Increasing Atmospheric Surface Spread in an Ensemble Model Using Land Cover Fraction Perturbations
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Land Surface Fraction Perturbations
2.3. Parameter Sensitivity Study
2.4. Verification Method
2.5. Trial Details
3. Results
3.1. Global Domain Verification
3.2. Tropical Domain Verification
3.3. Australian Domain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NCI | National Computing Infrastructure |
| ACCESS | Australian Community Climate and Earth System Simulator |
| GE | Global ensemble |
Appendix A. Logarithmic Sampling

References
- Gneiting, T.; Raftery, A.E. Weather forecasting with ensemble methods. Science 2005, 310, 248–249. [Google Scholar] [CrossRef]
- Palmer, T.N. The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Q. J. R. Meteorol. Soc. 2002, 128, 747–774. [Google Scholar] [CrossRef]
- Clayton, A.; Lorenc, A.; Barker, D. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q. J. R. Meteorol. Soc. 2013, 139, 1445–1461. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.; Whitaker, J. GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Weather. Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Kleist, D.T.; Ide, K. An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Weather. Rev. 2015, 143, 433–451. [Google Scholar] [CrossRef]
- Buehner, M.; McTaggart-Cowan, B.A.R.; Charette, C.; Garand, L.; Heilliette, S.; Lapalme, E.; Laroche, S.; Macpherson, S.; Morneau, J.; Zadra, A. Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Mon. Weather. Rev. 2015, 143, 2532–2559. [Google Scholar] [CrossRef]
- Palmer, T.; Buizza, R.; Hagedorn, R.; Lawrence, A.; Leutbecher, M.; Smith, L. Ensemble prediction: A pedagogical perspective. ECMWF Newsl. 2006, 106, 10–17. [Google Scholar]
- Leutbecher, M.; Palmer, T. Ensemble forecasting. J. Comput. Phys. 2008, 227, 3315–3539. [Google Scholar] [CrossRef]
- Fortin, V.; Abaza, M.; Anctil, F.; Turcotte, R. Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeorol. 2014, 15, 1708–1713. [Google Scholar] [CrossRef]
- Haiden, T.; Janousek, M.; Vitart, F.; Bouallegue, Z.; Ferranti, L.; Prates, F.; Richardson, D. Evaluation of ECMWF Forecasts, Including the 2018 Upgrade; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- Rodwell, M.; Richardson, D.; Parsons, D.; Wernli, H. Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Am. Meteorol. Soc. 2018, 99, 1015–1026. [Google Scholar] [CrossRef]
- Roberts, C.; Leutbacher, M. Unbiased calculation, evaluation, and calibration of ensemble forecast anomalies. Q. J. R. Meteorol. Soc. 2025, 151, e4993. [Google Scholar] [CrossRef]
- Buizza, R.; Barkmeijer, J.; Palmer, T.N.; Richardson, D.S. Current status and future developments of the ECMWF Ensemble Prediction System. Meteorol. Appl. 2000, 7, 163–175. [Google Scholar] [CrossRef]
- Palmer, T.N.; Shutts, G.J.; Hagedorn, R.; Doblas-Reyes, F.J.; Jung, T.; Leutbecher, M. Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci. 2005, 33, 163–193. [Google Scholar] [CrossRef]
- Mullen, S.L.; Buizza, R. Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Weather. Rev. 2001, 129, 638–663. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S. Ensemble calibration of 500-hPa geopotential height and 850-hPa and 2-m temperatures using reforecasts. Mon. Weather. Rev. 2007, 135, 3273–3280. [Google Scholar] [CrossRef]
- Flowerdew, J.; Bowler, N.E. Improving the use of observations to calibrate ensemble spread. Q. J. R. Meteorol. Soc. 2011, 137, 467–482. [Google Scholar] [CrossRef]
- Flowerdew, J.; Bowler, N.E. On-line calibration of the vertical distribution of ensemble spread. Q. J. R. Meteorol. Soc. 2013, 139, 1863–1874. [Google Scholar] [CrossRef]
- Lavaysse, C.; Carrera, S.; Belair, N.; Gagnon, R.; Frenette, M.; Yau, M. Impact of surface parameter uncertainties within the Canadian Regional Ensemble Prediction System. Mon. Weather. Rev. 2013, 141, 1506–1526. [Google Scholar] [CrossRef]
- Bouttier, F.; Raynaud, L.; Nuissier, O.; Ménétrier, B. Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX. Q. J. R. Meteorol. Soc. 2016, 142, 390–403. [Google Scholar] [CrossRef]
- Gehne, M.; Hamill, T.; Bates, G.T.; Pegion, P.; Kolczynski, W. Land surface parameter and state perturbations in the Global Ensemble Forecast System. Mon. Weather. Rev. 2019, 147, 1319–1340. [Google Scholar] [CrossRef]
- Draper, C. Accounting for Land Model Uncertainty in Numerical Weather Prediction Ensemble Systems: Toward Ensemble-Based Coupled Land–Atmosphere Data Assimilation. J. Hydrometeorol. 2021, 22, 2089–2104. [Google Scholar]
- Bureau of Meteorology. APS3 Upgrade of the ACCESS-G/GE Numerical Weather Prediction System; Operations Bulletin Number 125; Bureau of Meteorology National Operational Centre: Melbourne, Australia, 2019.
- Walters, D.B.I.; Brooks, M.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; Bushell, A. The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef]
- Bishop, C.; Etherton, B.; Majumdar, S. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather. Rev. 2001, 129, 420–436. [Google Scholar] [CrossRef]
- Hunt, B.; Kostelich, E.; Szunyogh, I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom. 2007, 230, 112–126. [Google Scholar] [CrossRef]
- Zidikheri, M.J.; Steinle, P.J.; Xiao, Y.; Villardon, E.A. An objective evaluation of the Bureau’s ACCESS-GE4 global ensemble model. Aust. Bur. Meteorol. Melb. 2024, 137, 1717–1720. [Google Scholar]
- Yano, J.; Ziemiański, M.; Cullen, M.; Termonia, P.; Onvlee, J.; Bengtsson, L.; Carrassi, A.; Davy, R.; Deluca, A.; Gray, S.; et al. Scientific challenges of convective-scale numerical weather prediction. Bull. Am. Meteorol. Soc. 2018, 99, 699–710. [Google Scholar] [CrossRef]
- Gregory, D.; Rowntree, P.R. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Weather. Rev. 1990, 118, 1483–1506. [Google Scholar] [CrossRef]
- Gregory, D.; Allen, S. The effect of convective scale downdraughts upon NWP and climate simulations. In Proceedings of the 9th Conference on Numerical Weather Prediction, Denver, CO, USA, 14–18 October 1991; pp. 122–123. [Google Scholar]
- Bowler, N.; Arribas, A.; Mylne, K.; Robertson, K.; Beare, S. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 2008, 134, 703–722. [Google Scholar] [CrossRef]
- Bowler, N.; Arribas, A.; Beare, S.; Mylne, K.; Shutts, G. The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 2009, 135, 767–776. [Google Scholar] [CrossRef]
- Donlon, C.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar]
- Tennant, W.; Beare, S. New schemes to perturb sea-surface temperature and soil moisture content in MOGREPS. Q. J. R. Meteorol. Soc. 2013, 140, 1150–1160. [Google Scholar] [CrossRef]
- Best, M.; Pryor, M.; Clark, D.; Rooney, G.; Essery, R.; Ménard, C.; Edwards, J.; Hendry, M.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES), model description–Part 1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef]
- De Rosnay, P.; Drusch, M.; Vasiljevic, D.; Balsamo, G.; Albergel, C.; Isaksen, L. A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q. J. R. Meteorol. Soc. 2013, 139, 1199–1213. [Google Scholar] [CrossRef]
- Gómez, B.; Charlton-Pérez, C.; Lewis, H.; Candy, B. The Met Office Operational Soil Moisture Analysis System. Remote Sens. 2020, 12, 3691. [Google Scholar] [CrossRef]
- Loveland, T.; Belward, A. The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, M.; De Maeyer, P.; Kurban, A. Uncertainties in classification system conversion and an analysis of inconsistencies in global land cover products. ISPRS Int. J. Geo-Inf. 2017, 6, 112. [Google Scholar] [CrossRef]
- Wiltshire, A.; Rojas, M.D.; Edwards, J.; Gedney, N.; Harper, A.; Hartley, A.; Hendry, M.; Robertson, E.; Smout-Day, K. JULES-GL7: The Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2. Geosci. Model Dev. 2020, 13, 483–505. [Google Scholar] [CrossRef]
- Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Betts, A.O.R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S. Plant functional type classification for earth system models: Results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [Google Scholar] [CrossRef]
- Menon, A.; Turner, A.; Volonte, A.; Taylor, C.; Webster, S.; Martin, G. The role of mid-tropospheric moistening and land-surface wetting in the progression of the 2016 Indian monsoon. Q. J. R. Meteorol. Soc. 2022, 148, 3033–3055. [Google Scholar] [CrossRef]
- Hersbach, H.; Coauthors, A. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Good, E. An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. J. Geophys. Res. Atmos. 2016, 121, 8801–8819. [Google Scholar] [CrossRef]
- Good, E.; Ghent, D.; Bulgin, C.; Remedios, J. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef]








| No Smoothing σ = 0 km | Moderate Smoothing σ = 60 km | Large Smoothing σ = 120 km | |
|---|---|---|---|
| α values | 1.0, 2.0, 3.0, 4.0 | 1.0, 2.0, 3.0 | 1.0, 2.0, 3.0, 4.0, 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zidikheri, M.J.; Steinle, P.J.; Dharssi, I. Increasing Atmospheric Surface Spread in an Ensemble Model Using Land Cover Fraction Perturbations. Atmosphere 2025, 16, 1366. https://doi.org/10.3390/atmos16121366
Zidikheri MJ, Steinle PJ, Dharssi I. Increasing Atmospheric Surface Spread in an Ensemble Model Using Land Cover Fraction Perturbations. Atmosphere. 2025; 16(12):1366. https://doi.org/10.3390/atmos16121366
Chicago/Turabian StyleZidikheri, Meelis J., Peter John Steinle, and Imtiaz Dharssi. 2025. "Increasing Atmospheric Surface Spread in an Ensemble Model Using Land Cover Fraction Perturbations" Atmosphere 16, no. 12: 1366. https://doi.org/10.3390/atmos16121366
APA StyleZidikheri, M. J., Steinle, P. J., & Dharssi, I. (2025). Increasing Atmospheric Surface Spread in an Ensemble Model Using Land Cover Fraction Perturbations. Atmosphere, 16(12), 1366. https://doi.org/10.3390/atmos16121366

