Analysis of Economic Losses and Comprehensive Impact Factors of Heatwave, Drought, and Heavy Rain Disasters in Hainan Island
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
Study Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. Economic Loss and GDP Data
2.2.3. Land Use Type
2.3. Extreme Climate Economic Loss Model
2.4. Threshold Optimization
2.5. Standardized Precipitation Index (SPI)
2.6. Sen’s Slope Trend
2.7. Spatial Downscaling
3. Results
3.1. Assessment of Heatwave Losses in Hainan Island
3.1.1. Changes in Heat Wave Risk on Hainan Island
3.1.2. Determine the Dynamic Threshold of Heatwave Risk
3.1.3. GDP Loss Assessment of Heatwave Disaster
3.2. Assessment of Drought Losses in Hainan Island
3.2.1. Drought Change Characteristics of Hainan Island
3.2.2. Characteristics of Land Use Change in Hainan Island
3.2.3. GDP Loss Assessment of Drought Disaster
3.3. Assessment of Heavy Rain in Hainan Island
3.3.1. Characteristics of Heavy Rain Variation
3.3.2. Climate-Driven Factors of Heavy Rain Losses
3.3.3. GDP Loss Assessment of Heavy Rain Disaster
3.4. Comprehensive Analysis and Comparison of Weather-Related Disaster Losses
3.4.1. Spatio-Temporal Characteristics of Total Disaster Losses
3.4.2. Comparison of Contribution Rate of Total Disaster Losses
4. Discussion
4.1. Estimation of Natural Meteorological Disaster Losses
4.2. Accuracy of Simulation Results
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECELM | Extreme Climate Economic Loss Model |
SPI | Standardized Precipitation Index |
WBGT | Wet Bulb Globe Temperature |
EM-DAT | Emergency Events Database |
GDP | Gross Domestic Product |
References
- Trenberth, K.E.; Fasullo, J.T.; Shepherd, T.G. Attribution of climate extreme events. Nat. Clim. Change 2015, 5, 725–730. [Google Scholar] [CrossRef]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- ICSU. Science plan for Integrated Research on Disaster Risk: Addressing the Challenge of Natural and Human-Induced Environmental Hazards; International Council for Science: Paris, France, 2008. [Google Scholar]
- Newman, R.; Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 2023, 14, 6103. [Google Scholar] [CrossRef]
- Boyd, E.; Chaffin, B.C.; Dorkenoo, K.; Jackson, G.; Harrington, L.; N’guetta, A.; Johansson, E.L.; Nordlander, L.; De Rosa, S.P.; Raju, E.; et al. Loss and damage from climate change: A new climate justice agenda. One Earth 2021, 4, 1365–1370. [Google Scholar] [CrossRef]
- Diaz, D.; Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 2017, 7, 774–782. [Google Scholar] [CrossRef]
- Ackerman, F.; Stanton, E.A.; Hope, C.; Alberth, S. Did the Stern Review underestimate US and global climate damages? Energy Policy 2009, 37, 2717–2721. [Google Scholar] [CrossRef]
- World Meteorological Society (WMO). WMO Atlas of Mortality and Economic Losses from Weather, Climate, and Water Extremes (1970–2019). Available online: https://library.wmo.int/idurl/4/44978 (accessed on 1 May 2025).
- IPCC. Climate Change 2024: Synthesis Report; IPCC AR6, Synthesis Report, 2-10; IPCC: Geneva, Switzerland, 2024. [Google Scholar]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Carlton, E.J.; Eisenberg, J.N.; Goldstick, J.; Cevallos, W.; Trostle, J.; Levy, K. Heavy rainfall events and diarrhea incidence: The role of social and environmental factors. Am. J. Epidemiol. 2014, 179, 344–352. [Google Scholar] [CrossRef]
- Jahn, M. Economics of extreme weather events: Terminology and regional impact models. Weather Clim. Extrem. 2015, 10, 29–39. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lee, C.C.; Allen, M.J.; Kalkstein, L.S. Future heat vulnerability in California, Part I: Projecting future weather types and heat events. Clim. Change 2012, 115, 291–309. [Google Scholar] [CrossRef]
- Pitman, A.J.; Sisson, S.A. Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. Int. J. Climatol. 2013, 33, 1153–1167. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: Implications for a climate change future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef]
- Graff Zivin, J.; Neidell, M. Temperature and the allocation of time: Implications for climate change. J. Labor Econ. 2014, 32, 1–26. [Google Scholar] [CrossRef]
- Haines, A.; Ebi, K. The imperative for climate action to protect health. N. Engl. J. Med. 2019, 380, 263–273. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Chen, X.; Huang, C.; Han, F.; Li, N. Assessment of the regional and sectoral economic impacts of heat-related changes in labor productivity under climate change in China. Earth’s Future 2021, 9, e2021EF002028. [Google Scholar] [CrossRef]
- Zhang, Y.; Shindell, D.T. Costs from labor losses due to extreme heat in the USA attributable to climate change. Clim. Change 2021, 164, 35. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Schnitkey, G.D.; DeLucia, E.; Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 2019, 25, 2325–2337. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the effects of extreme weather events on yields. Weather Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Heino, M.; Kinnunen, P.; Anderson, W.; Ray, D.K.; Puma, M.J.; Varis, O.; Siebert, S.; Kummu, M. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci. Rep. 2023, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- Trenczek, J.; Lühr, O.; Eiserbeck, L.; Sandhövel, M.; Ibens, D. Schäden der Dürre-und Hitzeextreme 2018 und 2019-eine ex-Post-Analyse; Studie im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz; Prognos AG: Berlin, Germany, 2022. [Google Scholar]
- Mazumdaru, S. Calls for Farm Support Intensify as Europe Struggles with Heat Wave, Drought; DW: Bonn, Germany, 2018. [Google Scholar]
- Yadollahie, M. The flood in Iran: A consequence of the global warming? Int. J. Occup. Environ. Med. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Bozorg-Haddad, O.; Zolghadr-Asli, B.; Chu, X.; Loáiciga, H.A. Intense extreme hydro-climatic events take a toll on society. Nat. Hazards 2021, 108, 2385–2391. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull. 2015, 101, 5–28. [Google Scholar] [CrossRef]
- Dey, M.M.; Rosegrant, M.W.; Gosh, K.; Chen, O.L.; Valmonte-Santos, R. Analysis of the economic impact of climate change and climate change adaptation strategies for fisheries sector in Pacific coral triangle countries: Model, estimation strategy, and baseline results. Mar. Policy 2016, 67, 156–163. [Google Scholar] [CrossRef]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 2020, 162, 781–797. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in compound drought and heatwaves in a warming world. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, W.; Kirtman, B. Increasing impacts of summer extreme precipitation and heatwaves in eastern China. Clim. Change 2023, 176, 131. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Lan, G.; Qi, D.; Li, G.; Jia, P.; Yin, Y. Change features of precipitation events in Hainan Island from 1959 to 2013. Chin. J. Trop. Crops 2017, 38, 2176–2182. [Google Scholar]
- Zhou, L.; Gao, S.; Yang, Y.; Sun, R.; Wu, Z.; Chen, B.; Lan, G.; Qi, D.; Li, G.; Jia, P.; et al. Typhoon events recorded in coastal lagoon deposits, southeastern Hainan Island. Acta Oceanol. Sin. 2017, 36, 37–45. [Google Scholar] [CrossRef]
- China Meteorological Administration. China Meteorological Disaster Yearbook (2023); Meteorological Press: Beijing, China, 2023.
- Zhai, J.; Hou, P.; Cao, W.; Yang, M.; Cai, M.; Li, J. Ecosystem assessment and protection effectiveness of a tropical rainforest region in Hainan Island, China. J. Geogr. Sci. 2018, 28, 415–428. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X.; Liao, L.; Li, J.; Luo, G.; Li, B.; Ma, Z.; Wang, Z. Grazing decreases carbon storage in the Qinghai-Tibet Plateau grasslands. Commun. Earth Environ. 2025, 6, 198. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.; Ali, H.; Xie, J.; Dai, Y.; Li, Z.; Wang, Z.; Pan, X.; Fowler, H.J. Assessing the consistent and divergent impacts of urbanization on heavy rainfall in Chinese urban agglomerations. Commun. Earth Environ. 2025, 6, 302. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Li, X.; Tang, W.; Shao, C.; Jiang, Y.; Ding, B. China Meteorological Forcing Dataset v2.0 (1951–2020); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Lou, L.; Li, X. Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv. Atmos. Sci. 2016, 33, 101–109. [Google Scholar] [CrossRef]
- Li, Z.; He, S.; Chen, C.; Qiu, L.; Li, M. Landfall Typhoon Characteristics Dataset in Hainan Province from 1949 to 2022. Chin. Sci. Data 2024, 9(2), 313–325. [Google Scholar]
- Wang, P.; Zhang, W.; Liu, J.; He, P.; Wang, J.; Huang, L.; Zhang, B. Analysis and intervention of heatwave related economic loss: Comprehensive insights from supply, demand, and public expenditure into the relationship between the influencing factors. J. Environ. Manag. 2023, 326, 116654. [Google Scholar] [CrossRef]
- Willett, K.M.; Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 2012, 32, 161–177. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Asad Amin, W.; Nasim, W.; Fahad, S.; Ali, S.; Ahmad, S.; Rasool, A.; Saleem, N.; Hammad, H.M.; Sultana, S.R.; Mubeen, M.; et al. Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate model: Ensemble application. Atmos. Res. 2018, 213, 422–436. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- QX/T 228-2014; Classification of Regional High Temperature Weather Process. China Meteorological Administration: Beijing, China, 2014.
- Martinez-Villalobos, C.; Fu, D.; Loikith, P.C.; Neelin, J.D. Accelerating increase in the duration of heatwaves under global warming. Nat. Geosci. 2025, 18, 716–723. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Cheng, Y.; Zhang, R.; Wang, Y.; Tong, S.; He, J.; Guo, J.; Xia, F.; Li, Y.; et al. Association between heatwaves and risk and economic burden of injury related hospitalizations in China. Environ. Res. 2024, 259, 119509. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- James, R.A.; Jones, R.G.; Boyd, E.; Young, H.R.; Otto, F.E.; Huggel, C.; Fuglestvedt, J.S. Attribution: How is it relevant for loss and damage policy and practice? In Loss and Damage from Climate Change. Climate Risk Management, Policy and Governance; Mechler, R., Bouwer, L., Schinko, T., Surminski, S., Linnerooth-Bayer, J., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Tran, L.T.; Stoeckl, N.; Esparon, M.; Jarvis, D. If climate change means more intense and more frequent drought, what will that mean for agricultural production? A case study in northern Australia. Australas. J. Environ. Manag. 2016, 23, 281–297. [Google Scholar] [CrossRef]
- Schillerberg, T.A.; Tian, D. Global assessment of compound climate extremes and exposures of population, agriculture, and forest lands under two climate scenarios. Earth’s Future 2024, 12, e2024EF004845. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Z.; Sun, Q.; Zhao, M.; Pu, J.; Li, Q.; Sun, Y.; Dai, H.; Li, T. Social-economic transitions and vulnerability to extreme temperature events from 1960 to 2020 in Chinese cities. iScience 2024, 27, 109066. [Google Scholar] [CrossRef] [PubMed]
- García-León, D.; Casanueva, A.; Standardi, G.; Burgstall, A.; Flouris, A.D.; Nybo, L. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 2021, 12, 5807. [Google Scholar] [CrossRef]
- Hoffmann, C. Estimating the benefits of adaptation to extreme climate events, focusing on nonmarket damages. Ecol. Econ. 2019, 164, 106250. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, S.; Wang, D.; Duan, J.; Lu, H.; Yin, H.; Tan, C.; Zhang, L.; Zhao, M.; Cai, W.; et al. Global supply chains amplify economic costs of future extreme heat risk. Nature 2024, 627, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, Y.; Shi, K.; Peng, J.; Liu, Y.; Zhou, Y.; Liu, Y.; Zhu, Q.; Song, C.; Wan, R.; et al. Surging compound drought-heatwaves underrated in global soils. Proc. Natl. Acad. Sci. USA 2024, 121, e2410294121. [Google Scholar] [CrossRef] [PubMed]
Department | Intensity | 0%-Off | 25%-Off | 50%-Off | 75%-Off | 100%-Off |
---|---|---|---|---|---|---|
primary industry | heavy | 27 °C | 29.5 °C | 31.5 °C | 34 °C | 36 °C |
secondary industry | medium | 28 °C | 30 °C | 32 °C | 35 °C | 37 °C |
tertiary industry | light | 30 °C | 32.5 °C | 35 °C | 37.5 °C | 40 °C |
Name of City | 0% Loss | 25% Loss | 50% Loss | 75% Loss | 100% Loss |
---|---|---|---|---|---|
Wanning | 28.52 | 30.91 | 33.12 | 35.74 | 37.95 |
Dongfang | 28.19 | 30.47 | 32.60 | 35.31 | 37.44 |
Lingao | 27.72 | 30.19 | 32.30 | 34.83 | 36.94 |
Ledong | 27.91 | 30.36 | 32.50 | 35.05 | 37.19 |
Wuzhishan | 28.89 | 31.30 | 33.59 | 36.18 | 38.46 |
Baoting | 28.32 | 30.76 | 32.96 | 35.51 | 37.72 |
Danzhou | 28.30 | 30.65 | 32.82 | 35.46 | 37.63 |
Ding’an | 28.35 | 30.78 | 32.98 | 35.55 | 37.76 |
Tunchang | 28.31 | 30.75 | 32.95 | 35.51 | 37.71 |
Wenchang | 28.31 | 30.70 | 32.88 | 35.49 | 37.67 |
Changjiang | 28.22 | 30.50 | 32.63 | 35.35 | 37.48 |
Chengmai | 28.13 | 30.43 | 32.56 | 35.24 | 37.38 |
Qiongzhong | 28.09 | 30.52 | 32.69 | 35.24 | 37.41 |
Qionghai | 28.45 | 30.87 | 33.09 | 35.66 | 37.88 |
Baisha | 28.04 | 30.48 | 32.64 | 35.19 | 37.35 |
Lingshui | 28.29 | 30.71 | 32.91 | 35.48 | 37.67 |
Haikou | 29.35 | 31.74 | 34.09 | 36.71 | 39.06 |
Sanya | 28.94 | 31.33 | 33.62 | 36.23 | 38.52 |
From\To | Cultivated | Forest | Grass | Water | Urban | Unused | Marine |
---|---|---|---|---|---|---|---|
Cultivated | — | 15.26% | 0.89% | 5.04% | 14.81% | 0.30% | 0.00% |
Forest | 16.00% | — | 3.41% | 5.33% | 14.96% | 0.30% | 0.00% |
Grassland | 0.74% | 4.44% | — | 2.22% | 1.19% | 0.00% | 0.00% |
Water | 2.67% | 1.78% | 0.44% | — | 1.48% | 0.00% | 1.93% |
Urban | 1.93% | 1.63% | 0.15% | 2.07% | — | 0.00% | 0.00% |
Unused | 0.89% | 0.30% | 0.44% | 0.44% | 0.89% | — | 0.00% |
Heavy Rain Index | R2 | RMSE |
---|---|---|
Cumulative rainfall | 0.9467 | 0.6907 |
Frequency of rainstorms | 0.8774 | 1.0473 |
Maximum precipitation | 0.8691 | 1.0822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Zhang, Y.; Zhou, Y.; Lin, J.; Zhang, J.; Lai, W. Analysis of Economic Losses and Comprehensive Impact Factors of Heatwave, Drought, and Heavy Rain Disasters in Hainan Island. Atmosphere 2025, 16, 1017. https://doi.org/10.3390/atmos16091017
Yuan C, Zhang Y, Zhou Y, Lin J, Zhang J, Lai W. Analysis of Economic Losses and Comprehensive Impact Factors of Heatwave, Drought, and Heavy Rain Disasters in Hainan Island. Atmosphere. 2025; 16(9):1017. https://doi.org/10.3390/atmos16091017
Chicago/Turabian StyleYuan, Chenyang, Yichen Zhang, Yuxin Zhou, Jiquan Lin, Jie Zhang, and Wenli Lai. 2025. "Analysis of Economic Losses and Comprehensive Impact Factors of Heatwave, Drought, and Heavy Rain Disasters in Hainan Island" Atmosphere 16, no. 9: 1017. https://doi.org/10.3390/atmos16091017
APA StyleYuan, C., Zhang, Y., Zhou, Y., Lin, J., Zhang, J., & Lai, W. (2025). Analysis of Economic Losses and Comprehensive Impact Factors of Heatwave, Drought, and Heavy Rain Disasters in Hainan Island. Atmosphere, 16(9), 1017. https://doi.org/10.3390/atmos16091017