Demonstration of a Simplified, Two-Wavelength Optical Approach to Measuring Nitrogen Dioxide in Cities
Abstract
:1. Introduction
- Develop the theory of the measurement principle and simulate the sensitivity of the approach to NO2 and potential interferences.
- Demonstrate a two-wavelength optical system using narrowband optical filters with non-dispersive detectors and validate its response against a conventional, full-spectral DOAS analysis.
- Demonstrate the spectral stability of the ratiometric approach in a short open-path system.
- Discuss applications of the approach and strategies to improve sensitivity and reduce the cost of the method.
2. Materials and Methods
2.1. Dependence of Intensity Ratio on Concentration
2.2. Simulated Spectra
2.3. Chamber Optical System
2.4. External Open-Path Optical System
3. Results and Discussion
3.1. Simulated Response to NO2 and Potential Interferences
3.2. Chamber Experiments
3.3. Spectral Stability in the External Atmosphere
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAPS | Cavity-Attenuated Phase Shift |
CEAS | Cavity-Enhanced Absorption Spectroscopy |
DIAL | Differential Absorption LIDAR |
DOAS | Differential Optical Absorption Spectroscopy |
GLY | Glyoxal |
IBBCEAS | Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy |
LED | Light-emitting diode |
LIDAR | Light Detecting and Ranging |
MGLY | Methylglyoxal |
PMT | Photomultiplier tube |
SNR | Signal-to-noise ratio |
WHO | World Health Organisation |
References
- World Health Organisation. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Meng, X.; Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Milojevic, A.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; et al. Short Term Associations of Ambient Nitrogen Dioxide with Daily Total, Cardiovascular, and Respiratory Mortality: Multilocation Analysis in 398 Cities. BMJ 2021, 372, n534. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Lei, J.; Zhu, Y.; Zhou, L.; Meng, X.; Xuan, J.; Kan, H. Ambient Nitrogen Dioxide and Hospitalizations of Full-Spectrum Respiratory Diseases: A National Case-Crossover Study. Environ. Health 2023, 1, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, P.; Atkinson, R. Long-Term Exposure to NO2 and O3 and All-Cause and Respiratory Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 144, 105998. [Google Scholar] [CrossRef] [PubMed]
- Weinmayr, G.; Romeo, E.; de Sario, M.; Weiland, S.K.; Forastiere, F. Short-Term Effects of PM10 and NO2 on Respiratory Health among Children with Asthma or Asthma-Like Symptoms: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2010, 118, 449–457. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Zhang, H.; Shi, C.; Li, G.; Peng, Z.; Ma, J.; Zhou, Y.; Zhang, L. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am. J. Respir. Crit. Care Med. 2019, 200, 24–32. [Google Scholar] [CrossRef]
- Jacquemin, B.; Sunyer, J.; Forsberg, B.; Aguilera, I.; Briggs, D.; García-Esteban, R.; Götschi, T.; Heinrich, J.; Järvholm, B.; Jarvis, D.; et al. Home Outdoor NO2 and New Onset of Self-Reported Asthma in Adults. Epidemiology 2009, 20, 119–126. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Zivin, J.G.; Mullins, J.T.; Neidell, M. Early-Life Exposure to the Great Smog of 1952 and the Development of Asthma. Am. J. Respir. Crit. Care Med. 2016, 194, 1475–1482. [Google Scholar] [CrossRef]
- Cheng, H.; Di Narzo, A.; Howell, D.; Yevdokimova, K.; Zhang, J.; Zhang, X.; Pan, Q.; Zhang, Z.; Rogers, L.; Hao, K. Ambient Air Pollutants and Traffic Factors Were Associated with Blood and Urine Biomarkers and Asthma Risk. Environ. Sci. Technol. 2022, 56, 7298–7307. [Google Scholar] [CrossRef] [PubMed]
- Phiri, Y.V.A.; Canty, T.; Nobles, C.; Ring, A.M.; Nie, J.; Mendola, P. Neonatal Intensive Care Admissions and Exposure to Satellite-Derived Air Pollutants in the United States, 2018. Sci. Rep. 2025, 15, 420. [Google Scholar] [CrossRef]
- Goin, D.E.; Sudat, S.; Riddell, C.; Morello-Frosch, R.; Apte, J.S.; Glymour, M.M.; Karasek, D.; Casey, J.A. Hyperlocalized Measures of Air Pollution and Preeclampsia in Oakland, California. Environ. Sci. Technol. 2021, 55, 14710–14719. [Google Scholar] [CrossRef]
- Wei, S.; Xu, T.; Jiang, T.; Yin, D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. Environ. Sci. Technol. 2021, 55, 10911–10922. [Google Scholar] [CrossRef] [PubMed]
- Alemany, S.; Vilor-Tejedor, N.; García-Esteban, R.; Bustamante, M.; Dadvand, P.; Esnaola, M.; Mortamais, M.; Forns, J.; van Drooge, B.L.; Álvarez-Pedrerol, M.; et al. Traffic-Related Air Pollution, APOE ε4 Status, and Neurodevelopmental Outcomes among School Children Enrolled in the BREATHE Project (Catalonia, Spain). Environ. Health Perspect. 2018, 126, 087001. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Zhang, X.; Shah, S.; Yang, G.; Chen, Q.; Han, S.; Zhang, D.; Weinberger, D.R.; Yue, W.; et al. Air Pollution Interacts with Genetic Risk to Influence Cortical Networks Implicated in Depression. Proc. Natl. Acad. Sci. USA 2021, 118, e2109310118. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Myhre, C.E.L.; Samset, B.H.; Storelvmo, T. Atmospheric Aerosols from Human Activity Influence Climate. Uncertainties in the Understanding of Their Effects Limit Our Knowledge about Climate Change. Nat. Educ. Knowl. 2013, 4, 7. [Google Scholar]
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Brimblecombe, P.; Chu, M.; Liu, C.-H.; Fu, Y.; Wei, P.; Ning, Z. Roadside NO2/NOx and Primary NO2 from Individual Vehicles. Atmos. Environ. 2023, 295, 119562. [Google Scholar] [CrossRef]
- Lenner, M.; Lindqvist, O.; Rosén, Å. The Ratio in Emissions from Gasoline-Powered Cars: High NO2 Percentage in Idle Engine Measurements. Atmos. Environ. 1983, 17, 1395–1398. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D. Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches. Atmosphere 2021, 12, 179. [Google Scholar] [CrossRef]
- Hewitt, C.N. Spatial Variations in Nitrogen Dioxide Concentrations in an Urban Area. Atmos. Environ. Part B 1991, 25, 429–434. [Google Scholar] [CrossRef]
- Yang, L.H.; Hagan, D.H.; Rivera-Rios, J.C.; Kelp, M.M.; Cross, E.S.; Peng, Y.; Kaiser, J.; Williams, L.R.; Croteau, P.L.; Jayne, J.T.; et al. Investigating the Sources of Urban Air Pollution Using Low-Cost Air Quality Sensors at an Urban Atlanta Site. Environ. Sci. Technol. 2022, 56, 7063–7073. [Google Scholar] [CrossRef]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; San Martini, F.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of Nitrogen Dioxide Chemiluminescence Monitors in a Polluted Urban Environment. Atmos. Chem. Phys. 2007, 7, 2691–2704. [Google Scholar] [CrossRef]
- Byrne, R.; Ryan, K.; Venables, D.S.; Wenger, J.C.; Hellebust, S. Highly Local Sources and Large Spatial Variations in PM2.5 across a City: Evidence from a City-Wide Sensor Network in Cork, Ireland. Environ. Sci. Atmos. 2023, 3, 919–930. [Google Scholar] [CrossRef]
- Wei, L.; Donaire-Gonzalez, D.; Helbich, M.; van Nunen, E.; Hoek, G.; Vermeulen, R.C.H. Validity of Mobility-Based Exposure Assessment of Air Pollution: A Comparative Analysis with Home-Based Exposure Assessment. Environ. Sci. Technol. 2024, 58, 10685–10695. [Google Scholar] [CrossRef]
- Manchanda, C.; Harley, R.A.; Marshall, J.D.; Turner, A.J.; Apte, J.S. Integrating Mobile and Fixed-Site Black Carbon Measurements to Bridge Spatiotemporal Gaps in Urban Air Quality. Environ. Sci. Technol. 2024, 58, 12563–12574. [Google Scholar] [CrossRef] [PubMed]
- Okure, D.; Ssematimba, J.; Sserunjogi, R.; Gracia, N.L.; Soppelsa, M.E.; Bainomugisha, E. Characterization of Ambient Air Quality in Selected Urban Areas in Uganda Using Low-Cost Sensing and Measurement Technologies. Environ. Sci. Technol. 2022, 56, 3324–3339. [Google Scholar] [CrossRef]
- Yang, G.G.; Kim, D.H.; Samal, S.; Choi, J.; Roh, H.; Cunin, C.E.; Lee, H.M.; Kim, S.O.; Dincă, M.; Gumyusenge, A. Polymer-Based Thermally Stable Chemiresistive Sensor for Real-Time Monitoring of NO2 Gas Emission. ACS Sens. 2023, 8, 3687–3692. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Sun, Q.; Li, H.; Shen, J.; Liu, H.; Chen, W.; Zhang, Y.; Chen, Y. Metalloporphyrin-Based Metal–Organic Frameworks for the Ultrasensitive Chemiresistive Detection of NO2: Effect of the Central Metal on Tuning the Sensing Performance. ACS Sens. 2023, 8, 4353–4363. [Google Scholar] [CrossRef]
- Schmitz, S.; Caseiro, A.; von Schneidemesser, E. How Electrochemical Sensors Measure up to Reference-Grade Nitrogen Dioxide Monitors across Temporal Scales. Sci. Total Environ. 2025, 980, 179476. [Google Scholar] [CrossRef] [PubMed]
- Zuidema, C.; Bi, J.; Burnham, D.; Carmona, N.; Gassett, A.J.; Slager, D.L.; Schumacher, C.; Austin, E.; Seto, E.; Szpiro, A.A.; et al. Leveraging Low-Cost Sensors to Predict Nitrogen Dioxide for Epidemiologic Exposure Assessment. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 169–179. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef]
- Okorn, K.; Iraci, L.T. An Overview of Outdoor Low-Cost Gas-Phase Air Quality Sensor Deployments: Current Efforts, Trends, and Limitations. Atmos. Meas. Tech. 2024, 17, 6425–6457. [Google Scholar] [CrossRef]
- Fang, B.; Zhao, W.; Xu, X.; Zhou, J.; Ma, X.; Wang, S.; Zhang, W.; Venables, D.S.; Chen, W. Portable Broadband Cavity-Enhanced Spectrometer Utilizing Kalman Filtering: Application to Real-Time, In Situ Monitoring of Glyoxal and Nitrogen Dioxide. Opt. Express 2017, 25, 26910. [Google Scholar] [CrossRef] [PubMed]
- Venables, D.S.; Gherman, T.; Orphal, J.; Wenger, J.C.; Ruth, A.A. High Sensitivity In Situ Monitoring of NO3 in an Atmospheric Simulation Chamber Using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy. Environ. Sci. Technol. 2006, 40, 6758–6763. [Google Scholar] [CrossRef]
- Liang, S.; Qin, M.; Xie, P.; Duan, J.; Fang, W.; He, Y.; Xu, J.; Liu, J.; Li, X.; Tang, K.; et al. Development of an Incoherent Broadband Cavity-Enhanced Absorption Spectrometer for Measurements of Ambient Glyoxal and NO2 in a Polluted Urban Environment. Atmos. Meas. Tech. 2019, 12, 2499–2512. [Google Scholar] [CrossRef]
- Fiedler, S.E.; Hese, A.; Ruth, A.A. Incoherent Broad-Band Cavity-Enhanced Absorption Spectroscopy. Chem. Phys. Lett. 2003, 371, 284–294. [Google Scholar] [CrossRef]
- Bailey, S.A.; Hannun, R.A.; Swanson, A.K.; Hanisco, T.F. A Portable Nitrogen Dioxide Instrument Using Cavity-Enhanced Absorption Spectroscopy. Atmos. Meas. Tech. 2024, 17, 5903–5910. [Google Scholar] [CrossRef]
- Womack, C.C.; Brown, S.S.; Ciciora, S.J.; Gao, R.-S.; McLaughlin, R.J.; Robinson, M.A.; Rudich, Y.; Washenfelder, R.A. A Lightweight Broadband Cavity-Enhanced Spectrometer for NO2 Measurement on Uncrewed Aerial Vehicles. Atmos. Meas. Tech. 2022, 15, 6643–6652. [Google Scholar] [CrossRef]
- Wheeler, M.D.; Newman, S.M.; Orr-Ewing, A.J.; Ashfold, M.N.R. Cavity Ring-Down Spectroscopy. J. Chem. Soc. Faraday Trans. 1998, 94, 337–351. [Google Scholar] [CrossRef]
- Ball, S.M.; Jones, R.L. Broad-Band Cavity Ring-Down Spectroscopy. Chem. Rev. 2003, 103, 5239–5262. [Google Scholar] [CrossRef]
- Zalicki, P.; Zare, R.N. Cavity Ring-Down Spectroscopy for Quantitative Absorption Measurements. J. Chem. Phys. 1995, 102, 2708–2717. [Google Scholar] [CrossRef]
- Osthoff, H.D.; Brown, S.S.; Ryerson, T.B.; Fortin, T.J.; Lerner, B.M.; Williams, E.J.; Pettersson, A.; Baynard, T.; Dubé, W.P.; Ciciora, S.J.; et al. Measurement of Atmospheric NO2 by Pulsed Cavity Ring-Down Spectroscopy. J. Geophys. Res. Atmos. 2006, 111, D12305. [Google Scholar] [CrossRef]
- Castellanos, P.; Luke, W.T.; Kelley, P.; Stehr, J.W.; Ehrman, S.H.; Dickerson, R.R. Modification of a Commercial Cavity Ring-Down Spectroscopy NO2 Detector for Enhanced Sensitivity. Rev. Sci. Instrum. 2009, 80, 113107. [Google Scholar] [CrossRef] [PubMed]
- Evertsen, R.; Staicu, A.; Dam, N.; van Vliet, A.; ter Meulen, J.J. Pulsed Cavity Ring-Down Spectroscopy of NO and NO2 in the Exhaust of a Diesel Engine. Appl. Phys. B 2002, 74, 465–468. [Google Scholar] [CrossRef]
- Fuchs, H.; Dubé, W.P.; Lerner, B.M.; Wagner, N.L.; Williams, E.J.; Brown, S.S. A Sensitive and Versatile Detector for Atmospheric NO2 and NOx Based on Blue Diode Laser Cavity Ring-Down Spectroscopy. Environ. Sci. Technol. 2009, 43, 7831–7836. [Google Scholar] [CrossRef]
- Schreier, S.F.; Richter, A.; Burrows, J.P. Near-Surface and Path-Averaged Mixing Ratios of NO2 Derived from Car DOAS Zenith-Sky and Tower DOAS Off-Axis Measurements in Vienna: A Case Study. Atmos. Chem. Phys. 2019, 19, 5853–5879. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.H.; Kim, Y.J.; Lee, J. Application of a Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) on the Measurements of NO2, SO2, O3, and HNO2 in Gwangju, Korea. J. Environ. Manag. 2008, 86, 750–759. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Su, M.; Yang, H.; Ramachandran, A.; Varma, R. An LP-DOAS Instrument with a Laser Driven Light Source for Open-Path Measurement of Atmospheric NO2 in Shanghai. In Proceedings of the 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017. [Google Scholar]
- Shiina, T. LED Mini Lidar for Atmospheric Application. Sensors 2019, 19, 569. [Google Scholar] [CrossRef]
- Su, J.; McCormick, M.P.; Johnson, M.S.; Sullivan, J.T.; Newchurch, M.J.; Berkoff, T.A.; Kuang, S.; Gronoff, G.P. Tropospheric NO2 Measurements Using a Three-Wavelength Optical Parametric Oscillator Differential Absorption Lidar. Atmos. Meas. Tech. 2021, 14, 4069–4082. [Google Scholar] [CrossRef]
- Kebabian, P.L.; Wood, E.C.; Herndon, S.C.; Freedman, A. A Practical Alternative to Chemiluminescence-Based Detection of Nitrogen Dioxide: Cavity Attenuated Phase Shift Spectroscopy. Environ. Sci. Technol. 2008, 42, 6040–6045. [Google Scholar] [CrossRef]
- Birks, J.W.; Andersen, P.C.; Williford, C.J.; Turnipseed, A.A.; Strunk, S.E.; Ennis, C.A.; Mattson, E. Folded Tubular Photometer for Atmospheric Measurements of NO2 and NO. Atmos. Meas. Tech. 2018, 11, 2821–2835. [Google Scholar] [CrossRef]
- Kuhn, L.; Kuhn, J.; Wagner, T.; Platt, U. The NO2 Camera Based on Gas Correlation Spectroscopy. Atmos. Meas. Tech. 2022, 15, 1395–1414. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Yu, B. Recent Progress on Infrared Photoacoustic Spectroscopy Techniques. Appl. Spectrosc. Rev. 2011, 46, 440–471. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, L.; Yu, Q. An All-Optical Photoacoustic Spectrometer for Trace Gas Detection. Sens. Actuators B Chem. 2011, 153, 214–218. [Google Scholar] [CrossRef]
- Liu, K.; Yi, H.; Kosterev, A.A.; Chen, W.; Dong, L.; Wang, L.; Tan, T.; Zhang, W.; Tittel, F.K.; Gao, X. Trace Gas Detection Based on Off-Beam Quartz Enhanced Photoacoustic Spectroscopy: Optimization and Performance Evaluation. Rev. Sci. Instrum. 2010, 81, 103103. [Google Scholar] [CrossRef]
- Kerschhofer, A.; Breitegger, P.; Bergmann, A. Laser Driver and Analysis Circuitry Development for Quartz-Enhanced Photoacoustic Spectroscopy of NO2 for IoT Purpose. Proc. Eurosens. 2018, 2, 1062. [Google Scholar] [CrossRef]
- Yi, H.; Liu, K.; Chen, W.; Tan, T.; Wang, L.; Gao, X. Application of a Broadband Blue Laser Diode to Trace NO2 Detection Using Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2011, 36, 481. [Google Scholar] [CrossRef]
- Suzuki, H.; Miyao, Y.; Nakayama, T.; Pearce, J.K.; Matsumi, Y.; Takahashi, K.; Kita, K.; Tonokura, K. Comparison of Laser-Induced Fluorescence and Chemiluminescence Measurements of NO2 at an Urban Site. Atmos. Environ. 2011, 45, 6233–6240. [Google Scholar] [CrossRef]
- Thornton, J.A.; Wooldridge, P.J.; Cohen, R.C. Atmospheric NO2: In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios. Anal. Chem. 2000, 72, 528–539. [Google Scholar] [CrossRef]
- Thalman, R.; Baeza-Romero, M.T.; Ball, S.M.; Borras, E.; Daniels, M.J.S.; Goodall, I.C.A.; Henry, S.B.; Karl, T.; Keutsch, F.N.; Kim, S.; et al. Instrument Intercomparison of Glyoxal, Methyl Glyoxal and NO2 under Simulated Atmospheric Conditions. Atmos. Meas. Tech. 2015, 8, 1835–1862. [Google Scholar] [CrossRef]
- Horowitz, A.; Meller, R.; Moortgat, G.K. The UV–VIS Absorption Cross Sections of the α-Dicarbonyl Compounds: Pyruvic Acid, Biacetyl and Glyoxal. J. Photochem. Photobiol. A Chem. 2001, 146, 19–27. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Inherent Calibration of a Blue LED-CE-DOAS Instrument to Measure Iodine Oxide, Glyoxal, Methyl Glyoxal, Nitrogen Dioxide, Water Vapour and Aerosol Extinction in Open Cavity Mode. Atmos. Meas. Tech. 2010, 3, 1797–1814. [Google Scholar] [CrossRef]
- Volten, H.; Brinksma, E.J.; Berkhout, A.J.C.; Hains, J.; Bergwerff, J.B.; Van der Hoff, G.R.; Apituley, A.; Dirksen, R.J.; Calabretta-Jongen, S.; Swart, D.P.J. NO2 Lidar Profile Measurements for Satellite Interpretation and Validation. J. Geophys. Res. Atmos. 2009, 114, D24301. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, B.; Campbell, J.F.; Yu, J.; Geng, J.; Jiang, S. Martian Column CO2 and Pressure Measurement with Spaceborne Differential Absorption Lidar at 1.96 µm. Atmos. Meas. Tech. 2024, 17, 2977–2990. [Google Scholar] [CrossRef]
- Flowerday, C.E.; Thalman, R.; Asplund, M.C.; Hansen, J.C. Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS) Coupled with an Interferometer for On-Band and Off-Band Detection of Glyoxal. Toxics 2023, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Coquart, B.; Jenouvrier, A.; Merienne, M.E. The NO2 Absorption Spectrum. II. Absorption Cross-Sections at Low Temperatures in the 400–500 nm Region; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Meller, R.; Raber, W.; Crowley, J.N.; Jenkin, M.E.; Moortgat, G.K. The UV-Visible Absorption Spectrum of Methylglyoxal. J. Photochem. Photobiol. A Chem. 1991, 62, 163–171. [Google Scholar] [CrossRef]
- Brion, J.; Chakir, A.; Charbonnier, J.; Daumont, D.; Parisse, C.; Malicet, J. Absorption Spectra Measurements for the Ozone Molecule in the 350–830 nm Region. J. Atmos. Chem. 1998, 30, 291–299. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, E.R.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Ashu-Ayem, E.R.; Nitschke, U.; Monahan, C.; Chen, J.; Darby, S.B.; Smith, P.D.; O’Dowd, C.D.; Stengel, D.B.; Venables, D.S. Coastal Iodine Emissions. 1. Release of I2 by Laminaria digitata in Chamber Experiments. Environ. Sci. Technol. 2012, 46, 10413–10421. [Google Scholar] [CrossRef]
- Lange, K.; Richter, A.; Bosch, T.; Zilker, B.; Latsch, M.; Behrens, L.K.; Okafor, C.M.; Bosch, H.; Burrows, J.P.; Merlaud, A.; et al. Validation of GEMS Tropospheric NO2 Columns and Their Diurnal Variation with Ground-Based DOAS Measurements. Atmos. Meas. Tech. 2024, 17, 6315–6344. [Google Scholar] [CrossRef]
- Edwards, D.P.; Martinez-Alonso, S.; Jo, D.S.; Ortega, I.; Emmons, L.K.; Orlando, J.J.; Worden, H.M.; Kim, J.; Lee, H.; Park, J.; et al. Quantifying the Diurnal Variation in Atmospheric NO2 from Geostationary Environment Monitoring Spectrometer (GEMS) Observations. Atmos. Chem. Phys. 2024, 24, 8943–8961. [Google Scholar] [CrossRef]
- Ravina, M.; Caramitti, G.; Panepinto, D.; Zanetti, M. Air Quality and Photochemical Reactions: Analysis of NOx and NO2 Concentrations in the Urban Area of Turin, Italy. Air Qual. Atmos. Health 2022, 15, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Volkamer, R.; Molina, L.T.; Molina, M.J.; Shirley, T.; Brune, W.H. DOAS Measurement of Glyoxal as an Indicator for Fast VOC Chemistry in Urban Air. Geophys. Res. Lett. 2005, 32, L08806. [Google Scholar] [CrossRef]
- Ho, K.F.; Cao, J.J.; Lee, S.C.; Kawamura, K.; Zhang, R.J.; Chow, J.C.; Watson, J.G. Dicarboxylic Acids, Ketocarboxylic Acids, and Dicarbonyls in the Urban Atmosphere of China. J. Geophys. Res. Atmos. 2007, 112, D22S27. [Google Scholar] [CrossRef]
- Michoud, V.; Sauvage, S.; Leonardis, T.; Fronval, I.; Kukui, A.; Locoge, N.; Dusanter, S. Field Measurements of Methylglyoxal Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry and Comparison to the DNPH–HPLC–UV Method. Atmos. Meas. Tech. 2018, 11, 5729–5740. [Google Scholar] [CrossRef]
- Mitsuishi, K.; Iwasaki, M.; Takeuchi, M.; Okochi, H.; Kato, S.; Ohira, S.; Toda, K. Diurnal Variations in Partitioning of Atmospheric Glyoxal and Methylglyoxal between Gas and Particles at the Ground Level and in the Free Troposphere. ACS Earth Space Chem. 2018, 2, 915–924. [Google Scholar] [CrossRef]
- Petrus, M.; Popa, C.; Bratu, A.-M. Determination of Ozone Concentration Levels in Urban Environments Using a Laser Spectroscopy System. Environments 2024, 11, 9. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Kwon, J.; Weisel, C.; Turpin, B.; Zhang, L.; Korn, L.; Morandi, M.; Stock, T.; Colome, S. Concentrations and Source Characteristics of Airborne Carbonyl Compounds Measured Outside Urban Residences. J. Air Waste Manag. Assoc. 2006, 56, 1196–1204. [Google Scholar] [CrossRef]
- Garcia, A.R.; Volkamer, R.; Molina, L.T.; Molina, M.J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S.C.; Kolb, C.E. Separation of Emitted and Photochemical Formaldehyde in Mexico City Using a Statistical Analysis and a New Pair of Gas-Phase Tracers. Atmos. Chem. Phys. 2006, 6, 4545–4557. [Google Scholar] [CrossRef]
- García-Alonso, S.; Pérez-Pastor, R.; Sevillano-Castaño, M.L. Determination of Glyoxal and Methylglyoxal in Atmospheric Particulate Matter by 2,4-Dinitrophenylhydrazine Derivatisation. Toxicol. Environ. Chem. 2006, 88, 445–452. [Google Scholar] [CrossRef]
- Li, Q.; Gong, D.; Wang, H.; Wang, Y.; Han, S.; Wu, G.; Deng, S.; Yu, P.; Wang, W.; Wang, B. Rapid Increase in Atmospheric Glyoxal and Methylglyoxal Concentrations in Lhasa, Tibetan Plateau: Potential Sources and Implications. Sci. Total Environ. 2022, 824, 153782. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature Dependent Absorption Cross-Sections of O2–O2 Collision Pairs between 340 and 630 nm and at Atmospherically Relevant Pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Liu, W.; Zhang, T.; Chen, Z.; Dong, Y.; Fan, G.; Xiang, Y.; Yao, Y.; Yang, N.; Chu, B.; et al. Observations of Particle Extinction, PM2.5 Mass Concentration Profile and Flux in North China Based on Mobile Lidar Technique. Atmos. Environ. 2017, 164, 360–369. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Raptis, I.-P.; Gkikas, A.; Fountoulakis, I.; Masoom, A.; Kazadzis, S. Aerosol Optical Depth Regime over Megacities of the World. Atmos. Chem. Phys. 2022, 22, 15703–15727. [Google Scholar] [CrossRef]
- Dingle, J.H.; Vu, K.; Bahreini, R.; Apel, E.C.; Campos, T.L.; Flocke, F.; Fried, A.; Herndon, S.; Hills, A.J.; Hornbrook, R.S.; et al. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 Summertime Field Campaign, Colorado, USA. Atmos. Chem. Phys. 2016, 16, 11207–11217. [Google Scholar] [CrossRef]
- Lagrosas, N.; Kuze, H.; Takeuchi, N.; Fukagawa, S.; Bagtasa, G.; Yoshii, Y.; Naito, S.; Yabuki, M. Correlation Study between Suspended Particulate Matter and Portable Automated Lidar Data. J. Aerosol Sci. 2005, 36, 439–454. [Google Scholar] [CrossRef]
- Carslaw, D.; Beevers, S. Estimations of Road Vehicle Primary NO Exhaust Emission Fractions Using Monitoring Data in London. Atmos. Environ. 2005, 39, 167–177. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Wu, X.; Wen, Y.; Li, Z.; Wu, Y. Emission Measurements on a Large Sample of Heavy-Duty Diesel Trucks in China by Using Mobile Plume Chasing. Environ. Sci. Technol. 2023, 57, 15153–15161. [Google Scholar] [CrossRef]
- Bishop, G.A.; Haugen, M.J.; McDonald, B.C.; Boies, A.M. Utah Wintertime Measurements of Heavy-Duty Vehicle Nitrogen Oxide Emission Factors. Environ. Sci. Technol. 2022, 56, 1885–1893. [Google Scholar] [CrossRef]
- Anderson, D.C.; Lindsay, A.; DeCarlo, P.F.; Wood, E.C. Urban Emissions of Nitrogen Oxides, Carbon Monoxide, and Methane Determined from Ground-Based Measurements in Philadelphia. Environ. Sci. Technol. 2021, 55, 4532–4541. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.N.; Ramachandran, A.; Chandran, S.; Li, M.; Varma, R. An Open-Path Dual-Beam Laser Spectrometer for Path-Integrated Urban NO2 Sensing. Sens. Actuators A 2020, 315, 112208. [Google Scholar] [CrossRef]
- Halpin, E.F.; Venables, D.S.; Hellebust, S. Effect of School Traffic on Nitrogen Dioxide Levels in a Narrow Street Canyon. 2025; Manuscript in preparation, Cork, Ireland. [Google Scholar]
- Tuzson, B.; Mangold, M.; Looser, H.; Manninen, A.; Emmenegger, L. Compact Multipass Optical Cell for Laser Spectroscopy. Opt. Lett. 2013, 38, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.S.; Moyer, E.J.; Keutsch, F.N.; Anderson, J.G. Innovations in Cavity Enhanced Laser Absorption Spectroscopy: Using In Situ Measurements to Probe the Mechanisms Driving Climate Change. In In Proceedings of the NASA Earth Science Technology Conference (ESTC 2003), College Park, MD, USA, 24–26 June 2003. [Google Scholar]
- Das, D.; Wilson, A.C. Very Long Optical Path-Length from a Compact Multi-Pass Cell. Appl. Phys. B 2011, 103, 749–754. [Google Scholar] [CrossRef]
Compound | σ437.3nm | σ439.4 nm | Δσ | Ntyp | Δε |
---|---|---|---|---|---|
cm2 molecule−1 | molecules cm−3 | cm−1 | |||
NO2 | 4.2 × 10−19 | 6.1 × 10−19 | 1.9 × 10−19 | >1011 | >2 × 10−8 |
Glyoxal | 1.0 × 10−19 | 1.6 × 10−19 | 0.5 × 10−19 | 3 × 1010 | 1.5 × 10−9 |
Methylglyoxal | 1.00 × 10−19 | 1.05 × 10−19 | 5 × 10−21 | 1011 | 5 × 10−10 |
O3 | 7.7 × 10−23 | 9.7 × 10−23 | 2.0 × 10−23 | 1012 | 2 × 10−11 |
O4 | 4.0 × 10−48 | 7.2 × 10−48 | 3.2 × 10−48 | (5 × 1018)2 | 8 × 10−11 |
H2O | 0.2 × 10−27 | 1.3 × 10−27 | 1.1 × 10−27 | 6 × 1017 | 7 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halpin, E.F.; Vikas, R.; Dorney, C.W.; Wang, M.; Venables, D.S. Demonstration of a Simplified, Two-Wavelength Optical Approach to Measuring Nitrogen Dioxide in Cities. Atmosphere 2025, 16, 599. https://doi.org/10.3390/atmos16050599
Halpin EF, Vikas R, Dorney CW, Wang M, Venables DS. Demonstration of a Simplified, Two-Wavelength Optical Approach to Measuring Nitrogen Dioxide in Cities. Atmosphere. 2025; 16(5):599. https://doi.org/10.3390/atmos16050599
Chicago/Turabian StyleHalpin, Eibhlín F., Rohit Vikas, Conor W. Dorney, Meng Wang, and Dean S. Venables. 2025. "Demonstration of a Simplified, Two-Wavelength Optical Approach to Measuring Nitrogen Dioxide in Cities" Atmosphere 16, no. 5: 599. https://doi.org/10.3390/atmos16050599
APA StyleHalpin, E. F., Vikas, R., Dorney, C. W., Wang, M., & Venables, D. S. (2025). Demonstration of a Simplified, Two-Wavelength Optical Approach to Measuring Nitrogen Dioxide in Cities. Atmosphere, 16(5), 599. https://doi.org/10.3390/atmos16050599