Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Random Forest Model and Validation
2.3. WRF–CMAQ Model and Validation
3. Results and Discussions
3.1. Monitoring Data
3.1.1. Regional Air Quality Overview
3.1.2. Analysis of PM2.5 Pollution Characteristics and Components in Suzhou During the Pollution Period
3.2. Quantifying the Contributions of Meteorology and Emissions
3.3. Local and Transmission Contributions of PM2.5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLH | Boundary layer height |
BTH | Beijing–Tianjin–Hebei |
Ca2+ | Calcium ion |
Cl− | Chloride Ion |
CO | Carbon monoxide |
COVID-19 | Coronavirus Disease 2019 |
EC | Elemental carbon |
F− | Fluoride ion |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
IOA | Index of Agreement |
JS | Jiangsu province |
K+ | Potassium ion |
MEGAN3.0 model | Model of Emissions of Gases and Aerosols from Nature version 3.0 |
MEIC inventory | The Multi-resolution Emission Inventory for China |
Mg2+ | Magnesium ion |
Na+ | Sodium ion |
NH3 | Ammonia |
NH4+ | Ammonium ion |
NMB | Normalized mean bias |
NO2 | Nitrogen dioxide |
NO3− | Nitrate ion |
NOAA | National Oceanic and Atmospheric Administration |
NOx | Nitrogen oxides |
O3 | Ozone |
OC | Organic carbon |
OM | Organic matter |
PM10 | Particles with a diameter of less than 10 μm |
PM2.5 | Particles with a diameter of less than 2.5 μm |
R | Correlation coefficient |
RH | Relative humidity |
RMSE | Root Mean Square Error |
RRTM | Rapid Radiative Transfer Model |
SO2 | Sulfur |
SO42− | Sulfate ion |
SP | Surface pressure |
SSR | Surface solar radiation |
T | Temperature |
T2 | The 2 m temperature |
TCC | Total cloud cover |
TP | Total precipitation |
WD | Wind direction |
WRF–CMAQ | The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model |
WS | Wind speed |
WS10 | 10 m wind speed |
YRD | Yangtze River Delta |
YSU | Yonsei University |
ZJ | Zhejiang province |
References
- Zheng, Y.X.; Xue, T.; Zhang, Q.; Geng, G.N.; Tong, D.; Li, X.; He, K.B. Air quality improvements and health benefits from China’s clean air action since 2013. Environ. Res. Lett. 2017, 12, 114020. [Google Scholar] [CrossRef]
- Liu, H.J.; Wu, B.B.; Liu, S.H.; Shao, P.Y.; Liu, X.Y.; Zhu, C.Y.; Wang, Y.; Wu, Y.M.; Xue, Y.F.; Gao, J.J.; et al. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China. Atmos. Environ. 2018, 181, 20–33. [Google Scholar] [CrossRef]
- Huang, X.J.; Tang, G.Q.; Zhang, J.K.; Liu, B.X.; Liu, C.; Zhang, J.; Cong, L.L.; Cheng, M.T.; Yan, G.X.; Gao, W.K.; et al. Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. J. Environ. Sci. 2021, 100, 1–10. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.-M.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.-Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Gao, J.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.P.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.G.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Palmer, K.T.; McNeill-Love, R.; Poole, J.R.; Coggon, D.; Frew, A.J.; Linaker, C.H.; Shute, J.K. Inflammatory responses to the occupational inhalation of metal fume. Eur. Respir. J. 2006, 27, 366–373. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhang, R.Y.; Gomez, M.E.; Yang, L.X.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.F.; Guo, S.; Meng, J.J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.K.; Li, X.R.; Zhang, L.; Xu, J.; Zhao, W.J.; Liu, Z.R. Pollution characteristics and health risk assessment of heavy metals in PM2.5 collected in Baoding. Environ. Sci. 2021, 42, 38–44. [Google Scholar]
- Ministry of Ecology and Environment of People’s Republic of China: Report on the State of the Ecology and Environment in China 2022. Available online: https://english.mee.gov.cn/Resources/Reports/soe/SOEE2019/202312/P020231206607194894058.pdf (accessed on 9 May 2024).
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.X.; Zhang, Y.H.; Xu, X.D.; Wang, J.N.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.J.; Xie, M.; Li, M.M.; Zhao, M.; Zhang, M.; Zhao, X.Y. Episode study of fine particle and ozone during the CAPUM-YRD over Yangtze River Delta of China: Characteristics and source attribution. Atmos. Environ. 2019, 203, 87–101. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Wang, H.L.; Jing, S.A.; Qiao, L.P.; Li, L.; Zhu, S.H.; Lou, S.R.; Tao, S.K.; Feng, J.L.; Li, X.; et al. Chemical characterization, spatial distribution, and source identification of organic matter in PM2.5 in summertime Shanghai, China. Environ. Sci. 2018, 39, 1978–1986. [Google Scholar]
- Hua, N.; Shang, Y.; Xie, M.J. Variations in PM2.5 Composition and Sources During 2020–2021 COVID-19 Epidemic Periods in Nanjing. Environ. Sci. 2023, 44, 593–601. [Google Scholar]
- Tian, M.; Wang, H.B.; Chen, Y.; Yang, F.M.; Zhang, X.H.; Zou, Q.; Zhang, R.Q.; Ma, Y.L.; He, K.B. Characteristics of aerosol pollution during heavy haze events in Suzhou, China. Atmos. Chem. Phys. 2016, 16, 7357–7371. [Google Scholar] [CrossRef]
- Wang, N.F.; Chen, Y.; Hao, Q.J.; Wang, H.B.; Yang, F.M.; Zhao, Q.; Bo, Y.; He, K.B.; Yao, Y.G. Seasonal Variation and Source Analysis of the Water-soluble Inorganic lons in Fine Particulate Matter in Suzhou. Environ. Sci. 2016, 37, 4482–4489. [Google Scholar]
- Miao, Q.; Yang, Q.; Wu, Y.Z.; Wei, H.; Zhou, M.F.; Zhang, X.H.; Zou, Q. Concentration Variation and Source Analysis of Metal Elements in PM2.5 During COVID-19 Control in Suzhou. Environ. Sci. 2022, 43, 2851–2857. [Google Scholar]
- Huang, X.; Ding, A.J.; Wang, Z.L.; Ding, K.; Gao, J.; Chai, F.K.; Fu, C.B. Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Qin, M.M.; Hu, A.Q.; Mao, J.J.; Li, X.; Sheng, L.; Sun, J.J.; Li, J.Y.; Wang, X.S.; Zhang, Y.H.; Hu, J.L. PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China. Sci. Total Environ. 2022, 810, 152268. [Google Scholar] [CrossRef]
- Wu, S.Q.; Yao, J.Q.; Yang, R.; Zhang, S.W.; Zhao, W.J. Spatio-temporal Variations in PM2.5 and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration. Environ. Sci. 2023, 44, 5325–5334. [Google Scholar]
- Diao, Y.W.; Wang, H.L.; Shen, L.J.; Yang, M.; Shi, S.S.; Lu, W. Analysis of air pollution characteristics and associated compound air polution case in Nanjing from 2015 to 2021. Res. Environ. Sci. 2023, 36, 260–272. [Google Scholar] [CrossRef]
- Mao, Z.C.; Xu, J.M.; Yang, D.D.; Yu, Z.Q.; Qu, Y.H.; Zhou, G.Q. Analysis of characteristics and meteorological causes of PM2.5-O3 compound pollution in Shanghai. China Environ. Sci. 2019, 39, 2730–2738. [Google Scholar]
- Wang, Q. Chemical characteristics and sources of volatile organic compounds in Shanghai during an ozone and particulate pollution episode in May 2019. Environ. Sci. 2020, 41, 2555–2564. [Google Scholar]
- Song, X.H.; Yan, L.; Liu, W.; He, J.Y.; Wang, Y.C.; Huang, T.L.; Li, Y.Y.; Chen, M.; Meng, J.J.; Hou, Z.F. Spatiotemporal Distribution Characteristics of Co-pollution of PM2.5 and Ozone over BTH with Surrounding Area from 2015 to 2021. Environ. Sci. 2023, 44, 1841–1851. [Google Scholar]
- Liu, Y.W.; Wang, N.; Hu, C.M. Analysis of synoptic classification of PM2.5-O3 compound pollution in Sichuan Province. Acta Sci. Circumstantiae 2025, 45, 293–302. [Google Scholar]
- Zhou, T.; Zhou, Q.; Zhang, Y.; Wu, Y.S.; Sun, J. Characteristics of PM2.5-O3 compound pollution and meteorological impact in Fenwei Plain. Meteorol. Mon. 2023, 49, 1359–1370. [Google Scholar]
- Wang, Z.S.; Zhang, D.W.; Li, Y.T.; Dong, X.; Sun, R.W.; Sun, N.D. Different Air Pollution Situations of O3 and PM2.5 During Summer in Beijing. Environ. Sci. 2016, 37, 807–815. [Google Scholar]
- Annalisa, D.B.; Vincenzo, M.; Mattia, P.; Giampietro, C.; Marco, C.; Rossella, F. Interaction of the Sea Breeze with the Urban Area of Rome: WRF Mesoscale and WRF Large-Eddy Simulations Compared to Ground-Based Observations. Bound-Lay Meteorol. 2022, 185, 333–363. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Gradov, V.S.; Zaiko, P.O.; Khitrykau, M.A.; Kirichenko, K.E.; Driga, M.B.; Kiselev, A.V.; Russkikh, I.V.; et al. Simulating Atmospheric Characteristics and Daytime Astronomical Seeing Using Weather Research and Forecasting Model. Appl. Sci. 2023, 13, 6354. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Korobov, O.A.; Kiselev, A.V.; Russkikh, I.V.; Kolobov, D.Y.; Shikhovtsev, M.Y. Influence of Atmospheric Flow Structure on Optical Turbulence Characteristics. Appl. Sci. 2023, 13, 1282. [Google Scholar] [CrossRef]
- Dong, H.; Cao, S.; Ge, Y. Simulation of flow over complex terrain by coupling of WRF and LES. In Proceedings of the IABSE Young Engineers Colloquium in East Asia, Shanghai, China, 24 October 2018; pp. 56–58. [Google Scholar]
- Jaeckels, J.M.; Bae, M.-S.; Schauer, J.J. Positive Matrix Factorization (PMF) Analysis of Molecular Marker Measurements to Quantify the Sources of Organic Aerosols. Environ. Sci. Technol. 2007, 41, 5763–5769. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF)5.0 Fundamentals and User Guide; U.S. EPA: Washington, DC, USA, 2014.
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, Y.Q.; Tian, Y.Z.; Dong, S.H.; Dai, Q.L.; Shi, G.L.; Zhou, X.Y.; Wei, Z.; Qian, Y.; Feng, Y.C. Evaluating the performance of PMF model for Atmospheric PM source apportionment in multi-site. China Environ. Sci. 2018, 38, 2032–2038. [Google Scholar]
- Yang, J.; Wei, Z.Y.; Xv, H.Y.; Wu, J. Air Quality Index Prediction Model Based on WRF-CMAQ. Oper. Res. Fuzziol. 2023, 13, 120–128. [Google Scholar] [CrossRef]
- Liu, X. Characteristics and Causes of PM2.5 Regional and Local Pollution Events Based on Machine Learning. Ph.D. Thesis, Lanzhou University, Lan Zhou, China, 2022. [Google Scholar]
- Fu, W.X.; Huang, L.; Ding, J.H.; Qin, M.M.; Yu, X.N.; Xie, F.J.; Hu, J.L. Elucidating the Impacts of Meteorology and Emission Changes on Concentrations of Major Air Pollutants in Major Cities in the Yangtze River Delta Region Using a Machine Learning De-weather Method. Environ. Sci. 2023, 44, 5879–5888. [Google Scholar] [CrossRef]
- Li, J.H.; Hu, Q.H.; Li, Q.H.; Ji, X.G.; Xue, J.K.; Lin, P.Z. Evaluation on impact of fireworks on PM2.5 concentration during the Spring Festival based on machine learning. Environ. Eng. 2025, 43, 90–102. [Google Scholar] [CrossRef]
- Zhu, J.Y.; An, J.L.; Feng, Y.Z.; He, J.; Zhang, Y.X.; Wang, J.X. Atmospheric ozone concentration prediction in Nanjing based on lightGBM. Environ. Sci. 2023, 44, 3685–3694. [Google Scholar]
- Hou, L.L.; Dai, Q.L.; Song, C.B.; Liu, B.W.; Guo, F.Z.; Dai, T.J.; Li, L.X.; Liu, B.S.; Bi, X.H.; Zhang, Y.F.; et al. Revealing drivers of haze pollution by explainable machine learning. Environ. Sci. Technol. Lett. 2022, 9, 112–119. [Google Scholar] [CrossRef]
- Xu, H.; Yu, H.F.; Xu, B.; Wang, Z.Y.; Wang, F.; Wei, Y.T.; Liang, W.Q.; Liu, J.X.; Liang, D.N.; Feng, Y.C.; et al. Machine learning coupled structure mining method visualizes the impact of multiple drivers on ambient ozone. Commun.Earth Environ. 2023, 4, 265. [Google Scholar] [CrossRef]
- MEE. Technical Specifications for Operation and Quality Control of Ambient Air Quality Automated Monitoring System for Particulate Matter (PM10 and PM2.5); China Environmental Science Press: Beijing, China, 2018. [Google Scholar]
- MEE. Ambient Air Quality Standards; China Environmental Science Press: Beijing, China, 2012. [Google Scholar]
- Turpin, B.; Lim, H. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Vu, T.V.; Shi, Z.B.; Cheng, J.; Zhang, Q.; He, K.B.; Wang, S.X.; Harrison, R.M. Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmos. Chem. Phys. 2019, 19, 11303–11314. [Google Scholar] [CrossRef]
- Shi, Z.B.; Song, C.B.; Liu, B.W.; Lu, G.D.; Xu, J.S.; Vu, T.V.; Elliott, R.J.R.; Li, W.J.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVD-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.S.; Chen, J.J.; Wang, J.J.; Cheng, X.F. PM2.5 concentration influencing factors in China based on the random forest model. Environ. Sci. 2020, 41, 2057–2065. [Google Scholar]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef]
- Lu, H.; Xie, M.; Liu, X.R.; Liu, B.J.; Jiang, M.Z.; Gao, Y.H.; Zhao, X.L. Adjusting prediction of ozone concentration based on CMAQ model and machine learning methods in Sichuan-Chongqing region, China. Atmos. Pollut. Res. 2021, 12, 101066. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.H.; Zhai, H.H.; Xue, S.H.; Zhu, T.Y.; Shao, Y.; Liu, Z.Y.; Emery, C.; Yarwood, G.; Wang, Y.J.; et al. Recommendations on benchmarks for numerical air quality model applications in China—Part 1: PM2.5 and chemical species. Atmos. Chem. Phys. 2021, 21, 2725–2743. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 50, 88–90. [Google Scholar] [CrossRef]
Physical Process | Parameterization Scheme |
---|---|
Microphysical process | Morrison scheme |
Cumulus convective scheme | Kain–Fritsch scheme |
Land surface process scheme | Noah scheme |
Planetary boundary layer scheme | Yonsei University (YSU) scheme |
Long-wave radiation | Rapid Radiative Transfer Model (RRTM) long-wave radiation scheme |
Short-wave radiation | RRTM short-wave radiation scheme |
Period | Meteorological Parameter | NMB | IOA | R | RMSE |
---|---|---|---|---|---|
13 to 23 June 2023 | Temperature | 4.7% | 0.84 | 0.84 | 2.7 |
Wind speed | 23.0% | 0.60 | 0.37 | 2.0 | |
humidity | −18.3% | 0.78 | 0.79 | 19.6 |
Date | WD | T (℃) | RH (%) | WS (m/s) | P (hpa) | Precipitation (mm) |
---|---|---|---|---|---|---|
2022.6 | SW | 27.2 | 74 | 2.9 | 1003 | 208.3 |
2023.6 | E | 25.9 | 76 | 2.4 | 1005 | 240.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Cai, N.; Fang, J.; Huang, L.; Shi, X.; Wu, Y.; Li, L.; Qin, H. Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta. Atmosphere 2025, 16, 867. https://doi.org/10.3390/atmos16070867
Wu M, Cai N, Fang J, Huang L, Shi X, Wu Y, Li L, Qin H. Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta. Atmosphere. 2025; 16(7):867. https://doi.org/10.3390/atmos16070867
Chicago/Turabian StyleWu, Minyan, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li, and Hongbing Qin. 2025. "Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta" Atmosphere 16, no. 7: 867. https://doi.org/10.3390/atmos16070867
APA StyleWu, M., Cai, N., Fang, J., Huang, L., Shi, X., Wu, Y., Li, L., & Qin, H. (2025). Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta. Atmosphere, 16(7), 867. https://doi.org/10.3390/atmos16070867