Observation of Multilayer Clouds and Their Climate Effects: A Review
Abstract
1. Introduction
2. Multilayer Clouds Detection Technology
2.1. Ground-Based Observation of Multilayer
2.2. Space- and Airborne-Based Observation
2.3. Radiosounding Observations and Identification of Multilayer Clouds
3. Distribution and Structure of Multilayer Clouds
3.1. Horizontal Distribution
3.2. Vertical Structure
4. Formation of Multilayer Clouds
4.1. Moisture Conditions
4.2. Updrafts and Vertical Wind Shear
4.3. Atmospheric Circulation
5. Climate Effects of Multilayer Clouds
5.1. Multilayer Precipitation Clouds and the “Seeding-Feeding” Mechanism
5.2. Radiation
6. Conclusions and Recommendations for Future Studies
- (1)
- More Precise Long-Term Observations: To enhance our understanding of the complex structures of multilayer clouds and expand global monitoring capabilities, it is essential to strengthen observational efforts. Specifically, the frequency of aircraft observations should be significantly increased, more intensive-sounding observation programs should be implemented, and advanced instruments should be deployed at more locations. Additionally, integrating data from multiple observational sources to create high-precision, high spatiotemporal resolution three-dimensional datasets will provide a comprehensive understanding of the dynamic changes in multilayer clouds across different time scales and larger spatial ranges.
- (2)
- Deeper Mechanistic Analysis: To date, our understanding of the formation mechanisms of multi-layer clouds remains relatively limited, particularly regarding factors such as aerosol effects. Aerosols play an important role in cloud formation and may also be crucial in the formation of multilayer clouds. Furthermore, significant differences in aerosol composition across different geographical regions add complexity to investigating their influence on multilayer cloud formation. Therefore, it is hoped that more researchers will focus on the effects and mechanisms of aerosols in the formation of multilayer clouds. Additionally, further exploration is needed to understand how factors at different scales and regions collectively influence the formation of multilayer clouds and the complex coupling mechanisms among them.
- (3)
- More Comprehensive Interdisciplinary Research: Previous studies have shown that although multilayer clouds occur with limited frequency, they involve complex regions and conditions. Many analyses of their formation mechanisms and climate effects rely heavily on assumptions, necessitating more interdisciplinary research using integrated approaches. In the future, observational data should be fully utilized and combined with laboratory simulations to deepen our understanding of the microphysical processes within multilayer clouds. Furthermore, leveraging numerical models and artificial intelligence technologies will enable a more detailed exploration of the formation mechanisms of multilayer clouds in different regions and provide a more comprehensive understanding of their interactions with global climate change.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Wang, F.; Wang, F.; Li, J.; Chen, X.; Wang, Z.; Li, J.; Zhou, X.; Wang, Q.; Wang, H.; et al. Advances in cloud radiative feedbacks in global climate change. Sci. Sin. 2022, 52, 400–417. (In Chinese) [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Wang, S.; Han, Z.; Yao, Z.; Zhao, Z.; Xiang, J. Statistical analysis of cloud vertical structure in China and surrounding areas based on CloudSat data. Plateau Meteor 2011, 5, 38–52. (In Chinese) [Google Scholar] [CrossRef]
- Ding, X.; Huang, J.; Li, J.; Wang, T.; Huang, Z. Study on Cloud Vertical Structure Feature over Northwest China Based on Active Satellite Remote Sensing and Its Influence on Precipitation Enhancement. J. Arid. Meteorol. 2012, 4, 529–538. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=44440654 (accessed on 4 June 2025). (In Chinese).
- Sun, G. A Study of the Interaction Between East Asian Summer Monsoon Activity and Cloud Vertical Structure. Ph.D. Dissertation, National University of Defense Technology, Changsha, China, 2021. (In Chinese). [Google Scholar]
- Lv, Q.; Zhang, Y.; Li, J. Radiative characteristics of various cloud types over southern mid-high latitudes. Acta Meteorol. Sin. 2017, 75, 596–606. (In Chinese) [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Wind, G.; Platnick, S.; King, M.D.; Hubanks, P.A.; Pavolonis, M.J.; Heidinger, A.K.; Yang, P.; Baum, B.A. Multilayer cloud detection with the MODIS near-infrared water vapor absorption band. J. Appl. Meteorol. Climatol. 2010, 49, 2315–2333. [Google Scholar] [CrossRef]
- Li, J. Cloud Vertical Structures by Combined Active and Passive Satellite Data. Ph.D. Dissertation, Lanzhou University, Lanzhou, China, 2012. (In Chinese). [Google Scholar]
- Wang, L.; Dessler, A.E. Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data. Geophys. Res. Lett. 2006, 33, 2005GL024350. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, H.; Shen, X. Analysis of Vertical Structure of Clouds in East Asia with CloudSat Data. Chin. J. Atmos. Sci. 2013, 37, 91–100. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, T.; Oreopoulos, L. On the global character of overlap between low and high clouds. Geophys. Res. Lett. 2013, 40, 5320–5326. [Google Scholar] [CrossRef]
- Li, J.; Yi, Y.; Minnis, P.; Huang, J.; Yan, H.; Ma, Y.; Wang, W.; Kirk Ayers, J. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 361–375. [Google Scholar] [CrossRef]
- Mace, G.G.; Marchand, R.; Zhang, Q.; Stephens, G. Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett. 2007, 34, 2006GL029017. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H. A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [Google Scholar] [CrossRef]
- Subrahmanyam, K.V.; Kumar, K.K. CloudSat observations of multi layered clouds across the globe. Clim. Dyn. 2017, 49, 327–341. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B.; Zhang, Y. Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset. J. Clim. 2000, 13, 3041–3056. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Cao, X. Consistency analysis for cloud vertical structure derived from millimeter cloud radar and radiosonde profiles. Acta Meteorol. Sin. 2016, 5, 815–826. (In Chinese) [Google Scholar] [CrossRef]
- Wan, X.; Xu, G.; Wan, R.; Wang, B.; Ren, J.; Luo, C. Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau. Torrential Rain Disasters 2020, 39, 442–450. Available online: http://www.byzh.org.cn/cn/article/doi/10.3969/j.issn.1004-9045.2020.05.002 (accessed on 4 June 2025). (In Chinese).
- Wu, C.; Liu, L.; Zhai, X. The Comparison of Cloud Base Observations with Ka-Band Solid-State Transmitter-Based Millimeter Wave Cloud Radar and Ceilometer in Summer over Tibetan Plateau. Chin. J. Atmos. Sci. 2017, 41, 659–672. (In Chinese) [Google Scholar] [CrossRef]
- Marchand, R.T.; Ackerman, T.P.; King, M.D.; Moroney, C.; Davies, R.; Muller, J.P.A.L.; Gerber, H. Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study. J. Geophys. Res. Atmos. 2001, 106, 15201–15214. [Google Scholar] [CrossRef]
- Blanchard, Y.; Pelon, J.; Eloranta, E.W.; Moran, K.P.; Delanoë, J.; Sèze, G. A synergistic analysis of cloud cover and vertical distribution from A-Train and ground-based sensors over the high Arctic station EUREKA from 2006 to 2010. J. Appl. Meteorol. Climatol. 2014, 53, 2553–2570. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, X.; Chen, H. A comparison of cloud layers from ground and satellite active remote sensing at the Southern Great Plains ARM site. Adv. Atmos. Sci. 2017, 34, 347–359. [Google Scholar] [CrossRef]
- Wang, D.; Guo, J.; Xu, H.; Li, J.; Lv, Y.; Solanki, R.; Guo, X.; Han, Y.; Chen, T.; Ding, M.; et al. Vertical structures of temperature inversions and clouds derived from high-resolution radiosonde measurements at Ny-Ålesund, Svalbard. Atmos. Res. 2021, 254, 105530. [Google Scholar] [CrossRef]
- Bertrand, L.; Kay, J.E.; Haynes, J.; De Boer, G. A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations. Earth Syst. Sci. Data 2024, 16, 1301–1316. [Google Scholar] [CrossRef]
- Liu, X.; He, T.; Sun, L.; Xiao, X.; Liang, S.; Li, S. Analysis of Daytime Cloud Fraction Spatiotemporal Variation over the Arctic from 2000 to 2019 from Multiple Satellite Products. J. Clim. 2022, 35, 7595–7623. [Google Scholar] [CrossRef]
- Xie, S.; Hao, C.; Zou, B.; Sheng, X.; Zhang, C.; Jing, Q.; Liao, X. A new type of shipboard meteorological satellite receiving-processing system. Haiyang Xuebao 2000, 4, 31–40. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.; Qiao, J. Design of Servo Control System Based on AET Pedestal for Tracking Remote Sensing Satellites. Radio Eng. 2011, 41, 32–35. (In Chinese) [Google Scholar] [CrossRef]
- Su, L.; Zheng, X.; Wang, K.; Yu, S.; Wang, X. Analysis on Climatological Characteristics of Cloud and Vertical Structure Characteristics of Rain Cloud in Inner Mongolia. Meteorol. J. Inn. Mong. 2017, 2, 3–8. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R.; Ackerman, S.A. Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ. 2012, 124, 159–173. [Google Scholar] [CrossRef]
- Sourdeval, O.; C.-Labonnote, L.; Baran, A.J.; Mülmenstädt, J.; Brogniez, G. A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Near-global retrievals and evaluation against A-Train products. Q. J. R. Meteorol. Soc. 2016, 142, 3063–3081. [Google Scholar] [CrossRef]
- Qi, L.; Liu, Q.; Wei, J.; Ding, Y.; Deng, S. Spatial distribution sand vertical structures of multilevel warm cloud systems over global oceans. J. Univ. Sci. Technol. China 2018, 12, 1012–1021. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Che, H.-Z.; Tan, S.-C.; Shi, G.-Y.; Yao, X.-P. The impact of aerosol on MODIS cloud detection and property retrieval in seriously polluted East China. Sci. Total Environ. 2020, 711, 134634. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Wang, H.; Chen, B.; Shi, G.; Shi, C. Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China. Atmos. Ocean. Sci. Lett. 2018, 11, 86–93. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Nilo, S.T.; Di Paola, F.; Ricciardelli, E.; Ripepi, E.; Viggiano, M. The Role of Emissivity in the Detection of Arctic Night Clouds. Remote Sens. 2017, 9, 406. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, J.; Jing, X.; Li, J. Vertical overlap characteristics of clouds in East Asia and their impact on cloud radiative forcing. Sci. Sin. 2013, 43, 523–535. (In Chinese) [Google Scholar] [CrossRef]
- Jin, X.; Hanesiak, J.; Barber, D. Detecting cloud vertical structures from radiosondes and MODIS over Arctic first-year sea ice. Atmos. Res. 2007, 83, 64–76. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, K.M.; Morrison, H.; McFarquhar, G.M.; Wang, Z.; Zhang, G. Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments. J. Geophys. Res. Atmos. 2008, 113, D12208. [Google Scholar] [CrossRef]
- Marinou, E.; Tesche, M.; Nenes, A.; Ansmann, A.; Schrod, J.; Mamali, D.; Tsekeri, A.; Pikridas, M.; Baars, H.; Engelmann, R.; et al. Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmos. Chem. Phys. 2019, 19, 11315–11342. [Google Scholar] [CrossRef]
- Wang, W.; Dong, X.; Shi, L.; Liu, J.; Liu, P.; Zhang, S. Study on Vertical Microphysical Structure of Cloud for a Multi-layer Cloud System. Plateau Meteorol. 2011, 4, 1368–1375. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tMRSZR5ycIulE4PNt1VkY80KDPOsIHgGrw4k9reCvyDfKHTvQFaTw_CUdnd90-W_23Y00Dj1PfDBKVorV5ZTvfP7l2Z7ilpF7R4q1qjAfiwKzYHhFea3R4UFqVZZaxiDZSE2icKZweC6UXVB-Hy7GD8Gi6esz5fD0wuOiuAoO66deNAFOSpKLWAt0M7FPLYE&uniplatform=NZKPT&language=CHS (accessed on 4 June 2025). (In Chinese).
- Wang, Z.; Wang, H.; Dong, X.; Yang, Y.; Ke, Y.; Liu, S.; Cui, Y.; Cui, K.; Wu, Z.; Lin, W. Aircraft observation of aerosol and mixed-phase cloud microphysical over the North China Plain, China: Vertical distribution, size distribution, and effects of cloud seeding in two-layered clouds. Atmos. Res. 2024, 312, 107758. [Google Scholar] [CrossRef]
- Henneberger, J.; Ramelli, F.; Spirig, R.; Omanovic, N.; Miller, A.J.; Fuchs, C.; Zhang, H.; Bühl, J.; Hervo, M.; Kanji, Z.A.; et al. Seeding of Supercooled Low Stratus Clouds with a UAV to Study Microphysical Ice Processes: An Introduction to the CLOUDLAB Project. Bull. Am. Meteorol. Soc. 2023, 104, E1962–E1979. [Google Scholar] [CrossRef]
- Zhai, W.; Ma, J.; Gu, Q.; Li, H. Operational risks and prevention of weather modification aircraft construction projects. China Saf. Sci. J. 2022, 32, 103–107. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, H.; Fang, W.; Wang, X.; Lin, H. Applications of GPS Radiosondes and Aircrafts for a Precipitation Analysis in Zhangjiakou Region during the Spring of 2009. Acta Sci. Nat. Univ. Pekin. 2011, 47, 619–626. (In Chinese) [Google Scholar] [CrossRef]
- Poore, K.D.; Wang, J.; Rossow, W.B. Cloud layer thicknesses from a combination of surface and upper-air observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B. Determination of cloud vertical structure from upper-air observations. J. Appl. Meteorol. Climatol. 1995, 34, 2243–2258. [Google Scholar] [CrossRef]
- Zhou, Y.; Ou, J. The Method of Cloud Vertical Structure Analysis Using Rawinsonde Observation and Its Applied Research. Meteorol. Mon. 2010, 36, 50–58. (In Chinese) [Google Scholar]
- Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. Atmos. 2010, 115, 2010JD014030. [Google Scholar] [CrossRef]
- Reddy, N.N.; Ratnam, M.V.; Basha, G.; Ravikiran, V. Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements. Atmos. Chem. Phys. 2018, 18, 11709–11727. [Google Scholar] [CrossRef]
- Cai, M.; Ou, J.; Zhou, Y.; Yang, Q.; Cai, Z. Discriminating Cloud Area by Using L-Band Sounding Data. Chin. J. Atmos. Sci. 2014, 38, 213–222. (In Chinese) [Google Scholar] [CrossRef]
- Li, Q.; Cai, M.; Zhou, Y.; Tang, Y.; Ou, J. Characteristics of Cloud Vertical Distribution Based on Cloud Identification by Radiosonde. Chin. J. Atmos. Sci. 2021, 45, 1161–1172. (In Chinese) [Google Scholar] [CrossRef]
- Chernykh, I.V.; Eskridge, R.E. Determination of cloud amount and level from radiosonde soundings. J. Appl. Meteorol. Climatol. 1996, 35, 1362–1369. [Google Scholar] [CrossRef]
- Minnis, P.; Yi, Y.; Huang, J.; Ayers, K. Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res. Atmos. 2005, 110, 2005JD006005. [Google Scholar] [CrossRef]
- Ge, J.; Hu, X.; Wang, C.; Dong, Z.; Du, J. A Novel Bilateral Filter Hydrometeor Detection Method for Microwave Radar. Adv. Earth Sci. 2020, 35, 1256–1269. (In Chinese) [Google Scholar] [CrossRef]
- Wang, F. Research on 3D Cloud Radar Reflectivity Inversion Technology for MODIS Cloud Observation Based on CGAN Deep Learning. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2024. (In Chinese). [Google Scholar]
- Tan, Z.; Ma, S.; Liu, C.; Ai, W.; Ye, T.; Zhao, X.; Hu, S.; Li, B.; Zhang, M.; Yan, W. Research Progress in Cloud Base Height Retrieval Algorithms Based on Satellite Multi-Spectral Radiometer Imagers. Acta Opt. Sin. 2024, 44, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Huang, Q.; Yin, X.; Wang, Z.; Yao, S. Study on cloud macro and micro characteristics in China based on multi-source satellite data.Journal of the Meteorological Sciences. J. Meteorol. Sci. 2023, 43, 143–154. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.; Bi, Y.; Wu, X.; Tian, Y.; Wu, L.; Luo, J.; Hu, X.; Qi, Z.; Li, J.; et al. Unveiling Cloud Vertical Structures over the Interior Tibetan Plateau through Anomaly Detection in Synergetic Lidar and Radar Observations. Adv. Atmos. Sci. 2024, 41, 2381–2398. [Google Scholar] [CrossRef]
- Luo, H.; Quaas, J.; Han, Y. Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios. Atmos. Chem. Phys. 2023, 23, 8169–8186. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Zhang, R. Analyzing Seasonal Variation of Clouds over the Asian Monsoon Regions and the Tibetan Plateau Region using CloudSat/CALIPSO Data. Chin. J. Atmos. Sci. 2011, 35, 1117–1131. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Wang, T.; Lu, Q.; Li, J. Characteristics of precipitating cloud over East and South Asian monsoon region based on CloudSat. J. Lanzhou Univ. 2018, 54, 345–355. (In Chinese) [Google Scholar] [CrossRef]
- Herman, G.; Goody, R. Formation and Persistence of Summertime Arctic Stratus Clouds. J. Atmos. Sci. 1976, 33, 1537–1553. [Google Scholar] [CrossRef]
- Tsay, S.-C.; Jayaweera, K. Physical Characteristics of Arctic Stratus Clouds. J. Appl. Meteorol. Climatol. 1984, 23, 584–596. [Google Scholar] [CrossRef]
- Curry, J.A.; Ebert, E.E.; Herman, G.F. Mean and turbulence structure of the summertime Arctic cloudy boundary layer. Q. J. R. Meteorol. Soc. 1988, 114, 715–746. [Google Scholar] [CrossRef]
- Tan, R. Characteristics of Multi-Layer Clouds in Summer over the Tibetan Plateau and Eastearn China Based on CPR Measurements. Ph.D. Dissertation, University of Science and Technology of China, Hefei, China, 2018. (In Chinese). [Google Scholar]
- Pan, Z.; Gong, W.; Mao, F.; Li, J.; Wang, W.; Li, C.; Min, Q. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. J. Geophys. Res. Atmos. 2015, 120, 11653–11668. [Google Scholar] [CrossRef]
- Cai, H.; Feng, X.; Chen, Q.; Sun, Y.; Wu, Z.; Tie, X. Spatial and Temporal Features of the Frequency of Cloud Occurrence over China Based on CALIOP. Adv. Meteorol. 2017, 2017, 4548357. [Google Scholar] [CrossRef]
- Ma, J.; Yao, X.; Yuan, C. Characteristics and Formation Mechanism of the Cloud Vertical Structure Over the Southeastern Tibetan Plateau in Summer. Earth Space Sci. 2023, 10, e2022EA002811. [Google Scholar] [CrossRef]
- Tan, R.; Xian, T.; Fu, Y. Structures of Multi-layer Clouds in Boreal Summer Based on CPR Radar Measurements. Clim. Environ. Res. 2018, 23, 124–138. (In Chinese) [Google Scholar] [CrossRef]
- Das, S.K.; Golhait, R.B.; Uma, K.N. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements. Atmos. Res. 2017, 183, 73–83. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Yi, Y.; Lv, D. Analysis of Vertical Distribution of Cloud in East Asia by Space-Based Lidar Data. Chin. J. Atmos. Sci. 2009, 33, 698–707. (In Chinese) [Google Scholar] [CrossRef]
- Han, D.; Yan, W.; Lu, W.; Liu, H. Research of cloud vertical structure around China based on COSMIC occultation data. Prog. Geophys. 2013, 28, 36–48. (In Chinese) [Google Scholar] [CrossRef]
- Chen, C.; Meng, H.; Jin, R.; Wang, Z. Cloud Macroscopic Characteristics over North China Based on CloudSat data. Meteorol. Sci. Technol. 2014, 2, 294–301. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y. Study of Aerosol Effects on Warm Cloud Macrophysical and Microphysical Characteristics over Eastern China. Ph.D. Dissertation, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Duan, A.; Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 2006, 33, 217–234. [Google Scholar] [CrossRef]
- Feng, X.; Cai, H.; Heng, Z. Spatial and Temporal Distribution Characteristics of Vertical Structure of Multilayer Clouds in China and Surrounding Areas. Plateau Mt. Meteorol. Res. 2021, 3, 9–16. (In Chinese) [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Lu, J. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos. 2016, 121, 5864–5877. [Google Scholar] [CrossRef]
- Schoeberl, M.R.; Jensen, E.J.; Pfister, L.; Ueyama, R.; Wang, T.; Selkirk, H.; Avery, M.; Thornberry, T.; Dessler, A.E. Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer. J. Geophys. Res. Atmos 2019, 124, 3984–4003. [Google Scholar] [CrossRef] [PubMed]
- Nazaryan, H.; McCormick, M.P.; Menzel, W.P. Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res. Atmos. 2008, 113, D16211. [Google Scholar] [CrossRef]
- D’Alessandro, J.J.; McFarquhar, G.M.; Stith, J.L.; Diao, M.; Demott, P.J.; McCluskey, C.S.; Hill, T.C.J.; Roberts, G.C.; Sanchez, K.J. An Evaluation of Phase, Aerosol-Cloud Interactions and Microphysical Properties of Single- and Multi-Layer Clouds Over the Southern Ocean Using in Situ Observations From SOCRATES. J. Geophys. Res. Atmos. 2023, 128, e2023JD038610. [Google Scholar] [CrossRef]
- Ali, S.; Mehta, S.K.; Ananthavel, A.; Reddy, T.V.R. Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region. Atmos. Chem. Phys. 2022, 22, 8321–8342. [Google Scholar] [CrossRef]
- Morrison, A.L.; Kay, J.E.; Frey, W.R.; Chepfer, H.; Guzman, R. Cloud Response to Arctic Sea Ice Loss and Implications for Future Feedback in the CESM1 Climate Model. J. Geophys. Res. Atmos. 2019, 124, 1003–1020. [Google Scholar] [CrossRef]
- Zhou, R.; Li, Y.; Lu, C. Macroscopic Characteristics and Formation Mechanisms of Arctic Clouds Based on CloudSat-CALIPSO Data. Clim. Environ. Res. 2022, 27, 630–642. (In Chinese) [Google Scholar] [CrossRef]
- Harrington, J.Y.; Reisin, T.; Cotton, W.R.; Kreidenweis, S.M. Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res. 1999, 51, 45–75. [Google Scholar] [CrossRef]
- Rangwala, I.; Sinsky, E.; Miller, J.R. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 2013, 8, 024040. [Google Scholar] [CrossRef]
- Yin, Y. Climate of the Arctic and the South Pole. Liaoning Meteor. 1990, 1, 56. Available online: https://kns.cnki.net/kcms2/article/abstract?v=JSKsj9h_wsLoYE4_k6bdl8wNTF1inj1TVAkeCX2jyKPgAOuUxlXsh9Eu9JN3Gep8kgocSe8fNu-TNPJCtaozm2_6h0_RxUw3YTDYL0W3E6z4xs0bneP-PaBRwVbk-fRVV8V_cISidIANOKqrb0lNj--ZC0frTr7CpsKWXK20VMswJ8ZJxkanjdtKlo_44Zxt&uniplatform=NZKPT&language=CHS (accessed on 4 June 2025). (In Chinese).
- Kang, S.; Yao, T.; Qin, D.; Yan, Y. Characteristics of Climatic Change in Svalbard in the Arctic and Comparison with the Qinghai-Xizang Platea. Geogr. Sci. 1998, 4, 21–28. (In Chinese) [Google Scholar] [CrossRef]
- Li, F.; Gao, Y.; Wan, X.; Li, Q.; Guo, D.; Wang, P.; Li, H. Earth’s “three-poles” climate change under global warming. Trans. Atmos. Sci. 2021, 44, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Cai, Y.; Qian, Z.; Wu, T.; Liang, X.; Song, M. Distribution, Changes of Atmospheric Precipitable Water over Qinghai-Xizang Plateau and Its Surroundings and Their Changeable Precipitation Climate. Plateau Meteor. 2004, 1, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Cen, S. Characteristics of the Moist Pool and Its Moisture Transports over Qinghai-Xizang Plateau in Summer Half Year. Acta Geogr. Sin. 2009, 64, 601–608. (In Chinese) [Google Scholar] [CrossRef]
- Gao, Y. Analyses and Numerical Simulations on the Vertical Structure and Microphysics Feature of Precipitating Cloud Along the Latitude Zone of Tibetan Plateau over China. Ph.D. Dissertation, Chinese Academy of Meteorological Sciences, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Yan, Y.; Liu, Y.; Liu, X.; Wang, X. Effects of cloud microphysics on the vertical structures of cloud radiative effects over the Tibetan Plateau and the Arctic. Remote Sens. 2021, 13, 2651. [Google Scholar] [CrossRef]
- Zhang, J. Cloud formation. Meteorol. Mon. 1980, 10, 31–34. (In Chinese) [Google Scholar] [CrossRef]
- Jakob, C. Ice Clouds in Numerical Weather Prediction Models: Progress, Problems, and Prospects; Oxford University Press: Oxford, UK, 2002. [Google Scholar] [CrossRef]
- Huang, R.; Gu, L.; Chen, J.; Huang, G. Recent Progresses in Studies of the Temporal-Spatial Variations of the East Asian Monsoon System and Their Impacts on Climate Anomalies in China. Chin. J. Atmos. Sci. 2008, 32, 691–719. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B. Effects of Cloud Vertical Structure on Atmospheric Circulation in the GISS GCM. J. Clim. 1998, 11, 3010–3029. [Google Scholar] [CrossRef]
- Wang, Z.; Stephens, G.; Deshler, T.; Trepte, C.; Parish, T.; Vane, D.; Winker, D.; Liu, D.; Adhikari, L. Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems. Geophys. Res. Lett. 2008, 35, L13806. [Google Scholar] [CrossRef]
- Cheon, W.G.; Park, Y.-G.; Yeh, S.-W.; Kim, B.M. Atmospheric impact on the northwestern Pacific under a global warming scenario. Geophys. Res. Lett. 2012, 39, L16709. [Google Scholar] [CrossRef]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef]
- Wu, G.; Stefano, T. Roles of the mean meridional circulation in atmospheric budgets of angular momentum and sensible heat. Chin. J. Atmos. Sci. 1988, 12, 8–17. (In Chinese) [Google Scholar] [CrossRef]
- Trenberth, K.; Solomon, A. The global heat balance: Heat transports in the atmosphere and ocean. Clim. Dyn. 1994, 10, 107–134. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. Atmos. 2005, 110, D23104. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y. Analysis of The Basic Features of The Onset of Asian Summer Monsoon. Acta Meteorol. Sin. 2007, 4, 511–526. (In Chinese) [Google Scholar] [CrossRef]
- Long, J.; Feng, Z.; Wang, Y. Impact of low-level monsoon circulation over the South China Sea on the temporal-spatial distribution of low clouds. Trans. Oceanol. Limnol. 2021, 43, 23–30. (In Chinese) [Google Scholar] [CrossRef]
- Ding, Y. Seasonal March of the East-Asian Summer Monsoon. In World Scientific Series on Asia-Pacific Weather and Climate; World Scientific: Singapore, 2004; Volume 2, pp. 3–53. [Google Scholar] [CrossRef]
- Sathiyamoorthy, V.; Pal, P.K.; Joshi, P.C. Influence of the Upper-Tropospheric Wind Shear upon Cloud Radiative Forcing in the Asian Monsoon Region. J. Clim. 2004, 17, 2725–2735. [Google Scholar] [CrossRef]
- Chen, J.; Huang, R. The Comparison of Climatological Characteristics Among Asian and Australian Monsoon Subsystems. Part Ⅰ. The Wind Structure of Summer Monsoon. Chin. J. Atmos. Sci. 2006, 30, 1091–1102. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, M.; Ou, J.; Cai, Z.; Shi, A. Correlation between cloud characteristic parameters and precipitation. Trans. Atmos. Sci. 2011, 34, 641–652. (In Chinese) [Google Scholar] [CrossRef]
- Sun, H.; Li, P.; Yan, S.; Jin, L.; Shen, D.; Feng, Q.; Li, Y. Analysis of Cloud Physical Characteristics and Precipitation Mechanisms in Stratiform Cloud Development Stage. Chin. Agric. Sci. Bull. 2015, 31, 179–193. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Shen, D.; Ren, G. Analysis the precipitation mechanism and the microphysics structures of stratiform cloud over Shanxi Province. Sci. Technol. Innov. 2017, 2, 39–42. (In Chinese) [Google Scholar] [CrossRef]
- Meng, X. Dissipative structure theory of multilayer cloud precipitation. J. Qufu Norm. Univ. 1994, S2, 15–16. Available online: https://kns.cnki.net/kcms2/article/abstract?v=JSKsj9h_wsIsSYP4MCrZB3t0VoULAC0XhMH6rF3SK5M1EgLPi9dNE2hfNWzU8qOIT04Z9J3XXUM2BIDf1lM2shNB3YDSPZl3yPSCy5B51q93tRb81d9reNfJIOfCsjEP_iaJBIimy2w2VmNDGbKswNW_SrRI24EFEqp-7R9SpyU0dOZ12H--BtpNIMA-kzX7&uniplatform=NZKPT&language=CHSComparing (accessed on 4 June 2025). (In Chinese).
- Huang, M.; Hong, Y.; Xu, H.; Zhou, H. The Effect of the Existence of Stratiform Cloud on the Development of Cumulus Cloud and Its Precipitation. Acta Meteorol. Sin. 1987, 1, 72–77. (In Chinese) [Google Scholar] [CrossRef]
- Liu, G.; Yu, X.; Jia, L.; Yue, Z.; Da, ij. Satellite Observation on Rainfall Enhancement in Stratiform Clouds over Shaanxi Province in Spring 2009. Arid. Zone Res. 2011, 28, 699–704. (In Chinese) [Google Scholar] [CrossRef]
- Xia, J.; Fu, Y. The Vertical Characteristics of Temperature and Humidity Inside Convective and Stratiform Precipitating Clouds in the East Asian Summer Monsoon Region and Indian Summer Monsoon Region. Chin. J. Atmos. Sci. 2016, 40, 563–580. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, S.; Cai, B.; Sun, L. Comparison of Vertical Structure Between Precipitation Cloud and Non-Precipitation Cloud Based on CloudSat Data over Northeast China. Meteorol. Mon. 2017, 43, 1374–1382. (In Chinese) [Google Scholar] [CrossRef]
- Rutledge, S.A.; Hobbs, P. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. J. Atmos. Sci. 1983, 40, 1185–1206. [Google Scholar] [CrossRef]
- Gu, Z. Physical Basis of Cloud and Fog Precipitation; Science Press: Beijing, China, 1980. (In Chinese) [Google Scholar]
- Hou, T.; Hu, Z.; Lei, H. A study of the structure and microphysical processes of a precipitating stratiform cloud in Jilin. Acta Meteorol. Sin. 2011, 3, 508–520. (In Chinese) [Google Scholar] [CrossRef]
- He, H.; Gao, Q.; Liu, X.; Zhou, W.; Jia, X. Numerical Simulation of the Structural Characteristics and Precipitation Mechanism of Stratiform Clouds with Embedded Convections. Chin. J. Atmos. Sci. 2015, 39, 315–328. (In Chinese) [Google Scholar] [CrossRef]
- Thomas, J.; Barrett, A.; Hoose, C. Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: A case study for the 2015 Cumbria flood. Atmos. Chem. Phys. 2023, 23, 1987–2002. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Liu, W. A Case Study of Micro-Structure of Precipitable Stratiform Clouds. Meteorol. Mon. 2001, 27, 17–21. (In Chinese) [Google Scholar] [CrossRef]
- Shang, B. Research on Vertical Structure of Cloud and Precipitation Feature of Cloudsat Data in HuaBei and JiangHuai. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2011. (In Chinese). [Google Scholar]
- Shang, B.; Zhou, Y.; Liu, J.; Huang, Y. Comparing vertical structure of precipitation cloud and non-precipitation cloud using Cloudsat. J. Appl. Meteorol. Sci. 2012, 23, 1–9. Available online: https://kns.cnki.net/kcms2/article/abstract?v=JSKsj9h_wsI6MvPKX86OQDjbiL9q3VGBL-34l6KlQlPyZsji3U1gWRsUcdKs4atseS1OJNPt8cu250wUwryCwpo37DPbGQYIOHn-LX8w-u9y4KP131P4gURJM-jrF8qyYg3OcQATMmp0M7non_EOT5S7V-9yqnea8uxWC4fnWWUj0gkFJKy05ZZmHAt8xvF5&uniplatform=NZKPT&language=CHS (accessed on 4 June 2025). (In Chinese).
- Tao, W.K.; Chen, J.P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, RG2001. [Google Scholar] [CrossRef]
- Cairo, F.; Di Liberto, L.; Dionisi, D.; Snels, M. Understanding Aerosol–Cloud Interactions through Lidar Techniques: A Review. Remote Sens. 2024, 16, 2788. [Google Scholar] [CrossRef]
- Christensen, M.W.; Carrió, G.G.; Stephens, G.L.; Cotton, W.R. Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci. 2013, 70, 3102–3118. [Google Scholar] [CrossRef]
- Chen, T.; Rossow, W.B.; Zhang, Y. Radiative effects of cloud-type variations. J. Clim. 2000, 13, 264–286. [Google Scholar] [CrossRef]
- Lü, Q.; Li, J.; Wang, T.; Huang, J. Cloud radiative forcing induced by layered clouds and associated impact on the atmospheric heating rate. J. Meteorol. Res. 2015, 29, 779–792. [Google Scholar] [CrossRef]
- Kang, H.; Choi, Y.-S.; Hwang, J.; Kim, H.-S. On the cloud radiative effect for tropical high clouds overlying low clouds. Geosci. Lett. 2020, 7, 7. [Google Scholar] [CrossRef]
- Waliser, D.E.; Li, J.L.F.; Woods, C.P.; Austin, R.T.; Bacmeister, J.; Chern, J.; Del Genio, A.; Jiang, J.H.; Kuang, Z.; Meng, H.; et al. Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res. Atmos. 2009, 114, 2008JD010015. [Google Scholar] [CrossRef]
- Lv, Q. Satellite Detection of Multi-Layer Clouds and Associated Radiative Effects. Ph.D. Dissertation, Lanzhou University, Lanzhou, China, 2018. (In Chinese). [Google Scholar]
- Ma, Y. Analysis of Radiative Forcing of Cloud over Tibetan Plateau by Cloudsat Data. Master’s Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Ma, Y.; Huang, J.; Liu, Y. Impact of clouds on radiative fluxes in summer over the Tibetan plateau from Cloudsat data. J. Lanzhou Univ. 2011, 47, 48–54. (In Chinese) [Google Scholar] [CrossRef]
Multilayer Cloud Type | Location | Layer | Cloud Top Height | Cloud Base Height | Cloud Layer Thickness | Interlayer Distance | Reference |
---|---|---|---|---|---|---|---|
Double-Layer Clouds | Global | Upper | 6.2 | 4.4 | 1.8 | 2.2 | Wang et al. [17] |
Lower | 1.6 | 0.8 | 0.8 | ||||
Arctic | Upper | 1~4 | <0.75 | / | Luo et al. [39] | ||
Lower | 1.125 | 0.625 | / | ||||
Northern Hemisphere Convective Active Regions | Upper | >11 | >8.6 | 2~3.8 | / | Tan et al. [70] | |
Lower | 5.5~8.5 | <4 | / | ||||
Triple-Layer Clouds | Global | Upper | 6.4 | 5.3 | 1.1 | 2.2 | Wang et al. [17] |
Middle | 3.4 | 2.7 | 0.7 | ||||
Lower | 1.1 | 0.5 | 0.6 | ||||
Northern Hemisphere Convective Active Regions | Upper | >11 | >9 | 2~3.8 | / | Tan et al. [70] | |
Middle | 6~9 | 4~7.2 | <1.8 | / | |||
Lower | <5 | <4 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Yuan, C.; Qu, Y.; Huang, Y. Observation of Multilayer Clouds and Their Climate Effects: A Review. Atmosphere 2025, 16, 692. https://doi.org/10.3390/atmos16060692
Xue J, Yuan C, Qu Y, Huang Y. Observation of Multilayer Clouds and Their Climate Effects: A Review. Atmosphere. 2025; 16(6):692. https://doi.org/10.3390/atmos16060692
Chicago/Turabian StyleXue, Jianing, Cheng Yuan, Yawei Qu, and Yifei Huang. 2025. "Observation of Multilayer Clouds and Their Climate Effects: A Review" Atmosphere 16, no. 6: 692. https://doi.org/10.3390/atmos16060692
APA StyleXue, J., Yuan, C., Qu, Y., & Huang, Y. (2025). Observation of Multilayer Clouds and Their Climate Effects: A Review. Atmosphere, 16(6), 692. https://doi.org/10.3390/atmos16060692