. Endotoxin
2.3.3. Microbial Culture and Identification
Raw Compost
Microbiological Analysis of Air Samples by Culture and MALDI-TOF
Quantitative Polymerase Chain Reaction
3. Results and Discussion
3.1. SIBS
3.1.1. Number Concentration
3.1.2. Fluorescence Spectra
3.2. Endotoxin
3.3. Microbial Culture and qPCR
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Douglas, P.; Bakolis, I.; Fecht, D.; Pearson, C.; Sanchez, M.L.; Kinnersley, R.; de Hoogh, K.; Hansell, A.L. Respiratory hospital admission risk near large composting facilities. Int. J. Hyg. Environ. Health 2016, 219, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borlee, F.; Yzermans, C.J.; van Dijk, C.E.; Heederik, D.; Smit, L.A.M. Increased respiratory symptoms in COPD patients living in the vicinity of livestock farms. Eur. Respir. J. 2015, 46, 1605–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and Health Outcomes in Relation to Bioaerosol Emissions From Composting Facilities: A Systematic Review of Occupational and Community Studies. J. Toxicol. Environ. Health Part B 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed]
- Persoons, R.; Parat, S.; Stoklov, M.; Perdrix, A.; Maitre, A. Critical working tasks and determinants of exposure to bioaerosols and MVOC at composting facilities. Int. J. Hyg. Environ. Health 2010, 213, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Fathi, S.; Hajizadeh, Y.; Nikaeen, M.; Gorbani, M. Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process. Aerobiologia 2017, 33, 507–515. [Google Scholar] [CrossRef]
- Jaremków, A.; Szałata, Ł.; Kołwzan, B.; Sówka, I.; Zwoździak, J.; Pawlas, K. Impact of a Sewage Treatment Plant on Health of Local Residents: Gastrointestinal System Symptoms. Pol. J. Environ. Stud. 2017, 26, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Uhrbrand, K.; Schultz, A.C.; Madsen, A.M. Exposure to airborne noroviruses and other bioaerosol components at a wastewater treatment plant in Denmark. Food Environ. Virol. 2011, 3, 130–137. [Google Scholar] [CrossRef]
- Douglas, P.; Robertson, S.; Gay, R.; Hansell, A.L.; Gant, T.W. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 2018, 221, 134–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alcega, S.; Nasir, Z.A.; Ferguson, R.; Whitby, C.; Dumbrell, A.J.; Colbeck, I.; Gomes, D.; Tyrrel, S.; Coulon, F. Fingerprinting outdoor air environment using microbial volatile organic compounds (MVOCs)–A review. TrAC Trends Anal. Chem. 2017, 86, 75–83. [Google Scholar] [CrossRef]
- Yoo, K.; Lee, T.K.; Choi, E.J.; Yang, J.; Shukla, S.K.; Hwang, S.; Park, J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J. Environ. Sci. 2017, 51, 234–247. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.J.; Daly, S.M.; Sodeau, J.R. On-line monitoring of airborne bioaerosols released from a composting/green waste site. Waste Manag. 2015, 42, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Stagg, S.; Bowry, A.; Kelsey, A.; Crook, B. Bioaerosol Emissions from Waste Composting and the Potential for Workers’ Exposure. Health and Safety Laboratory; Research Report RR786; Health Safety Executive: Buxton, UK, 2010. [Google Scholar]
- Breum, N.O.; Nielsen, B.H.; Nielsen, E.M.; Midtgaard, U.; Poulsen, O.M. Dustiness of compostable waste: A methodological approach to quantify the potential of waste to generate airborne micro-organisms and endotoxin. Waste Manag. Res. 1997, 15, 169–187. [Google Scholar] [CrossRef]
- Heldal, K.K.; Breum, N.O.; Nielsen, B.H.; Wilkins, K. Experimental generation of organic dust from compostable household waste. Waste Manag. Res. 2001, 19, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Upton, S.L.; Mark, D.; Douglass, E.J.; Hall, D.J.; Griffiths, W.D. A wind tunnel evaluation of the physical sampling efficiencies of three bioaerosol samplers. J. Aerosol Sci. 1994, 25, 1493–1501. [Google Scholar] [CrossRef]
- Andersen, A.A. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 1958, 76, 471–484. [Google Scholar] [PubMed]
- Anonymus. Water Quality-Detection and Enumeration of Legionella; ISO 11731; International Organisation for Standardisation: Geneva, Switzerland, 1998. [Google Scholar]
- Bruker Daltonics. Inactivated Mycobacteria Bead Preparation Method (in Mbpm); Bruker Daltonics: Billerica, MA, USA, 2012. [Google Scholar]
- Currie, S.L.; Beattie, T.K.; Knapp, C.W.; Lindsay, D.S.J. Legionella spp. in UK composts—A potential public health issue? Clin. Microbiol. Infect. 2014, 20, O224–O229. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Jorgensen, F.; Willis, C.; Walker, J. Real-time PCR to supplement gold-standard culture-based detection of Legionella in environmental samples. J. Appl. Microbiol. 2015, 119, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.; Perring, A.E.; McCabe, K.; Kok, G.; Granger, G.; Baumgardner, D. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos. Meas. Tech. 2016, 9, 3283–3292. [Google Scholar] [CrossRef] [Green Version]
- Pöhlker, C.; Huffman, J.A.; Pöschl, U. Autofluorescence of atmospheric bioaerosols–fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 2012, 5, 37–71. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.-L.; Hill, S.C.; Pinnick, R.G.; Huang, H.; Bottiger, J.R.; Chang, R.K. Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Opt. Express 2010, 18, 12436–12457. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.C.; Mayo, M.W.; Chang, R.K. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra; Army Research Laboratory Computational and Information Sciences Directorate: Adelphi, MD, USA, 2009. [Google Scholar]
- Savage, N.J.; Krentz, C.E.; Könemann, T.; Han, T.T.; Mainelis, G.; Pöhlker, C.; Huffman, J.A. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 2017, 10, 4279–4302. [Google Scholar] [CrossRef] [Green Version]
- Savage, N.; Huffman, J.A. Evaluation of a Hierarchical Agglomerative Clustering Method Applied to WIBS Laboratory Data for Improved Discrimination of Biological Particles by Comparing Data Preparation Techniques. Atmos. Meas. Tech. 2018, 11, 4929–4942. [Google Scholar] [CrossRef]
- Pan, Y.-L. Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. J. Quant. Spectrosc. Radiat. Transf. 2015, 150, 12–35. [Google Scholar] [CrossRef]
- Liebers, V.; Brüning, T.; Raulf-Heimsoth, M. Occupational endotoxin-exposure and possible health effects on humans. Am. J. Ind. Med. 2006, 49, 474–491. [Google Scholar] [CrossRef] [PubMed]
- Traversi, D.; Alessandria, L.; Schiliro, T.; Gilli, G. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas. Atmos. Environ. 2011, 45, 3515–3521. [Google Scholar] [CrossRef]
- Bartram, J.; Chartier, Y.; Lee, J.V.; Pond, K.; Surman-Lee, S. Legionella and the Prevention of Legionellosis; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Casati, S.; Conza, L.; Bruin, J.; Gaia, V. Compost facilities as a reservoir of Legionella pneumophila and other Legionella species. Clin. Microbiol. Infect. 2010, 16, 945–947. [Google Scholar] [CrossRef] [PubMed]
Equipment | Analyte | Sample Duration (min) | Flow Rate (L/min) |
---|---|---|---|
Spectral Intensity Bioaerosol Sensor | Total and fluorescent particles | 30 | 0.3 |
8 Stage non-viable Andersen Sampler | Endotoxin | 30 | 28.3 |
6 stage viable Andersen sampler | Non-Tuberculous Mycobacteria (NTM) Legionella | 20 s | 28.3 |
Aerojet glass cyclone | Total Viable Counts | 5.5 | 600 |
Gram negative bacteria | |||
Coliforms | |||
Legionella spp | |||
Non-Tuberculous Mycobacteria (NTM) |
Channel | Lower Wavelength (nm) | Upper Wavelength (nm) |
---|---|---|
1 | 298.2 | 316.4 |
2 | 316.4 | 344.8 |
3 | 344.9 | 362.5 |
4 | 377.5 | 401.5 |
5 | 401.5 | 429.7 |
6 | 430.2 | 457.5 |
7 | 456.7 | 485.6 |
8 | 486.0 | 514.0 |
9 | 514.1 | 542.0 |
10 | 542.0 | 569.8 |
11 | 569.9 | 597.6 |
12 | 597.6 | 625.2 |
13 | 625.3 | 652.8 |
14 | 652.8 | 680.2 |
15 | 680.3 | 707.5 |
16 | 707.5 | 734.7 |
Emission Scenarios | Sampling 1 | Sampling 2 | Sampling 3 |
---|---|---|---|
Number of Excited Particles | Number of Excited Particles | Number of Excited Particles | |
Low emission | 28,004 | 26,782 | 25,297 |
High emission | 22,096 | 30,374 | 31,633 |
Low Emission (n = 3) | High Emission (n = 3) | |||
Mean | SD | Mean | SD | |
NT (cm−3) | 51 | 15 | 129 | 25 |
NF (cm−3) | 11 | 3 | 33 | 8 |
NF/NT | 0.22 | 0.01 | 0.26 | 0.02 |
Raw Compost | Low Emission (n = 3) | High Emission (n = 3) | |||
---|---|---|---|---|---|
Mean (g−1) | Mean (m−3) | SD | Mean (m−3) | SD | |
Total viable count (CFU) | 9.66 × 108 | 1.91 × 105 | 5.10 × 104 | 3.84 × 105 | 2.11 × 105 |
Gram negative bacteria (CFU) | 6.00 × 107 | 1.88 × 104 | 3.06 × 104 | 1.79 × 105 | 2.42 × 105 |
Coliforms (CFU) | 1.68 × 107 | 2.27 × 102 | 1.52 × 102 | 2.59 × 103 | 1.93 × 103 |
Legionella spp. (GU) | 3.28 × 104 | 1.26 × 103 | 6.50 × 102 | 9.55 × 102 | 2.92 × 102 |
L. pneumophila (GU) | 2.93 × 104 | 1.34 × 103 | 7.76 × 102 | 5.43 × 102 | 1.66 × 102 |
L. pneumophila sg-1 (GU) | 1.46 × 104 | 1.36 × 103 | 1.00 × 103 | 2.44 × 102 | 4.36 × 101 |
High Emission | Low Emission | ||
---|---|---|---|
Microbial sp. | CFU m−3 | Microbial sp. | CFU m−3 |
Staphylococcus sciuri | 104 | Staphylococcus sciuri | 104 |
Serratia rubidaea | 103 | Bacillus firmus | 103 |
Sphingobacterium mizutaii | 103 | Bacillus pumilus | 103 |
Bordetella petrii | 103 | Bacillis clausii | 103 |
Nocardia paucivorans | 102 | Bacillus niacin | 103 |
Escherichia coli | 102 | Enterobacter cloacae | 102 |
Acinetobacter spp. | 102 | Nocardia paucivorans | 102 |
Enterobacter cloacae | 102 | Bordetella petrii | 102 |
Staphylococcus hominis | 102 | Sphingobacterium mizutaii | 102 |
Paenicacillus residui | 102 | Brevundimonas diminuta | 102 |
Enterobacter casseliflavus | 102 | Ochrobactrum intermedium | 102 |
Enterobacter aerogenes | 102 | ||
Pseudomonas putida | 102 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, Z.A.; Rolph, C.; Collins, S.; Stevenson, D.; Gladding, T.L.; Hayes, E.; Williams, B.; Khera, S.; Jackson, S.; Bennett, A.; et al. A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost. Atmosphere 2018, 9, 379. https://doi.org/10.3390/atmos9100379
Nasir ZA, Rolph C, Collins S, Stevenson D, Gladding TL, Hayes E, Williams B, Khera S, Jackson S, Bennett A, et al. A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost. Atmosphere. 2018; 9(10):379. https://doi.org/10.3390/atmos9100379
Chicago/Turabian StyleNasir, Zaheer Ahmad, Catherine Rolph, Samuel Collins, David Stevenson, Toni L. Gladding, Enda Hayes, Ben Williams, Shagun Khera, Simon Jackson, Allan Bennett, and et al. 2018. "A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost" Atmosphere 9, no. 10: 379. https://doi.org/10.3390/atmos9100379
APA StyleNasir, Z. A., Rolph, C., Collins, S., Stevenson, D., Gladding, T. L., Hayes, E., Williams, B., Khera, S., Jackson, S., Bennett, A., Parks, S., Kinnersley, R. P., Walsh, K., Pollard, S. J. T., Drew, G., Alcega, S. G., Coulon, F., & Tyrrel, S. (2018). A Controlled Study on the Characterisation of Bioaerosols Emissions from Compost. Atmosphere, 9(10), 379. https://doi.org/10.3390/atmos9100379