231Pa in the Ocean: Research Advances and Implications for Climate Change
Abstract
1. Introduction
2. Importance in Marine Geochemistry
3. The Oceanic Behavior of Protactinium-231
3.1. Sources and Sinks of 231Pa in the Marine Environment
3.1.1. Cosmogenic Production and Thorium Decay
3.1.2. Input from Rivers, Sediments, and Hydrothermal Vents
3.2. Dissolution and Particle-Reactive Behavior
3.3. Biogeochemical Cycling of 231Pa
3.3.1. Interactions with Organic and Inorganic Matter
3.3.2. Role in Carbon Cycling
4. 231Pa as a Paleoceanographic Proxy
4.1. Theoretical Basis for 231Pa/230Th as a Proxy
4.1.1. Fractionation Processes
4.1.2. Influence of Particle Flux and Water Column Processes
4.2. Applications in Reconstructing Past Ocean Circulation
4.2.1. Thermohaline Circulation and Meridional Overturning
4.2.2. Paleo-Productivity and Sedimentation Rates
5. Analytical Methods in 231Pa Research
5.1. Sampling Strategies
Seawater, Sediment Cores, and Particulates
5.2. Techniques for Measurement and Quantification
5.3. Challenges and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edmonds, H.; Moran, S.; Cheng, H.; Edwards, R. 230Th and 231Pa in the Arctic Ocean: Implications for particle fluxes and basin-scale Th/Pa fractionation. Earth Planet. Sci. Lett. 2004, 227, 155–167. [Google Scholar] [CrossRef]
- Hoffmann, S.; McManus, J.; Curry, W.; Brown-Leger, L. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 2013, 497, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Broecker, W. Rates of sedimentation in the Arctic ocean. Prog. Oceanogr. 1965, 4, 95–104. [Google Scholar] [CrossRef]
- Pavia, F.; Anderson, R.; Vivancos, S.; Fleisher, M.; Lam, P.; Lu, Y.; Cheng, H.; Zhang, P.; Edwards, R. Intense hydrothermal scavenging of 230Th and 231Pa in the deep Southeast Pacific. Mar. Chem. 2018, 201, 212–228. [Google Scholar] [CrossRef]
- Siddall, M.; Henderson, G.; Edwards, N.; Frank, M.; Muller, S.; Stocker, T.; Joos, F. 231Pa/230Th fractionation by ocean transport, biogenic particle flux and particle type. Earth Planet. Sci. Lett. 2005, 237, 135–155. [Google Scholar] [CrossRef]
- Moran, S.; Shen, C.; Edwards, R.; Edmonds, H.; Scholten, J.; Smith, J.; Ku, T. 231Pa and 230Th in surface sediments of the Arctic Ocean: Implications for 231Pa/230Th fractionation, boundary scavenging, and advective export. Earth Planet. Sci. Lett. 2005, 234, 235–248. [Google Scholar] [CrossRef]
- Scholten, J.; Fietzke, J.; Mangini, A.; Garbe-Schönberg, C.; Eisenhauer, A.; Schneider, R.; Stoffers, P. Advection and scavenging: Effects on 230Th and 231Pa distribution off Southwest Africa. Earth Planet. Sci. Lett. 2008, 271, 159–169. [Google Scholar] [CrossRef]
- Bradtmiller, L.; McManus, J.; Robinson, L. 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1. Nat. Commun. 2014, 5, 5817. [Google Scholar] [CrossRef]
- Hayes, C.; Anderson, R.; Fleisher, M.; Vivancos, S.; Lam, P.; Ohnemus, D.; Huang, K.; Robinson, L.; Lu, Y.; Cheng, H.; et al. Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Mar. Chem. 2015, 170, 49–60. [Google Scholar] [CrossRef]
- Chen, J.; Edwards, R.; Wasserburg, G. 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett. 1986, 80, 241–251. [Google Scholar] [CrossRef]
- Anderson, R.; Bacon, M.; Brewer, P. Removal of 230Th and 231Pa at ocean margins. Earth Planet. Sci. Lett. 1983, 66, 73–90. [Google Scholar] [CrossRef]
- Bacon, M.; Anderson, R. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res. Oceans 1982, 87, 2045–2056. [Google Scholar] [CrossRef]
- Yang, H.; Nozaki, Y.; Sakai, H.; Masuda, A. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochim. Cosmochim. Acta 1986, 50, 81–89. [Google Scholar] [CrossRef]
- Lin, P.; Chen, M.; Guo, L. Effect of natural organic matter on the adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Mar. Chem. 2015, 173, 291–301. [Google Scholar] [CrossRef]
- Anderson, R.; Fleisher, M.; Robinson, L.; Edwards, R.; Hoff, J.; Moran, S.; van der Loeff, M.; Thomas, A.; Roy-Barman, M.; Francois, R. GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be. Limnol. Oceanogr. Methods 2012, 10, 179–213. [Google Scholar] [CrossRef]
- Süfke, F.; Pöppelmeier, F.; Goepfert, T.; Regelous, M.; Koutsodendris, A.; Blaser, P.; Gutjahr, M.; Lippold, J. Constraints on the northwestern Atlantic deep water circulation from 231Pa/230Th during the last 30,000 years. Paleoceanogr. Paleoclimatol. 2019, 34, 1945–1958. [Google Scholar] [CrossRef]
- Luo, S.; Ku, T. Oceanic 231Pa/230Th ratio influenced by particle composition and remineralization. Earth Planet. Sci. Lett. 1999, 167, 183–195. [Google Scholar] [CrossRef]
- Osmond, J. Accumulation models of 230Th and 231Pa in deep sea sediments. Earth Sci. Rev. 1979, 15, 95–150. [Google Scholar] [CrossRef]
- Yu, E.; Francois, R.; Bacon, M. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 1996, 379, 689–694. [Google Scholar] [CrossRef]
- Huang, F.; Xu, J.; Zhang, J. U-series disequilibria in subduction zone lavas: Inherited from subducted slabs or produced by mantle in-growth melting? Chem. Geol. 2016, 440, 179–190. [Google Scholar] [CrossRef]
- Iwamori, H. 238U-230Th-226Ra and 235U-231Pa disequilibria produced by mantle melting with porous and channel flows. Earth Planet. Sci. Lett. 1994, 125, 1–16. [Google Scholar] [CrossRef]
- Frankle, J. Radium at the Lost City and Mid-Cayman Rise Hydrothermal Fields. Master’s Thesis, University of South Carolina, Columbia, SC, USA, 2021. Available online: https://scholarcommons.sc.edu/etd/6203 (accessed on 20 August 2025).
- Süfke, F.; Schulz, H.; Scheen, J.; Szidat, S.; Regelous, M.; Blaser, P.; Pöppelmeier, F.; Goepfert, T.; Stocker, T.; Lippold, J. Inverse response of 231Pa/230Th to variations of the Atlantic meridional overturning circulation in the North Atlantic intermediate water. Geo-Mar. Lett. 2020, 40, 75–87. [Google Scholar] [CrossRef]
- Rempfer, J.; Stocker, T.; Joos, F.; Lippold, J.; Jaccard, S. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean. Earth Planet. Sci. Lett. 2017, 468, 27–37. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, Y.; Cai, P.; Yang, S.; Francois, R. Distributions of Protactinium-231 and Thorium-230 confirm the critical influence of meridional overturning circulation in the Indian Ocean. Limnol. Oceanogr. 2025, 70, 2158–2174. [Google Scholar] [CrossRef]
- Christl, M.; Lippold, J.; Hofmann, A.; Wacker, L.; Lahaye, Y.; Synal, H. 231Pa/230Th: A proxy for upwelling off the coast of West Africa. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mate. At. 2010, 269, 1159–1162. [Google Scholar] [CrossRef]
- Taguchi, K.; Harada, K.; Tsunogai, S. Particulate removal of 230Th and 231Pa in the biologically productive northern North Pacific. Earth Planet. Sci. Lett. 1989, 93, 223–232. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Qiu, Y.; Zheng, M. Adsorption of Th and Pa onto particles and the effect of organic compounds in natural seawater. J. Ocean. Limnol. 2021, 39, 2209–2219. [Google Scholar] [CrossRef]
- Dutay, J.; Lacan, F.; Roy-Barman, M.; Bopp, L. Influence of particle size and type on 231Pa and 230Th simulation with a global coupled biogeochemical-ocean general circulation model: A first approach. Geochemistry, Geophys. Geosystems 2009, 10, Q01011. [Google Scholar] [CrossRef]
- Legendre, L. Jigsaw puzzle of the interwoven biologically-driven ocean carbon pumps. Prog. Oceanogr. 2024, 229, 103338. [Google Scholar] [CrossRef]
- Ronge, T.; Lippold, J.; Geibert, W.; Jaccard, S.; Mieruch-Schnülle, S.; Süfke, F.; Tiedemann, R. Deglacial patterns of South Pacific overturning inferred from 231Pa and 230Th. Sci. Rep. 2021, 11, 20473. [Google Scholar] [CrossRef]
- Xu, Q.; Xiao, W.; Wang, R.; Süfke, F.; Lippold, J.; Not, C. Driving mechanisms of sedimentary 230Th and 231Pa variability in the western Arctic Ocean through the Last Glacial Cycle. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004039. [Google Scholar] [CrossRef]
- Marchal, O.; Francois, R.; Stocker, T.; Joos, F. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanogr. Paleoclimatol. 2010, 15, 625–641. [Google Scholar] [CrossRef]
- Gdaniec, S.; Roy-Barman, M.; Levier, M.; Valk, O.; van der Loeff, M.R.; Foliot, L.; Dapoigny, A.; Missiaen, L.; Mörth, C.-M.; Andersson, P.S. 231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa single bond 230Th fractionation in the Eurasian Basin. Chem. Geol. 2020, 532, 119380. [Google Scholar] [CrossRef]
- van der Loeff, M.; Venchiarutti, C.; Stimac, I.; van Ooijen, J.; Huhn, O.; Rohardt, G.; Strass, V. Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap. Earth Planet. Sci. Lett. 2016, 455, 73–84. [Google Scholar] [CrossRef]
- Toledo, F.; Cachão, M.; Costa, K.; Pivel, M. Planktonic foraminifera, calcareous nannoplankton and ascidian variations during the last 25 kyr in the Southwestern Atlantic: A paleoproductivity signature? Mar. Micropaleontol. 2007, 64, 67–79. [Google Scholar] [CrossRef]
- Keto, L.; Jacobsen, S. Nd isotopic variations of Phanerozoic paleoceans. Earth Planet. Sci. Lett. 1988, 90, 395–410. [Google Scholar] [CrossRef]
- Scheiner, F.; Ackerman, L.; Holcová, K.; Rejšek, J.; Vollstaedt, H.; Ďurišová, J.; Santolík, V. New perspectives on the 143Nd/144Nd palaeoceanographic tracer on foraminifera: The state-of-the-art frontiers of analytical methods. Geochem. Geophys. Geosystems 2022, 23, e2021GC010201. [Google Scholar] [CrossRef]
- Bourdon, B.; Joron, J.; Allègre, C. A method for 231Pa analysis by thermal ionization mass spectrometry in silicate rocks. Chem. Geol. 1999, 157, 147–151. [Google Scholar] [CrossRef]
- Sankhe, R.; Mirashi, N.; Chaudhury, S.; Naik, H. Estimation of 231Pa in presence of its daughters by extraction chromatography. J. Radioanal. Nucl. Chem. 2017, 311, 681–685. [Google Scholar] [CrossRef]
- Shen, C.; Cheng, H.; Edwards, R.; Moran, S.; Edmonds, H.; Hoff, J.; Thomas, R. Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal. Chem. 2003, 75, 1075–1079. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Y.; Zhang, Z.; Edwards, R.; Anderson, R.; Lam, P. Improvements in the determination of attogram-sized 231Pa in dissolved and particulate fractions of seawater via multi-collector inductively coupled plasma mass spectrometry. Prog. Earth Planet. Sci. 2023, 10, 65. [Google Scholar] [CrossRef]
- Pinedo-González, P.; Anderson, R.; Vivancos, S.; Pavia, F.; Fleisher, M. A new method to extract 232Th, 230Th and 231Pa from seawater using a bulk-extraction technique with Nobias PA-1 chelating resin. Talanta 2021, 223, 121734. [Google Scholar] [CrossRef]
- Liu, X.; Wei, G.; Zou, J.; Guo, Y.; Ma, J.; Chen, X.; Liu, Y.; Chen, J.; Li, H.; Zeng, T. Elemental and Sr-Nd isotope geochemistry of sinking particles in the northern south China sea: Implications for provenance and transportation. J. Geophys. Res. Oceans 2018, 123, 9137–9155. [Google Scholar] [CrossRef]
- Saitoh, Y.; Nakano, T.; Shin, K.; Matsubayashi, J.; Kato, Y.; Amakawa, H.; Osada, Y.; Yoshimizu, C.; Okuda, N.; Amano, Y.; et al. Utility of Nd isotope ratio as a tracer of marine animals: Regional variation in coastal seas and causal factors. Ecosphere 2018, 9, e02365. [Google Scholar] [CrossRef]
Period | Key Developments | Primary Applications |
---|---|---|
1960s–1970s | Investigation of basic geochemical properties and behavior in marine sediments. | Fundamental marine geochemistry studies. |
1980s | Breakthrough in using 231Pa/230Th as a tracer for ocean processes. | Paleocean circulation and sedimentation dynamics. |
Late 1990s | Advancements in mass spectrometry enabling precise measurement. | High-resolution ocean circulation and biological pump studies. |
2000s | Integration into particle scavenging and multi-radionuclide studies. | Modern oceanography and paleoclimate reconstructions. |
Recent Decades | Development of models for ocean carbon cycling under climate change. | Tracing modern carbon cycles and modeling future changes. |
Period | Key Developments | Primary Applications |
Method Type | Key Methods | Features and Applications | Limitations |
---|---|---|---|
Seawater Sampling | Multi-depth sampling; on-site filtration (0.2–1 µm) | Measures dissolved/particulate 231Pa via ICP-MS/TIMS; studies vertical distribution and scavenging | Very low concentration; contamination risk; large sample volume needed |
Sediment Core Sampling | Coring in high-flux zones; fine slicing (e.g., 1 cm) | 231Pa/230Th ratio reveals sedimentation and circulation history | Sensitive to terrestrial input; requires correction; limited temporal resolution |
Particulate Sampling | In situ filtration; multi-depth particle collection | Analyzes particle-bound 231Pa; clarifies scavenging efficiency | Sampling bias; complex logistics; time-representative limitation |
TIMS Measurement | Isotope dilution; low blank design | High precision with small sample volumes (≥2 L particulates; <0.1 L dissolved) | High sample requirement; variable ionization efficiency |
MC-ICP-MS Measurement | High extraction efficiency (>80%); low blanks | Precise ultra-trace 231Pa/230Th/232Th measurement in seawater | Matrix sensitivity; requires calibration; moderate ionization efficiency |
General Corrections | Multi-proxy (εNd, Sr isotopes); phase partitioning | Corrects terrestrial inputs in marginal seas | Nearshore signal loss; best for open ocean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, Z. 231Pa in the Ocean: Research Advances and Implications for Climate Change. Atmosphere 2025, 16, 1018. https://doi.org/10.3390/atmos16091018
Zhang P, Zhang Z. 231Pa in the Ocean: Research Advances and Implications for Climate Change. Atmosphere. 2025; 16(9):1018. https://doi.org/10.3390/atmos16091018
Chicago/Turabian StyleZhang, Pu, and Zhe Zhang. 2025. "231Pa in the Ocean: Research Advances and Implications for Climate Change" Atmosphere 16, no. 9: 1018. https://doi.org/10.3390/atmos16091018
APA StyleZhang, P., & Zhang, Z. (2025). 231Pa in the Ocean: Research Advances and Implications for Climate Change. Atmosphere, 16(9), 1018. https://doi.org/10.3390/atmos16091018