Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
- Laboratory (latitude: 45.474220, longitude: 9.227056): This site is located in a mixed-use area comprising residential and institutional buildings. Outdoor sampling was carried out in the laboratory courtyard, approximately 200 m from a major road, allowing the capture of both urban background levels and traffic-related emissions.
- Apartment 1 (latitude: 45.431622, longitude: 9.244577): This site is situated in a densely populated residential area with high traffic intensity. Sampling was performed 50 m from a busy road, enabling the assessment of traffic-influenced VOC concentrations in a highly urbanized setting.
- Apartment 2 (latitude: 45.493200, longitude: 9.155900): This site is located in a residential setting with elevated traffic volumes. The sampling point was 20 m from a primary road, providing data representative of urban VOC exposure hotspots.
- Apartment 3 (latitude: 45.475016, longitude: 9.117718): This site lies in a residential neighborhood characterized by greater green coverage and lower traffic density relative to the other locations. It offers a useful contrast to the more polluted urban sites, reflecting VOC concentrations in a relatively cleaner microenvironment.
- Apartment 4 (latitude: 45.53248, longitude: 9.29457): This site is positioned in a suburban residential zone with moderate traffic influence. Sampling was conducted 100 m from the nearest roadway, representing VOC exposure levels typical of suburban conditions.
2.2. Chemicals and Standard Solutions
2.3. Sampling Methods and Sample Preparation
2.4. VOC Emissions from Cleaning and Personal Care Products
2.5. GC-MS Analysis
3. Results and Discussion
3.1. Overview of Detected VOCs
3.2. Semi-Quantitative Characterization of VOCs in Outdoor and Indoor Air
3.3. I/O VOC Ratios as Indicators of Source Attribution
3.4. Diagnostic VOC Ratios in Outdoor Air: B/T, T/B, and X/E
3.5. Semi-Quantitative Comparison Between VOC Emissions from Consumer Products and VOCs Detected in Indoor and Outdoor Air
3.6. TVOC Concentrations in Milan and Comparison with Global Cities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, C.; Liao, H.; Wang, K.; Ren, Y. The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural Sources: A Systematic Quantitative Review. Environ. Res. 2023, 216, 114386. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization WHO. Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 6 September 2024).
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on Human Health. In Air Pollution and Control; Springer: Singapore, 2018; pp. 119–142. [Google Scholar]
- Mula, V.; Bogdanov, J.; Stanoeva, J.P.; Zeneli, L.; Zdravkovski, Z. Monitoring Volatile Organic Compounds in Air Using Passive Sampling: Regional Cross-Border Study between N. Macedonia and Kosovo. Aerosol Air Qual. Res. 2024, 24, 230170. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Guo, C.; Lv, S.; Liu, Y.; Li, Y. Biomarkers for the Adverse Effects on Respiratory System Health Associated with Atmospheric Particulate Matter Exposure. J. Hazard. Mater. 2022, 421, 126760. [Google Scholar] [CrossRef]
- Dörter, M.; Odabasi, M.; Yenisoy-Karakaş, S. Source Apportionment of Biogenic and Anthropogenic VOCs in Bolu Plateau. Sci. Total Environ. 2020, 731, 139201. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Hu, J.; Zhang, H.; Ying, Q. Attribution of Tropospheric Ozone to NOx and VOC Emissions: Considering Ozone Formation in the Transition Regime. Environ. Sci. Technol. 2019, 53, 1404–1412. [Google Scholar] [CrossRef]
- Soares, A.R.; Silva, C. Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades. Atmosphere 2022, 13, 434. [Google Scholar] [CrossRef]
- Mohd Hanif, N.; Limi Hawari, N.S.S.; Othman, M.; Abd Hamid, H.H.; Ahamad, F.; Uning, R.; Ooi, M.C.G.; Wahab, M.I.A.; Sahani, M.; Latif, M.T. Ambient Volatile Organic Compounds in Tropical Environments: Potential Sources, Composition and Impacts—A Review. Chemosphere 2021, 285, 131355. [Google Scholar] [CrossRef]
- Madronich, S.; Lee-Taylor, J.M.; Wagner, M.; Kyle, J.; Hu, Z.; Landolfi, R. Estimation of Skin and Ocular Damage Avoided in the United States through Implementation of the Montreal Protocol on Substances That Deplete the Ozone Layer. ACS Earth Space Chem. 2021, 5, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shan, W.; Xiao, H. Recent Advances in Passive Air Sampling of Volatile Organic Compounds. Aerosol Air Qual. Res. 2018, 18, 602–622. [Google Scholar] [CrossRef]
- Kansal, A. Sources and Reactivity of NMHCs and VOCs in the Atmosphere: A Review. J. Hazard. Mater. 2009, 166, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef]
- Irga, P.J.; Mullen, G.; Fleck, R.; Matheson, S.; Wilkinson, S.J.; Torpy, F.R. Volatile Organic Compounds Emitted by Humans Indoors– A Review on the Measurement, Test Conditions, and Analysis Techniques. Build. Environ. 2024, 255, 111442. [Google Scholar] [CrossRef]
- Heeley-Hill, A.C.; Grange, S.K.; Ward, M.W.; Lewis, A.C.; Owen, N.; Jordan, C.; Hodgson, G.; Adamson, G. Frequency of Use of Household Products Containing VOCs and Indoor Atmospheric Concentrations in Homes. Environ. Sci. Process. Impacts 2021, 23, 699–713. [Google Scholar] [CrossRef]
- Mula, V.; Bogdanov, J.; Petreska Stanoeva, J.; Zeneli, L.; Berisha, A.; Zdravkovski, Z. Assessment of Volatile Organic Compounds in Indoor Environments across North Macedonia and Kosovo Using Passive Sampling. Maced. J. Chem. Chem. Eng. 2024, 43, 207–218. [Google Scholar] [CrossRef]
- Huang, L.; Wei, Y.; Zhang, L.; Ma, Z.; Zhao, W. Estimates of Emission Strengths of 43 VOCs in Wintertime Residential Indoor Environments, Beijing. Sci. Total Environ. 2021, 793, 148623. [Google Scholar] [CrossRef]
- Agbo, K.E.; Walgraeve, C.; Vandermeersch, L.; Eze, J.I.; Ukoha, P.O.; Van Langenhove, H. Residential VOCs Concentration Levels in Nsukka, Nigeria. Atmos. Environ. 2022, 289, 119307. [Google Scholar] [CrossRef]
- Molinier, B.; Arata, C.; Katz, E.F.; Lunderberg, D.M.; Liu, Y.; Misztal, P.K.; Nazaroff, W.W.; Goldstein, A.H. Volatile Methyl Siloxanes and Other Organosilicon Compounds in Residential Air. Environ. Sci. Technol. 2022, 56, 15427–15436. [Google Scholar] [CrossRef] [PubMed]
- Gentry, R.; Franzen, A.; Van Landingham, C.; Greene, T.; Plotzke, K. A Global Human Health Risk Assessment for Octamethylcyclotetrasiloxane (D 4). Toxicol. Lett. 2017, 279, 23–41. [Google Scholar] [CrossRef]
- Fustinoni, S.; Buratti, M.; Giarnpiccolob, R.; Colombib, A. Biological and Environmental Monitoring of Exposure to Airborne Benzene and Other Aromatic Hydrocarbons in Milan Traffic Wardens. Toxicol. Lett. 1995, 77, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.K.; Jantunen, M.J.; Künzli, N.; Kulinskaya, E.; Colvile, R.; Nieuwenhuijsen, M.J. Determinants of Indoor Benzene in Europe. Atmos. Environ. 2007, 41, 9128–9135. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for CoViD-2019 in Milan: What Are the Effects on Air Quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef]
- Vallecillos, L.; Riu, J.; Marcé, R.M.; Borrull, F. Air Monitoring with Passive Samplers for Volatile Organic Compounds in Atmospheres Close to Petrochemical Industrial Areas. The Case Study of Tarragona (2019–2021). Atmos. Pollut. Res. 2024, 15, 101986. [Google Scholar] [CrossRef]
- Tromp, P.C.; Beeltje, H.; Okeme, J.O.; Vermeulen, R.; Pronk, A.; Diamond, M.L. Calibration of Polydimethylsiloxane and Polyurethane Foam Passive Air Samplers for Measuring Semi Volatile Organic Compounds Using a Novel Exposure Chamber Design. Chemosphere 2019, 227, 435–443. [Google Scholar] [CrossRef]
- Huang, C.; Shi, Y.; Yang, M.; Tong, L.; Dai, X.; Liu, F.; Huang, C.; Zheng, J.; Li, J.; Xiao, H. Spatiotemporal Distribution, Source Apportionment and Health Risk Assessment of Atmospheric Volatile Organic Compounds Using Passive Air Samplers in a Typical Coastal Area, China. J. Clean. Prod. 2023, 423, 138741. [Google Scholar] [CrossRef]
- Lan, H.; Hartonen, K.; Riekkola, M.-L. Miniaturised Air Sampling Techniques for Analysis of Volatile Organic Compounds in Air. TrAC Trends Anal. Chem. 2020, 126, 115873. [Google Scholar] [CrossRef]
- Vera, T.; Villanueva, F.; Wimmerová, L.; Tolis, E.I. An Overview of Methodologies for the Determination of Volatile Organic Compounds in Indoor Air. Appl. Spectrosc. Rev. 2022, 57, 625–674. [Google Scholar] [CrossRef]
- Ras, M.R.; Borrull, F.; Marcé, R.M. Sampling and Preconcentration Techniques for Determination of Volatile Organic Compounds in Air Samples. TrAC Trends Anal. Chem. 2009, 28, 347–361. [Google Scholar] [CrossRef]
- Woolfenden, E. Sorbent-Based Sampling Methods for Volatile and Semi-Volatile Organic Compounds in Air. J. Chromatogr. A 2010, 1217, 2674–2684. [Google Scholar] [CrossRef]
- Fuselli, S.; De Felice, M.; Morlino, R.; Turrio-Baldassarri, L. A Three Year Study on 14 VOCs at One Site in Rome: Levels, Seasonal Variations, Indoor/Outdoor Ratio and Temporal Trends. Int. J. Environ. Res. Public Health 2010, 7, 3792–3803. [Google Scholar] [CrossRef] [PubMed]
- Król, S.; Zabiegała, B.; Namieśnik, J. Monitoring VOCs in Atmospheric Air II. Sample Collection and Preparation. TrAC Trends Anal. Chem. 2010, 29, 1101–1112. [Google Scholar] [CrossRef]
- Istituti Clinici Scientifici Maugeri. User Manual—Radiello®. Passive/Diffusive Samplers. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/2285/download/724345/radiello_manual_final.pdf (accessed on 7 September 2024).
- Mukerjee, S.; Smith, L.A.; Thoma, E.D.; Oliver, K.D.; Whitaker, D.A.; Wu, T.; Colon, M.; Alston, L.; Cousett, T.A.; Stallings, C. Spatial Analysis of Volatile Organic Compounds in South Philadelphia Using Passive Samplers. J. Air Waste Manag. Assoc. 2016, 66, 492–498. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica—ISTAT. Annuario Statistico Italiano. Available online: https://www.istat.it/wp-content/uploads/2024/12/ASI_2024.pdf (accessed on 17 February 2025).
- Zimmerman, J.H.; Schumacher, B.; Lutes, C.C.; Cosky, B.; Hayes, H. Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air. Environments 2025, 12, 267. [Google Scholar] [CrossRef]
- Cao, X.L.; Hewitt, C.N. Study of the Degradation by Ozone of Adsorbents and of Hydrocarbons Adsorbed during the Passive Sampling of Air. Environ. Sci. Technol. 1994, 28, 757–762. [Google Scholar] [CrossRef]
- Melymuk, L.; Bohlin-Nizzetto, P.; Prokeš, R.; Kukučka, P.; Přibylová, P.; Vojta, Š.; Kohoutek, J.; Lammel, G.; Klánová, J. Uncertainties in Monitoring of SVOCs in Air Caused by Within-Sampler Degradation during Active and Passive Air Sampling. Atmos. Environ. 2017, 167, 553–565. [Google Scholar] [CrossRef]
- Joos, P.E.; Godoi, A.F.L.; De Jong, R.; de Zeeuw, J.; Van Grieken, R. Trace Analysis of Benzene, Toluene, Ethylbenzene and Xylene Isomers in Environmental Samples by Low-Pressure Gas Chromatography–Ion Trap Mass Spectrometry. J. Chromatogr. A 2003, 985, 191–196. [Google Scholar] [CrossRef]
- Abbasi, F.; Pasalari, H.; Delgado-Saborit, J.M.; Rafiee, A.; Abbasi, A.; Hoseini, M. Characterization and Risk Assessment of BTEX in Ambient Air of a Middle Eastern City. Process Saf. Environ. Prot. 2020, 139, 98–105. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, W. Assessment of Ambient Volatile Organic Compounds (VOCs) near Major Roads in Urban Nanjing, China. Atmos. Res. 2008, 89, 289–297. [Google Scholar] [CrossRef]
- Ohura, T.; Amagai, T.; Shen, X.; Li, S.; Zhang, P.; Zhu, L. Comparative Study on Indoor Air Quality in Japan and China: Characteristics of Residential Indoor and Outdoor VOCs. Atmos. Environ. 2009, 43, 6352–6359. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Malkawi, A.; Adamkiewicz, G.; Spengler, J.D. Quantifying the Impact of Traffic-Related Air Pollution on the Indoor Air Quality of a Naturally Ventilated Building. Environ. Int. 2016, 89–90, 138–146. [Google Scholar] [CrossRef]
- Massolo, L.; Rehwagen, M.; Porta, A.; Ronco, A.; Herbarth, O.; Mueller, A. Indoor–Outdoor Distribution and Risk Assessment of Volatile Organic Compounds in the Atmosphere of Industrial and Urban Areas. Environ. Toxicol. 2010, 25, 339–349. [Google Scholar] [CrossRef]
- Abtahi, M.; Fakhri, Y.; Conti, G.O.; Ferrante, M.; Taghavi, M.; Tavakoli, J.; Heshmati, A.; Keramati, H.; Moradi, B.; Amanidaz, N.; et al. The Concentration of BTEX in the Air of Tehran: A Systematic Review-Meta Analysis and Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 1837. [Google Scholar] [CrossRef]
- Luo, S.; Hao, Q.; Xu, Z.; Zhang, G.; Liang, Z.; Gou, Y.; Wang, X.; Chen, F.; He, Y.; Jiang, C. Composition Characteristics of VOCs in the Atmosphere of the Beibei Urban District of Chongqing: Insights from Long-Term Monitoring. Atmosphere 2023, 14, 1452. [Google Scholar] [CrossRef]
- Petrus, M.; Popa, C.; Bratu, A.-M. Temporal Variations in Urban Air Pollution during a 2021 Field Campaign: A Case Study of Ethylene, Benzene, Toluene, and Ozone Levels in Southern Romania. Sustainability 2024, 16, 3219. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhao, J.; He, J.; Lei, Y.; Meng, K.; Wei, R.; Zhang, X.; Zhang, M.; Ni, S.; et al. Chemical Characteristics and Sources Apportionment of Volatile Organic Compounds in the Primary Urban Area of Shijiazhuang, North China Plain. J. Environ. Sci. 2025, 149, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Caselli, M.; de Gennaro, G.; Marzocca, A.; Trizio, L.; Tutino, M. Assessment of the Impact of the Vehicular Traffic on BTEX Concentration in Ring Roads in Urban Areas of Bari (Italy). Chemosphere 2010, 81, 306–311. [Google Scholar] [CrossRef]
- Vallecillos, L.; Borrull, A.; Marcé, R.M.; Borrull, F. Passive Sampling to Control Air Quality in Schools: Uptake Rate Determination and Application. Indoor Air 2020, 30, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Ninyà, N.; Vallecillos, L.; Marcé, R.M.; Borrull, F. Evaluation of Air Quality in Indoor and Outdoor Environments: Impact of Anti-COVID-19 Measures. Sci. Total Environ. 2022, 836, 155611. [Google Scholar] [CrossRef]
- Vallecillos, L.; Borrull, A.; Marcé, R.M.; Borrull, F. Presence of Emerging Organic Contaminants and Solvents in Schools Using Passive Sampling. Sci. Total Environ. 2021, 764, 142903. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, J.; Tang, X.; Misztal, P.K. Predicting Indoor Emissions of Cyclic Volatile Methylsiloxanes from the Use of Personal Care Products by University Students. Environ. Sci. Technol. 2018, 52, 14208–14215. [Google Scholar] [CrossRef]
- De Coster, G.; Van Overmeiren, P.; Vandermeersch, L.; Van Langenhove, H.; Demeestere, K.; Walgraeve, C. Indoor and Outdoor Air Quality Assessment in Daycare Centres in Ghent (Belgium) in View of Outdoor Sleeping in an Urban Environment. Atmos. Environ. 2023, 303, 119711. [Google Scholar] [CrossRef]
- Mečiarová, Ľ.; Vilčeková, S.; Krídlová Burdová, E.; Kiselák, J. Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef] [PubMed]
- Bergomi, A.; Mangia, C.; Fermo, P.; Genga, A.; Comite, V.; Guadagnini, S.; Ielpo, P. Outdoor Trends and Indoor Investigations of Volatile Organic Compounds in Two High Schools of Southern Italy. Air Qual. Atmos. Health 2024, 17, 1325–1340. [Google Scholar] [CrossRef]
- Jung, C.; Awad, J.; Ismail, M.A.; Chohan, A.H. Correlating Temperature, Airtightness, and Pollutant Concentrations: Insights into Indoor Air Quality in Ajman Apartment Buildings. Future Cities Environ. 2024, 10, 1–16. [Google Scholar] [CrossRef]
- Jung, C.; Al Qassimi, N.; Arar, M.; Awad, J. The Analysis of Indoor Air Pollutants From Finishing Material of New Apartments at Business Bay, Dubai. Front. Built Environ. 2021, 7, 765689. [Google Scholar] [CrossRef]
- Mentese, S.; Mirici, N.A.; Elbir, T.; Palaz, E.; Mumcuoğlu, D.T.; Cotuker, O.; Bakar, C.; Oymak, S.; Otkun, M.T. A Long-Term Multi-Parametric Monitoring Study: Indoor Air Quality (IAQ) and the Sources of the Pollutants, Prevalence of Sick Building Syndrome (SBS) Symptoms, and Respiratory Health Indicators. Atmos. Pollut. Res. 2020, 11, 2270–2281. [Google Scholar] [CrossRef]
- Hippelein, M. Background Concentrations of Individual and Total Volatile Organic Compounds in Residential Indoor Air of Schleswig-Holstein, Germany. J. Environ. Monit. 2004, 6, 745. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Zhang, X.; Zhang, X.; Liu, L.-Y.; Li, Y.-F.; Sun, W. Indoor Occurrence and Health Risk of Formaldehyde, Toluene, Xylene and Total Volatile Organic Compounds Derived from an Extensive Monitoring Campaign in Harbin, a Megacity of China. Chemosphere 2020, 250, 126324. [Google Scholar] [CrossRef]
- Embiale, A.; Chandravanshi, B.S.; Zewge, F.; Sahle-Demessie, E. Health Risk Assessment of Total Volatile Organic Compounds, Particulate Matters and Trace Elements in PM 10 in Typical Living Rooms in Addis Ababa, Ethiopia. Int. J. Environ. Anal. Chem. 2022, 102, 6583–6601. [Google Scholar] [CrossRef]
- Bari, M.A.; Kindzierski, W.B. Ambient Volatile Organic Compounds (VOCs) in Calgary, Alberta: Sources and Screening Health Risk Assessment. Sci. Total Environ. 2018, 631–632, 627–640. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhang, Q.; Zhang, Y.; Zhang, W.; Wang, X.; Bi, F.; Chai, F.; Gao, J.; Meng, L.; et al. Atmospheric Volatile Organic Compounds in a Typical Urban Area of Beijing: Pollution Characterization, Health Risk Assessment and Source Apportionment. Atmosphere 2017, 8, 61. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kwon, H.-O.; Lee, M.-I.; Seo, Y.; Choi, S.-D. Spatial and Temporal Variations of Volatile Organic Compounds Using Passive Air Samplers in the Multi-Industrial City of Ulsan, Korea. Environ. Sci. Pollut. Res. 2019, 26, 5831–5841. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Initial List of Hazardous Air Pollutants with Modifications. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications (accessed on 11 August 2025).
- World Health Organization. Agents Classified by the IARC Monographs, Volumes 1–139. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 11 August 2025).
- Official Journal of the European Union. Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast); Official Journal of the European Union: Luxembourg, 2024. [Google Scholar]
- Lin, K.-H.; Tsai, J.-H.; Cheng, C.-C.; Chiang, H.-L. Emission of Volatile Organic Compounds from Consumer Products. Aerosol Air Qual. Res. 2022, 22, 220250. [Google Scholar] [CrossRef]
- Steinemann, A. Ten Questions Concerning Air Fresheners and Indoor Built Environments. Build. Environ. 2017, 111, 279–284. [Google Scholar] [CrossRef]
- Molhave, L. Volatile Organic Compounds, Indoor Air Quality and Health. Indoor Air 1991, 1, 357–376. [Google Scholar] [CrossRef]
- Guiochon, G.; Guillemin, C.L. Chapter 15 Quantitative Analysis By Gas Chromatography Measurement of Peak Area and Dervation of Sample Composition. In Laboratory Analyses and On-Line Process Control; Elsevier: Amsterdam, The Netherlands, 1988; pp. 629–659. [Google Scholar]
Groups of VOCs | I/O Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Laboratory Sources | Apartment 1 Sources | Apartment 2 Sources | Apartment 3 Sources | Apartment 4 Sources | ||||||
Hydrocarbons | 0.1 | O | 0.70 | O | 0.53 | O | 0.64 | O | 0.75 | O |
Aromatic Hydrocarbons | 2.14 | I | 0.37 | O | 0.22 | O | 0.76 | O | 0.64 | O |
Alcohols and Ethers | 0.27 | O | 28.19 | I | nd * | I | 6.77 | I | 28.98 | I |
Aldehydes and Ketones | 1.30 | I and O | nd * | I | 3.98 | I | nd * | I | 20.81 | I |
Terpenes | 77.73 | I | 227.19 | I | 5.97 | I | 26.09 | I | 20.78 | I |
Halogenated Compounds | 0.07 | O | 1.58 | I and O | 10.82 | I | 4.07 | I | nd ** | O |
Organosiloxanes | 0.17 | O | 32.52 | I | nd * | I | 75.64 | I | 2.44 | I |
Esters | 1.01 | O | 49.91 | I | 15.73 | I | 6.31 | I | 19.96 | I |
Location | B/T | T/B | X/E |
---|---|---|---|
Laboratory | 0.42 | 2.36 | 2.77 |
Apartment 1 | 0.38 | 2.60 | 2.90 |
Apartment 2 | 0.55 | 1.83 | 3.56 |
Apartment 3 | 0.31 | 3.26 | 2.52 |
Apartment 4 | 0.29 | 3.41 | 1.85 |
Mean ratio | 0.39 | 2.69 | 2.72 |
City/Country | Type of Air | TVOC Concentration (µg/m3) | References |
---|---|---|---|
Milan/Italy | Outdoor | 220.8 | Present study |
Indoor | 243.6 | ||
Ghent/Belgium | Outdoor | 24.5 | [56] |
Indoor | 152 | ||
Slovakia | Indoor | 519.7 | [57] |
Squinzano/Italy | Outdoor | 420 | [58] |
Indoor | 303 | ||
Ajman/United Arab Emirates | Outdoor | 114 | [59] |
Indoor | 3092.16 | ||
Dubai/United Arab Emirates | Indoor | 594.77 | [60] |
Çanakkale/Turkey | Indoor | 500–550 | [61] |
Schleswig-Holstein/Germany | Indoor | 289 | [62] |
Harbin/China | Indoor | 411 | [63] |
Addis Ababa/Ethiopia | Indoor | 289 | [64] |
La Plata (Buenos Aires)/Argentina | Outdoor | 44.51 | [46] |
Indoor | 112.46 | ||
Calgary, Alberta/Canada | Outdoor | 42 | [65] |
Beijing/China | Outdoor | 119 | [66] |
Ulsan, Korea | Outdoor | 28.1 | [67] |
Nsukka, Nigeria | Outdoor | 71 | [19] |
Indoor | 115; 254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mula, V.; Bogdanov, J.; Petreska Stanoeva, J.; Zeneli, L.; Mehmeti, V.; Gelmini, F.; Daci, A.; Berisha, A.; Zdravkovski, Z.; Beretta, G. Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy. Atmosphere 2025, 16, 1088. https://doi.org/10.3390/atmos16091088
Mula V, Bogdanov J, Petreska Stanoeva J, Zeneli L, Mehmeti V, Gelmini F, Daci A, Berisha A, Zdravkovski Z, Beretta G. Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy. Atmosphere. 2025; 16(9):1088. https://doi.org/10.3390/atmos16091088
Chicago/Turabian StyleMula, Vllaznim, Jane Bogdanov, Jasmina Petreska Stanoeva, Lulzim Zeneli, Valbonë Mehmeti, Fabrizio Gelmini, Armond Daci, Avni Berisha, Zoran Zdravkovski, and Giangiacomo Beretta. 2025. "Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy" Atmosphere 16, no. 9: 1088. https://doi.org/10.3390/atmos16091088
APA StyleMula, V., Bogdanov, J., Petreska Stanoeva, J., Zeneli, L., Mehmeti, V., Gelmini, F., Daci, A., Berisha, A., Zdravkovski, Z., & Beretta, G. (2025). Semi-Quantitative Characterization of Volatile Organic Compounds in Indoor and Outdoor Air Using Passive Samplers: A Case Study of Milan, Italy. Atmosphere, 16(9), 1088. https://doi.org/10.3390/atmos16091088