Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China
Abstract
1. Introduction
2. Overview of the Study Area
3. Data and Methods
3.1. Data Source and Processing
3.1.1. Digital Elevation Model (DEM)
3.1.2. Hydrological Data
3.1.3. Meteorological Data
3.1.4. Land Use
3.1.5. Soil Type
3.2. Hydrological Change Point Detection
3.3. SWAT Model
3.4. Ecological Flow Calculation
3.4.1. Monthly Frequency Method
3.4.2. Tennant Method
3.5. Copula Construction
3.5.1. Archimedean Copula
3.5.2. Elliptic Copula
3.6. Establishment of Conditional and Joint Probability Relationships Using Improved Monthly Frequency Method
4. Results and Analysis
4.1. Change Point Detection Results
4.2. SWAT Model Simulation
4.3. Copula Joint Distribution Analysis
4.4. Improved Monthly Frequency Method for Ecological Flow Calculation
4.5. Ecological Flow Validation
4.6. Ecological Flow Analysis in the Hailang River Basin
5. Discussion
5.1. Scientific Significance of Copula-Based Improved Monthly Frequency Method
5.2. Theoretical Advantages of Copula-Based Improvements
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, R.; Sun, H.; Chen, Y.; Wang, Q.; Chen, X.; Hu, Q.; Wang, J. Ecological Flow Response Analysis to a Typical Strong Hydrological Alteration River in China. Int. J. Environ. Res. Public Health 2023, 20, 2609. [Google Scholar] [CrossRef]
- Valjarević, A. GIS-Based Methods for Identifying River Networks Types and Changing River Basins. Water Resour Manag. 2024, 38, 5323–5341. [Google Scholar] [CrossRef]
- Rolls, R.J.; Leigh, C.; Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 2012, 31, 1163–1186. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Jia, Z.; Xiao, R.; Cheng, Z.; Peng, Y. Study on the evolution of ecological flow in river and its guarantee degree during different hydrological periods. J. Clean. Prod. 2025, 490, 144761. [Google Scholar] [CrossRef]
- McLellan, E.L.; Suttles, K.M.; Bouska, K.L.; Ellis, J.H.; Flotemersch, J.E.; Goff, M.; Golden, H.E.; Hill, R.A.; Hohman, T.R.; Keerthi, S.; et al. Improving ecosystem health in highly altered river basins: A generalized framework and its application to the Mississippi-Atchafalaya River Basin. Front. Environ. Sci. 2024, 12, 1332934. [Google Scholar] [CrossRef] [PubMed]
- Gebreegziabher, G.A.; Degefa, S.; Furi, W.; Legesse, G. Evolution and concept of environmental flows (e-flows): Meta-analysis. Water Supply 2023, 23, 2466–2490. [Google Scholar] [CrossRef]
- Shan, C.J.; Guo, H.F.; Dong, Z.C.; Liu, L.S.; Lu, D.B.; Hu, J.Y.; Feng, Y. Study on the river habitat quality in Luanhe based on the eco-hydrodynamic model. Ecol. Indic. 2022, 142, 109262. [Google Scholar] [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River Hydrology, Flow Alteration, and Environmental Flow. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–89. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow recommendations for temperate rivers with diverse patterns of natural flow variability. Freshw. Biol. 2006, 51, 1871–1886. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Kong, L.C.; Wang, W.S.; Yu, S.Y. Study on the ecological flow and its guarantee degree considering hydrological variation. Ecol. Indic. 2024, 159, 111594. [Google Scholar] [CrossRef]
- SL/T 712-2021; Specification for Calculation of Ecological Flow for Rivers and Lakes. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2021. Available online: https://gbstandards.org/China_industry_standard_english.asp?code=SL/T%20712%E2%80%942021 (accessed on 11 March 2024).
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Liu, G.W.; Dai, C.L.; Shao, Z.X.; Xiao, R.H.; Guo, H.C. Assessment of Ecological Flow in Hulan River Basin Utilizing SWAT Model and Diverse Hydrological Approaches. Sustainability 2024, 16, 2513. [Google Scholar] [CrossRef]
- Dai, L.; Fang, G.; Huang, X.; Zhong, J. Ecological Flow Process Evaluation of a Hydropower Station’s Dehydration River. Appl. Ecol. Environ. Res. 2019, 17, 5707–5722. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Srivastava, A.; Maity, R. Unveiling an Environmental Drought Index and its applicability in the perspective of drought recognition amidst climate change. J. Hydrol. 2023, 627 Pt B, 130462. [Google Scholar] [CrossRef]
- Ali, M.S.; Hasan, M. Environmental Flow Assessment of Gorai River in Bangladesh: A comparative analysis of different hydrological methods. Heliyon 2022, 8, e09857. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T.; Misgna, G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environ. Manag. 2016, 57, 894–911. [Google Scholar] [CrossRef]
- Fang, X.; He, W.J.; Wen, F.G.; An, M.; Wang, B.; Cheng, B.X. SWAT model application for calculating ecological flow in sub-basins of the Huangshui River Basin. J. Environ. Manag. 2025, 380, 124837. [Google Scholar] [CrossRef]
- Liu, X.; Yang, W.X.; Zhang, Y.; Fang, G.H. A copula-based approach to instream ecological flow determination considering inter- and intra-annual runoff variability. J. Water Clim. Change 2024, 15, 2415–2428. [Google Scholar] [CrossRef]
- Varol, T.; Atesoglu, A.; Ozel, H.B.; Cetin, M. Copula-based multivariate standardized drought index (MSDI) and length, severity, and frequency of hydrological drought in the Upper Sakarya Basin, Turkey. Nat. Hazards 2023, 116, 3669–3683. [Google Scholar] [CrossRef]
- Shiau, J.T. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, A.; Kong, X.; Su, Y. A Bayesian-Model-Averaging Copula Method for Bivariate Hydrologic Correlation Analysis. Front. Environ. Sci. 2022, 9, 744462. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Dai, C.-L.; Wang, Y.-M.; Li, E.-Z.; Liu, G.-W. Analysis of Ecological Flow in the Hailang River Basin Based on the SWAT Model. China Rural Water Hydropower 2025, 9, 1–14. Available online: https://link.cnki.net/urlid/42.1419.TV.20250616.1547.028 (accessed on 1 July 2025).
- Yu, W.Y.; Yang, X.D. Study on Ecological Water Demand of the Planned Cascade Hydropower Projects on the Main Stream of Hailang River. Water Conserv. Sci. Technol. Econ. 2011, 17, 83–84. [Google Scholar]
- Lu, P.F.; Dai, C.L.; Wang, Y.M.; Yang, X.; Wang, X.Y. HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold Region Reservoir in Mudanjiang, Northeast China. Sustainability 2025, 17, 6302. [Google Scholar] [CrossRef]
- Spatial Geographic Data Cloud. GDEMV3 Digital Elevation Data (30 m resolution). Available online: http://www.gscloud.cn/ (accessed on 21 January 2025).
- Ridwansyah, I.; Yulianti, M.; Apip; Onodera, S.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed. Indones. Limnol. 2020, 21, 487–498. [Google Scholar] [CrossRef]
- National Meteorological Administration. Daily Climate Observation Data from Meteorological Stations. Available online: http://data.cma.cn/ (accessed on 11 January 2025).
- Eeshan, K.T.; Saraswat, D.; Singh, G. Comparative Analysis of Bioenergy Crop Impacts on Water Quality Using Static and Dynamic Land Use Change Modeling Approach. Water 2020, 12, 410. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Long, S.B.; Gao, J.E.; Shao, H.; Wang, L.; Zhang, X.C.; Gao, Z. Developing SWAT-S to strengthen the soil erosion forecasting performance of the SWAT model. Land Degrad. Dev. 2024, 35, 280–295. [Google Scholar] [CrossRef]
- National Qinghai-Tibet Plateau Science Data Center. HWSD Global Soil Database. Available online: https://data.tpdc.ac.cn/ (accessed on 21 January 2025).
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Shan, C.J.; Zhao, F.W.; Wang, Y.J.; Yang, C.G.; Wei, F.S.; Zhou, X.Y. Study on the Evolvement Trend Process of Hydrological Elements in Luanhe River Basin, China. Water 2024, 16, 1169. [Google Scholar] [CrossRef]
- Wang, X.J.; Yuan, P.X.; Chen, X.T. Power law distribution characteristics of daily streamflow in the Yellow River Basin under a changing environment. J. Water Clim. Change 2020, 11, 1603–1618. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. A Simulation Study to Examine the Sensitivity of the Pettitt Test to Detect Abrupt Changes in Mean. Hydrol. Sci. J. 2016, 61, 245–254. [Google Scholar] [CrossRef]
- Xie, P.; Gu, H.; Sang, Y.-F.; Wu, Z.; Singh, V.P. Comparison of different methods for detecting change points in hydroclimatic time series. J. Hydrol. 2019, 577, 123943. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50, 159–179. [Google Scholar] [CrossRef]
- Lin, B.Q.; Chen, X.W.; Yao, H.X. Threshold of sub-watersheds for SWAT to simulate hillslope sediment generation and its spatial variations. Ecol. Indic. 2020, 111, 106040. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ma, G.H. Improvement of calculation methods for instream ecological runoff. J. Hohai Univ. 2008, 36, 456–462. [Google Scholar]
- Jia, W.H.; Dong, Z.C.; Duan, C.G.; Ni, X.K.; Zhu, Z.Y. Ecological reservoir operation based on DFM and improved PA-DDS algorithm: A case study in Jinsha river, China. Hum. Ecol. Risk Assess. 2020, 26, 1723–1741. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Genest, C.; Favre, A.-C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Cameron, A.C.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econom. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Chen, D.H.; Yue, W.C.; Rong, Q.Q.; Wang, S.C.; Su, M.R. Hybrid life-cycle and hierarchical archimedean copula analyses for identifying pathways of greenhouse gas mitigation in domestic sewage treatment systems. J. Environ. Manag. 2024, 352, 119982. [Google Scholar] [CrossRef]
- Michimae, H.; Emura, T.; Kishi, K. Bayesian parametric estimation based on left-truncated competing risks data under bivariate Clayton copula models. J. Appl. Stat. 2024, 51, 2690–2708. [Google Scholar] [CrossRef]
- Patiño, E.G.; Tunes, G.; Tanaka, N.I. Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula. Braz. J. Probab. Stat. 2024, 38, 302–320. [Google Scholar] [CrossRef]
- Ansari, J.; Rüschendorf, L. Supermodular and directionally convex comparison results for general factor models. J. Multivar. Anal. 2024, 201, 105264. [Google Scholar] [CrossRef]
- Demarta, S.; McNeil, A.J. The t copula and related copulas. Int. Stat. Rev. 2005, 73, 111–129. [Google Scholar] [CrossRef]
- Li, C.-M.; Lü, X.-Q.; Guo, Y.-M. Research on Cascade Hydropower Station Layout in Hailang River Basin. Heilongjiang Water Conserv. Sci. Technol. 2008, 3, 98–100. [Google Scholar] [CrossRef]
- Oliveira, C.G.; Paradella, W.R. An Assessment of the Altimetric Information Derived from Spaceborne SAR (RADARSAT-1, SRTM3) and Optical (ASTER) Data for Cartographic Application in the Amazon Region. Sensors 2008, 8, 3819–3829. [Google Scholar] [CrossRef] [PubMed]
- Reginato, V.D.S.C. Altimetry Quality of SRTM and ASTER GDEM Products for Areas with Different Reliefs. J. Geogr. Inf. Syst. 2019, 11, 683–714. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Rodrigues, D.B.B.; Sobrinho, T.A.; Panachuki, E.; Wendland, E. Use of SRTM data to calculate the (R)USLE topographic factor. Acta Scientiarum. Technology 2013, 35, 507–513. [Google Scholar] [CrossRef]
- Singh, L.; Saravanan, S. Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Model. Earth Syst. Environ. 2021, 8, 1597–1613. [Google Scholar] [CrossRef]
- Luo, K.; Tao, F. Hydrological modeling based on SWAT in arid northwest China: A case study in Linze County. Acta Ecol. Sin. 2018, 38, 8593–8603. [Google Scholar]
- Jia, S.F.; Liang, Y.; Zhang, S.F. Discussion on evaluation of natural runoff in the Yellow River Basin. Water Resor. Prot. 2022, 38, 33–38+55. [Google Scholar]
- Wang, Y.X.; Hu, T.S.; Wang, J.L.; Wu, F.Y.; Wang, X. Approach for water resources assessment based on runoff component inves-tigation method and SWAT model. J. Water Resour. Water Eng. 2023, 34, 54–65. [Google Scholar]
- Liu, G.W.; Dai, C.L.; Xiao, R.H.; Zhang, Y.X.; Su, Q.C. Ecological Flow Calculation of the Hulan River Basin Based on SWAT Model. Wetl. Sci. 2024, 22, 181–190. [Google Scholar] [CrossRef]
- Uddin, M.M.; Fang, G.H.; Huang, X.F.; Gordillo, J.R.I.; Tapu, M.A.; Abdulla-Al-Mamun. The ecological operation of ChiTan hydropower station based on hydrological alteration using PCA method. Hydrol. Res. 2024, 55, 1069–1090. [Google Scholar] [CrossRef]
- Palau, A.; Alcázar, J. The basic flow method for incorporating flow variability in environmental flows. River Res. Appl. 2012, 28, 93–102. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, Q.; Xie, Y.Y.; Xu, P.C.; Du, H.H. Evaluation of Minimum and Suitable Ecological Flows of an Inland Basin in China Considering Hydrological Variation. Water 2023, 15, 649. [Google Scholar] [CrossRef]
- Grimaldi, S.; Serinaldi, F. Asymmetric copula in multivariate flood frequency analysis. Adv. Water Resour. 2006, 29, 1155–1167. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res. 2004, 40, W12511. [Google Scholar] [CrossRef]
- Renard, B.; Lang, M. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Adv. Water Resour. 2007, 30, 897–912. [Google Scholar] [CrossRef]
- Serinaldi, F.; Grimaldi, S. Fully nested 3-copula: Procedure and application on hydrological data. J. Hydrol. Eng. 2007, 12, 420–430. [Google Scholar] [CrossRef]
- Guo, W.X.; Wang, G.Z.; Hong, F.T.; Huang, L.T.; Bai, X.Y.; Wang, B.; Li, Y.H.; Sun, C.H.; Yu, Z.Q.; Wang, H.X. Evaluation of river ecological flow based on baseflow separation in Xiangjiang River, China. J. Water Clim. Change 2025, 16, 1529–1550. [Google Scholar] [CrossRef]
- Khatar, M.; Shokoohi, A. Modification and Development of the Tenant Method to Maintain Ecological Regime in Environmental Flow Management of Rivers. Water Resour. Manag. 2023, 37, 2461–2478. [Google Scholar] [CrossRef]
- Torabi Haghighi, A.; Kløve, B. Assessing impacts of climate change and river regulation on flow regimes in cold climate: A study of a pristine and a regulated river in the sub-arctic setting of Northern Europe. J. Hydrol. 2016, 542, 410–422. [Google Scholar] [CrossRef]
- Rasheed, N.J.; Al-Khafaji, M.S.; Alwan, I.A.; Al-Suwaiyan, M.S.; Doost, Z.H.; Yaseen, Z.M. Survey on the resolution and accuracy of input data validity for SWAT-based hydrological models. Heliyon 2024, 10, e38348. [Google Scholar] [CrossRef]
- Kmoch, A.; Moges, D.M.; Sepehrar, M.; Narasimhan, B.; Uuemaa, E. The Effect of Spatial Input Data Quality on the Performance of the SWAT Model. Water 2022, 14, 1988. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xie, Y.; Huang, Q.; Wang, H.; Leng, G. Assessing the non-stationarity of low flows and their scale-dependent relationships with climate and human forcing. Sci. Total Environ. 2019, 686, 244–256. [Google Scholar] [CrossRef]
- Berthot, L.; St-Hilaire, A.; Caissie, D.; El-Jabi, N.; Kirby, J.; Ouellet-Proulx, S. Environmental flow assessment in the context of climate change: A case study in Southern Quebec (Canada). J. Water Clim. Change 2021, 12, 3617–3633. [Google Scholar] [CrossRef]
In-Stream Ecological Conditions Corresponding to Different Flow Percentages | Percentage of Natural Flow, % | |
---|---|---|
Non-Flood Period | Flood Period | |
Optimum range | 60~100 | 60~100 |
Outstanding | 40 | 60 |
Excellent | 30 | 50 |
Good | 20 | 40 |
Fair | 10 | 30 |
Poor | 10 | 10 |
Period | Copula Function Type | AIC | BIC | RMSE | K-S |
---|---|---|---|---|---|
Jan. | Gaussian | 1.4379 | 2.8391 | 0.060035 | 0.34203 |
T | 5.2298 | 9.4334 | 0.059861 | 0.34203 | |
Clayton | 2 | 3.4012 | 0.060177 | 0.5372 | |
Frank | 1.9346 | 3.3358 | 0.059751 | 0.34203 | |
Gumbel | 0.060901 | 1.4621 | 0.059099 | 0.34203 | |
Feb. | Gaussian | 1.8187 | 3.2199 | 0.057566 | 0.76005 |
T | 5.7387 | 9.9423 | 0.0566 | 0.76005 | |
Clayton | 2 | 3.4012 | 0.053389 | 0.76005 | |
Frank | 1.9793 | 3.3805 | 0.055101 | 0.76005 | |
Gumbel | 2 | 3.4012 | 0.053389 | 0.76005 | |
Mar. | Gaussian | 0.26288 | 1.6641 | 0.033664 | 0.93601 |
T | 4.2577 | 8.4613 | 0.034115 | 0.93601 | |
Clayton | 1.6749 | 3.0761 | 0.041849 | 0.76005 | |
Frank | 0.85045 | 2.2517 | 0.034812 | 0.76005 | |
Gumbel | −0.021686 | 1.3795 | 0.036723 | 0.76005 | |
Apr. | Gaussian | −1.0618 | 0.33941 | 0.051321 | 0.93601 |
T | 2.9332 | 7.1368 | 0.051777 | 0.93601 | |
Clayton | 1.6837 | 3.0849 | 0.064702 | 0.93601 | |
Frank | −1.183 | 0.21821 | 0.049554 | 0.93601 | |
Gumbel | −1.5988 | −0.19759 | 0.051583 | 0.93601 | |
May | Gaussian | −5.0474 | −3.6462 | 0.037558 | 0.93601 |
T | −1.0534 | 3.1502 | 0.037909 | 0.93601 | |
Clayton | −0.26009 | 1.1411 | 0.0509 | 0.76005 | |
Frank | −3.2721 | −1.8709 | 0.038662 | 0.93601 | |
Gumbel | −4.7289 | −3.3277 | 0.041725 | 0.93601 | |
Jun. | Gaussian | −4.268 | −2.8668 | 0.060751 | 0.5372 |
T | −0.77274 | 3.4309 | 0.061394 | 0.5372 | |
Clayton | 0.91608 | 2.3173 | 0.075018 | 0.76005 | |
Frank | −3.4419 | −2.0407 | 0.058922 | 0.5372 | |
Gumbel | −6.1334 | −4.7322 | 0.061759 | 0.76005 | |
Jul. | Gaussian | −25.092 | −23.691 | 0.056971 | 0.76005 |
T | −21.097 | −16.894 | 0.057233 | 0.76005 | |
Clayton | −15.459 | −14.057 | 0.07139 | 0.5372 | |
Frank | −24.66 | −23.259 | 0.052756 | 0.76005 | |
Gumbel | −21.596 | −20.195 | 0.059493 | 0.76005 | |
Aug. | Gaussian | −22.738 | −21.337 | 0.056781 | 0.93601 |
T | −25.139 | −20.935 | 0.055456 | 0.93601 | |
Clayton | −20.37 | −18.969 | 0.062795 | 0.93601 | |
Frank | −22.864 | −21.463 | 0.056949 | 0.76005 | |
Gumbel | −23.461 | −22.06 | 0.055815 | 0.93601 | |
Sep. | Gaussian | −27.872 | −26.471 | 0.04149 | 0.93601 |
T | −24.378 | −20.174 | 0.04191 | 0.93601 | |
Clayton | −29.112 | −27.71 | 0.048493 | 0.99697 | |
Frank | −26.789 | −25.388 | 0.039445 | 0.99697 | |
Gumbel | −21.555 | −20.153 | 0.048105 | 0.93601 | |
Oct. | Gaussian | −23.306 | −21.905 | 0.044697 | 0.93601 |
T | −19.894 | −15.69 | 0.045214 | 0.93601 | |
Clayton | −23.443 | −22.042 | 0.053884 | 0.93601 | |
Frank | −22.189 | −20.788 | 0.043841 | 0.93601 | |
Gumbel | −18.182 | −16.781 | 0.049622 | 0.99697 | |
Nov. | Gaussian | −13.299 | −11.898 | 0.05872 | 0.93601 |
T | −9.3572 | −5.1536 | 0.05921 | 0.93601 | |
Clayton | −16.91 | −15.508 | 0.05981 | 0.93601 | |
Frank | −11.617 | −10.215 | 0.056307 | 0.93601 | |
Gumbel | −7.6086 | −6.2074 | 0.070685 | 0.76005 | |
Dec. | Gaussian | −8.811 | −7.4098 | 0.04506 | 0.99697 |
T | −4.8183 | −0.61473 | 0.045513 | 0.99697 | |
Clayton | −13.992 | −12.591 | 0.045349 | 0.99697 | |
Frank | −6.8973 | −5.4961 | 0.045843 | 0.93601 | |
Gumbel | −3.159 | −1.7578 | 0.056435 | 0.76005 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guarantee Rate (%) | 89.69 | 90.08 | 89.55 | 89.22 | 87.49 | 88.74 | 84.11 | 83.42 | 81.83 | 82.15 | 82.78 | 83.42 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Percentage (%) | 41.91 | 49.70 | 30.78 | 40.71 | 57.84 | 66.68 | 74.97 | 80.80 | 80.95 | 78.54 | 70.79 | 63.07 |
Grade Standard | Outstanding | Outstanding | Excellent | Outstanding | Excellent | Optimum range | Optimum range | Optimum range | Optimum range | Optimum range | Optimum range | Optimum range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, Y.; Shang, J.; Wang, Y.; Dai, C.; Li, E. Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China. Atmosphere 2025, 16, 1110. https://doi.org/10.3390/atmos16091110
Wang Z, Zhao Y, Shang J, Wang Y, Dai C, Li E. Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China. Atmosphere. 2025; 16(9):1110. https://doi.org/10.3390/atmos16091110
Chicago/Turabian StyleWang, Zijun, Yusu Zhao, Jian Shang, Yuanming Wang, Changlei Dai, and Enzhong Li. 2025. "Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China" Atmosphere 16, no. 9: 1110. https://doi.org/10.3390/atmos16091110
APA StyleWang, Z., Zhao, Y., Shang, J., Wang, Y., Dai, C., & Li, E. (2025). Improved Monthly Frequency Method Based on Copula Functions for Studying Ecological Flow in the Hailang River Basin, Northeast China. Atmosphere, 16(9), 1110. https://doi.org/10.3390/atmos16091110