Identifying Optimal Reanalysis and Remote Sensing Data Combinations for Multi-Scale SPEI-Based Drought Assessment in Zhejiang Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground-Based Meteorological Observations
2.2.2. Reanalysis and Remote Sensing Precipitation Datasets
- CMFD V2.0 (China Meteorological Forcing Dataset Version 2.0):CMFD V2.0 [43] is a hybrid product jointly developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and the Department of Earth System Science, Tsinghua University. It integrates ground-based observations with ERA5 reanalysis data and satellite data, leveraging artificial intelligence technology for radiation and precipitation products, to provide a high-precision, high-resolution, and long-time-series meteorological forcing dataset for China. CMFD V2.0 offers seven key meteorological variables, including the precipitation rate, at a 3 h temporal resolution and a 0.1° spatial resolution from 1951 to 2020. The dataset can be downloaded from the National Tibetan Plateau Data Center (https://cstr.cn/18406.11.Atmos.tpdc.302088) (accessed on 1 June 2025).
- IMERG V07B (Integrated Multi-satellitE Retrievals for GPM Version 07B):As the latest precipitation product under NASA’s Global Precipitation Measurement (GPM) mission, IMERG V07B [19] integrates passive microwave and infrared observations from multiple satellite sensors. The Final Run version incorporates global gauge data during post-processing for bias correction, substantially enhancing its accuracy and making it well suited for hydrometeorological applications. IMERG V07B Final Run provides data at a spatial resolution of 0.1° and multiple temporal resolutions including monthly, daily, and 30 min, spanning from 1998 to the present (with an approximate 3.5-month latency). It is accessible via NASA’s GPM Data Portal (https://gpm.nasa.gov/data/imerg) (accessed on 30 May 2025).
- TMPA 3B42V7 (TRMM Multi-satellite Precipitation Analysis Version 7):Developed collaboratively by NASA and the Japan Aerospace Exploration Agency (JAXA), TMPA 3B42V7 [20,44] is a multi-source satellite precipitation product integrating microwave and infrared observations from the TRMM (Tropical Rainfall Measuring Mission) satellite with gauge-based post-processing. Designed for use in tropical and subtropical regions, it delivers 3-hourly/daily/monthly precipitation estimates at a spatial resolution of 0.25°, covering the period from January 1998 to December 2019. TMPA 3B42V7 has been widely adopted in hydrometeorological studies, and it is available through NASA’s GES DISC (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) (accessed on 30 May 2025).
2.2.3. Reanalysis and Remote Sensing Evapotranspiration Datasets
- GLDAS-2.2 (Global Land Data Assimilation System Version 2.2):Developed by NASA’s Goddard Space Flight Center, GLDAS-2.2 [21,45] simulates global terrestrial water and energy fluxes by assimilating satellite- and ground-based observations into land surface models. This product provides 24 land surface variables, including evapotranspiration, at a daily temporal resolution and a spatial resolution of 0.25°, spanning from February 2003 to the present. GLDAS-2.2 data are available via NASA’s GES DISC (https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary) (accessed on 30 May 2025).
- GLEAM v4.2a (Global Land Evaporation Amsterdam Model version 4.2a):GLEAM v4.2a [46] is a high-resolution global land evaporation and soil moisture dataset led by the Hydro-Climate Extremes Lab (H-CEL) at Ghent University. Utilizing a hybrid modeling framework, this product integrates physical process modeling with machine learning, incorporating eddy covariance observations and a range of satellite and reanalysis inputs. GLEAM v4.2a provides 12 key variables, including potential and actual evapotranspiration, at a daily temporal resolution and 0.1° spatial resolution, covering 1980–2023. The datasets can be accessed from the GLEAM portal (https://www.gleam.eu/) (accessed on 1 June 2025).
- PML-V2 (Penman–Monteith–Leuning Version 2):Developed by the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, PML-V2 [47,48] is based on an enhanced Penman–Monteith–Leuning model that integrates stomatal conductance with photosynthetic processes. This product provides coordinated estimates of evapotranspiration and gross primary productivity. It features an 8-day temporal resolution and a high spatial resolution of 0.05° and spans from July 2002 to August 2019. PML-V2 data are available through the National Tibetan Plateau Data Center (https://cstr.cn/18406.11.Geogra.tpdc.270251) (accessed on 30 May 2025).To create a consistent framework for comparison, all reanalysis and remote sensing datasets were resampled to 0.1° spatial resolution and harmonized to a daily temporal resolution. The three precipitation datasets and three evapotranspiration datasets were then cross-combined to form a complete 3 × 3 matrix, yielding nine data combinations for SPEI calculation and performance evaluation (Table 1). This full matrix design minimizes subjective bias and enables a comprehensive assessment of the influence of different data pairings on SPEI estimation. It is worth noting that GLEAM v4.2a provides both actual evapotranspiration (ET) and potential evapotranspiration (PET), whereas GLDAS-2.2 and PML-V2 only provide ET. As SPEI computation requires PET, the evaporative stress index (S = ET/PET) derived from GLEAM v4.2a was utilized to convert the ET values from GLDAS-2.2 and PML-V2 into PET, thus ensuring their suitability for SPEI computations.
2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.3.2. Performance Evaluation
2.3.3. Mann–Kendall Trend Analysis
2.3.4. Contribution Analysis of Climatic Drivers
3. Results
3.1. Performance Evaluation of Reanalysis and Remote Sensing Data Combinations for SPEI Estimation
3.1.1. Evaluation at the Station Level
3.1.2. Overall Agreement Between Remote Sensing-Based and Observation-Based SPEI
3.2. Spatiotemporal Variations in Drought in Zhejiang Province
3.2.1. Spatiotemporal Trends of Multi-Scale SPEI and Their Climatic Drivers
3.2.2. Spatial Distributions of Drought Prevalence Across Multiple SPEI Timescales
4. Discussion
4.1. Applicability of Reanalysis and Remote Sensing Data in Regional Drought Assessment
4.2. Insights from Multi-Scale Spatiotemporal Drought Variations for Adaptive Water Management
4.3. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebrechorkos, S.H.; Sheffield, J.; Vicente-Serrano, S.M. Warming accelerates global drought severity. Nature 2025, 642, 628–635. [Google Scholar] [CrossRef]
- Lee, S.; Moriasi, D.N.; Mehr, A.D.; Mirchi, A. Sensitivity of standardized precipitation and evapotranspiration index (SPEI) to the choice of SPEI probability distribution and evapotranspiration method. J. Hydrol. Reg. Stud. 2024, 53, 101761. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Palmer, W.C. Meteorological Droughts; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Research Paper 45; p. 58. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to climate change: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation. Environ. Monit. Assess. 2024, 196, 980. [Google Scholar] [CrossRef]
- Gumus, V. Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. J. Hydrol. 2023, 626, 130386. [Google Scholar] [CrossRef]
- Mousavi, R.; Johnson, D.; Kroebel, R.; Byrne, J. Analysis of historical drought conditions based on SPI and SPEI at various timescales in the South Saskatchewan River Watershed, Alberta, Canada. Theor. Appl. Climatol. 2023, 153, 873–887. [Google Scholar] [CrossRef]
- Wang, C.; Huang, M.; Zhai, P.; Yu, R. Change of summer drought over China during 1961–2020 based on standardized precipitation evapotranspiration index. Theor. Appl. Climatol. 2023, 153, 297–309. [Google Scholar] [CrossRef]
- Liu, X.; Yu, S.; Yang, Z.; Dong, J.; Peng, J. The first global multi-timescale daily SPEI dataset from 1982 to 2021. Sci. Data 2024, 11, 223. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, W.; Yu, Z. Evaluating the drought-monitoring utility of GPM and TRMM precipitation products over mainland China. Remote Sens. 2021, 13, 4153. [Google Scholar] [CrossRef]
- Ma, D.; Xu, Y.P.; Gu, H.T.; Zhu, Q.; Sun, Z.L.; Xuan, W.D. Role of satellite and reanalysis precipitation products in streamflow and sediment modeling over a typical alpine and gorge region in Southwest China. Sci. Total Environ. 2019, 685, 934–950. [Google Scholar] [CrossRef]
- Melo, D.C.D.; Anache, J.A.A.; Borges, V.P.; Miralles, D.G.; Martens, B.; Fisher, J.B.; Wendland, E. Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resour. Res. 2021, 57, e2020WR028752. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, Y.-H.; Kim, D.-H.; Kim, Y.-H. Drought monitoring and diagnosis using reanalysis data: A case study in South Korea. Atmosphere 2021, 12, 170. [Google Scholar]
- Kumar, V.; Sharma, K.V.; Pham, Q.B.; Srivastava, A.K.; Bogireddy, C.; Yadav, S.M. Advancements in drought using remote sensing: Assessing progress, overcoming challenges, and exploring future opportunities. Theor. Appl. Climatol. 2024, 155, 4251–4288. [Google Scholar] [CrossRef]
- Mullapudi, V.; Vibhute, A.D.; Mali, S.; Patil, C.H. A review of agricultural drought assessment with remote sensing data: Methods, issues, challenges and opportunities. Appl. Geomat. 2023, 15, 1–13. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated multisatellite retrievals for the global precipitation measurement (GPM) mission (IMERG). In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Germany, 2020; Volume 67, pp. 343–353. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Aksu, H.; Cavus, Y.; Aksoy, H.; Akgul, M.A.; Turker, S.; Eris, E. Spatiotemporal analysis of drought by CHIRPS precipitation estimates. Theor. Appl. Climatol. 2022, 148, 517–529. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Noori, Z.; Alipour, H.; Jamali, S.; Akbari, J.; Ghorbanian, A.; Duan, Z. Detecting drought events over Iran during 1983–2017 using satellite and ground-based precipitation observations. Atmos. Res. 2022, 269, 106052. [Google Scholar]
- Xu, Z.; Wu, Z.; He, H.; Wu, X.; Zhou, J.; Zhang, Y.; Guo, X. Evaluating the accuracy of MSWEP V2.1 and its performance for drought monitoring over mainland China. Atmos. Res. 2019, 226, 17–31. [Google Scholar]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Zhong, R.; Chen, X.; Lai, C.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar]
- Liu, Y.; Wang, W.; Zhao, T.; Huo, Z. Performance evaluation and spatiotemporal dynamics of nine reanalysis and remote sensing evapotranspiration products in China. Remote Sens. 2025, 17, 1881. [Google Scholar] [CrossRef]
- Salazar-Martínez, D.; Holwerda, F.; Holmes, T.R.H.; Yépez, E.A.; Hain, C.R.; Alvarado-Barrientos, S.; Ángeles-Pérez, G.; Arredondo-Moreno, T.; Delgado-Balbuena, J.; Figueroa-Espinoza, B.; et al. Evaluation of remote sensing-based evapotranspiration products at low-latitude eddy covariance sites. J. Hydrol. 2022, 610, 127786. [Google Scholar] [CrossRef]
- Xie, Z. Evaluation of seven satellite-based and two reanalysis global terrestrial evapotranspiration products. J. Hydrol. 2024, 630, 130649. [Google Scholar] [CrossRef]
- Qian, L. High uncertainty of evapotranspiration products under extreme climatic conditions. J. Hydrol. 2023, 626, 130332. [Google Scholar] [CrossRef]
- Yao, T.; Lu, H.; Yu, Q.; Feng, S.; Xue, Y.; Feng, W. Uncertainties of three high-resolution actual evapotranspiration products across China: Comparisons and applications. Atmos. Res. 2023, 286, 106682. [Google Scholar] [CrossRef]
- Zhu, Q.; Luo, Y.; Zhou, D.; Xu, Y.; Wang, G.; Gao, H. Drought monitoring utility using satellite-based precipitation products over the Xiang River Basin in China. Remote Sens. 2019, 11, 1483. [Google Scholar] [CrossRef]
- Suliman, A.; Awchi, T.A.; Al-Mola, M.; Shahid, S. Evaluation of remotely sensed precipitation sources for drought assessment in semi-arid Iraq. Atmos. Res. 2020, 242, 105007. [Google Scholar] [CrossRef]
- Bai, X.; Shen, W.; Wu, X.; Wang, P. Applicability of long-term satellite-based precipitation products for drought indices considering global warming. J. Environ. Manag. 2020, 255, 109846. [Google Scholar] [CrossRef]
- Xu, Y.P.; Pan, S.; Fu, G.; Tian, Y.; Zhang, X. Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China. J. Geophys. Res. Atmos. 2014, 119, 2174–2192. [Google Scholar] [CrossRef]
- Diao, H.; Wang, A.; Yuan, F.; Guan, D.; Wu, J. Changes in tree leaf δ13C along climatic and geographical gradients in China. Trees 2023, 37, 671–682. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens. 2018, 10, 148. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Booij, M.J.; Lin, S.; Zhang, Q.; Lou, Z. Detection of trends in precipitation extremes in Zhejiang, East China. Theor. Appl. Climatol. 2012, 107, 201–210. [Google Scholar] [CrossRef]
- Gao, C.; Xu, Y.P.; Zhu, Q.; Bai, Z.; Liu, L. Stochastic generation of daily rainfall events: A single-site rainfall model with copula-based joint simulation of rainfall characteristics and classification and simulation of rainfall patterns. J. Hydrol. 2018, 564, 41–58. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and the environment. In The State and Movement of Water in Living Organisms; Cambridge Univ. Press: London, UK, 1965; pp. 205–234. [Google Scholar]
- He, J.; Yang, K.; Li, X.; Tang, W.; Shao, C.; Jiang, Y.; Ding, B. China Meteorological Forcing Dataset v2.0 (1951–2020); National Tibetan Plateau/Third Pole Environment Data Center: 2024. Available online: https://cstr.cn/18406.11.Atmos.tpdc.302088 (accessed on 1 June 2025).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree × 0.25 Degree V7; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MA, USA, 2016. [Google Scholar] [CrossRef]
- Li, B.; Beaudoing, H.; Rodell, M. GLDAS Catchment Land Surface Model L4 Daily 0.25 × 0.25 Degree GRACE-DA1 V2.2; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MA, USA, 2020. [Google Scholar] [CrossRef]
- Miralles, D.G.; Bonte, O.; Koppa, A.; Baez-Villanueva, O.M.; Tronquo, E.; Zhong, F.; Beck, H.E.; Hulsman, P.; Dorigo, W.; Verhoest, N.E.C.; et al. GLEAM4: Global land evaporation and soil moisture dataset at 0.1° resolution from 1980 to near present. Sci. Data 2025, 12, 416. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Zhang, Y. PML_V2 Global Evapotranspiration and Gross Primary Production (2002.07–2019.08); National Tibetan Plateau/Third Pole Environment Data Center: 2020. Available online: https://cstr.cn/18406.11.Geogra.tpdc.270251 (accessed on 30 May 2025).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 3rd ed.; Griffin: London, UK, 1975. [Google Scholar]
- Yang, L.; Feng, Q.; Zhu, M.; Wang, L.; Alizadeh, M.R.; Adamowski, J.F.; Wen, X.; Yin, Z. Variation in actual evapotranspiration and its ties to climate change and vegetation dynamics in northwest China. J. Hydrol. 2022, 607, 127533. [Google Scholar] [CrossRef]
- Yuan, Y.; Liao, B. Evaluation of multi-source precipitation products for monitoring drought across China. Front. Environ. Sci. 2025, 13, 1524937. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative analysis of drought indicated by the SPI and SPEI at various timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and temporal evolution patterns of droughts in China over the past 61 years based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar]
- Zhai, J.; Huang, J.; Su, B.; Cao, L.; Wang, Y.; Jiang, T.; Fischer, T. Intensity–area–duration analysis of droughts in China 1960–2013. Clim. Dyn. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- Yang, X.; Yue, W.; Xu, H.; Wu, J.; He, Y. Environmental consequences of rapid urbanization in Zhejiang Province, East China. Int. J. Environ. Res. Public Health 2014, 11, 7045–7059. [Google Scholar]
- Li, Y.; Zhou, W.; Yang, S.; Zhang, R.; Cheung, H.; Zhang, Y. Recent early-spring drying trend over southern China associated with changes in the zonal thermal contrast over the Pacific. J. Clim. 2022, 35, 6487–6498. [Google Scholar] [CrossRef]
- Koster, R.D.; Schubert, S.D.; Wang, H.; Mahanama, S.P.; DeAngelis, A.M. Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeorol. 2019, 20, 1241–1258. [Google Scholar] [CrossRef]
- Noguera, I.; Domínguez-Castro, F.; Vicente-Serrano, S.M. Flash drought response to precipitation and atmospheric evaporative demand in Spain. Atmosphere 2021, 12, 165. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Gu, L.; Wu, G.; Tong, S.; Xiong, L.; Xu, C.-Y. A pathway analysis method for quantifying the contributions of precipitation and potential evapotranspiration anomalies to soil moisture drought. J. Hydrol. 2023, 621, 129570. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, Y.; Ren, L.; Jiang, S.; Wang, M.; Wei, L. The role of precipitation deficit and potential evapotranspiration excess in triggering flash droughts over China. J. Hydrol. 2025, 660, 133413. [Google Scholar] [CrossRef]
- Huang, S.; Han, J.; Yang, Y. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Zhou, J.; Gou, A.; Xu, S.; Wu, Y.; Yang, X.; Wei, W.; Zhu, G.; Zhang, D.; Shi, P. Propagation characteristics and influencing factors of meteorological drought to soil drought in the upper reaches of the Shiyang River based on the copula function. Land 2024, 13, 2050. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Leyland, J.; Dadson, S.J.; Cohen, S.; Slater, L.; Wortmann, M.; Ashworth, P.J.; Bennett, G.L.; Boothroyd, R.; Cloke, H.; et al. Global-scale evaluation of precipitation datasets for hydrological modelling. Hydrol. Earth Syst. Sci. 2024, 28, 3099–3118. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Qu, Y.; Zhang, X.; Jing, L.; Feng, K.; Zhang, G.; Han, Y. Evaluating Ecological Drought Vulnerability from Ecosystem Service Value Perspectives in North China. Remote Sens. 2024, 16, 3733. [Google Scholar] [CrossRef]
- Seo, Y.W.; Ha, K.J. Changes in Land-Atmosphere Coupling Increase Compound Drought and Heatwaves over Northern East Asia. NPJ Clim. Atmos. Sci. 2022, 5, 100. [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2019, 57, 976–1016. [Google Scholar]
- Kong, Z.; Cao, J.; Wang, B. Anthropogenic aerosol dominates the decadal change in evapotranspiration over Southeastern China in the past four decades. Remote Sens. 2025, 17, 561. [Google Scholar] [CrossRef]
- Tang, T.; Ge, J.; Shi, H.; Wang, L.; Cao, J.; Lee, X. Drought frequency, intensity, and exposure have increased due to historical land use and land cover changes. Commun. Earth Environ. 2025, 6, 398. [Google Scholar] [CrossRef]
Evapotranspiration Products | GLDAS-2.2 (EI) | GLEAM v4.2a (EII) | PML-V2 (EIII) | |
---|---|---|---|---|
Precipitation Products | ||||
CMFD V2.0 (PI) | PIEI | PIEII | PIEIII | |
IMERG V07B Final Run (PII) | PIIEI | PIIEII | PIIEIII | |
TMPA 3B42V7 (PIII) | PIIIEI | PIIIEII | PIIIEIII |
Drought Severity | Values |
No drought | |
Light drought | |
Moderate drought | |
Severe drought | |
Extreme drought |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Ma, D.; Gu, H.; Xu, C.; Zhou, X.; Zhu, Q. Identifying Optimal Reanalysis and Remote Sensing Data Combinations for Multi-Scale SPEI-Based Drought Assessment in Zhejiang Province, China. Atmosphere 2025, 16, 1078. https://doi.org/10.3390/atmos16091078
Pan S, Ma D, Gu H, Xu C, Zhou X, Zhu Q. Identifying Optimal Reanalysis and Remote Sensing Data Combinations for Multi-Scale SPEI-Based Drought Assessment in Zhejiang Province, China. Atmosphere. 2025; 16(9):1078. https://doi.org/10.3390/atmos16091078
Chicago/Turabian StylePan, Suli, Di Ma, Haiting Gu, Chao Xu, Xiaojie Zhou, and Qiang Zhu. 2025. "Identifying Optimal Reanalysis and Remote Sensing Data Combinations for Multi-Scale SPEI-Based Drought Assessment in Zhejiang Province, China" Atmosphere 16, no. 9: 1078. https://doi.org/10.3390/atmos16091078
APA StylePan, S., Ma, D., Gu, H., Xu, C., Zhou, X., & Zhu, Q. (2025). Identifying Optimal Reanalysis and Remote Sensing Data Combinations for Multi-Scale SPEI-Based Drought Assessment in Zhejiang Province, China. Atmosphere, 16(9), 1078. https://doi.org/10.3390/atmos16091078