Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources and Preprocessing
2.3. Variable Selection
2.4. Methods
2.4.1. Land Use Carbon Emission Estimation Methods
- (1)
- Direct carbon emissions calculation method
- (2)
- Indirect carbon emissions calculation method
- (3)
- CO2 net carbon emissions
2.4.2. Land Use and Carbon Emissions Relationship Model
- (1)
- XGBoost model
- (2)
- CatBoost model
- (3)
- LightGBM model
- (4)
- Stacking ensemble learning models
2.4.3. Model Evaluation
2.4.4. Model Design
3. Results
3.1. Spatio-Temporal Characteristics of the Change in Land Use
3.2. Spatio-Temporal Characteristics of Carbon Emissions
3.3. Spatial-Temporal Variation and Correlation Analysis of Influencing Factors
3.4. Analysis of the Model Results
4. Discussion
4.1. Model Performance Discussion
4.2. Evaluation of the Results of the Carbon Emission Calculation
4.3. Feature Importance Analysis
4.3.1. Single-Factor Analysis
4.3.2. Interaction Effect Analysis
5. Conclusions
- (1)
- CO2 net emissions showed a significant upward trend from 2002 to 2022, with a net increase of 468.74 Mt. The main reason for this increase was the rapid expansion of construction land, which increased by approximately 1.61 × 106 hm2, causing the proportion of carbon emissions to continue to increase. Meanwhile, carbon sources increased, while carbon sinks (grasslands and water bodies) decreased by 5.24% and 9.60%, respectively, accelerating the net increase in carbon emissions. The acceleration of urbanization and industrialization has driven land development and infrastructure construction, accompanied by the degradation of natural ecosystems and a significant weakening of carbon sink functions, thus contributing to the continuous increase in regional carbon emissions.
- (2)
- Compared to the other three single models, the stacking ensemble model demonstrates superior predictive capability, showing strong feature extraction capabilities and significant advantages in predictive accuracy and stability. Its R2, RMSE and RPD values are 0.80, 4.46, and 2.22, respectively, which are better than the XGBoost model by 21.21%, 23.27% and 30.59%, respectively; better than the CatBoost model by 19.40%, 22.16% and 28.32%; and better than the LightGBM model by 40.35%, 31.17% and 45.10%. The stacking model effectively integrates the strengths of different learning models by combining the prediction results of multiple base learners, making full use of multisource feature information, and significantly improving the fitting and generalization capabilities of complex nonlinear relationships.
- (3)
- The variable feature importance ranking in the stacking ensemble model shows that CO2 net emissions are influenced by both human factors (GDPpc, POD, and TI) and natural factors (LUI, Kwater, LPI, LSI, NP, and Kcrop). When combined with Pearson correlation analysis, CO2 net emissions were positively correlated with LUI, LUM, LA, Kwood, Kcons, GDPpc, UR, POD, TI, SI, NP, PD, LSI, IJI, and MSIDI and negatively correlated with Kcrop, Kgrass, Kwater, LPI, CONTAG, and PAFRAC. Absolute correlation coefficients are generally consistent with the importance evaluation of the characteristics. The most influential factors are GDPpc, POD, TI, LUI, Kwater, and LPI, in that order. This demonstrates that socioeconomic activities and landscape patterns influence carbon emissions through multidimensional pathways, and factors including population density, economic level, and land use intensity significantly regulate the spatial distribution and dynamic changes in regional carbon emissions by altering energy consumption structures and ecosystem functions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godlewska, M.; Balk, H.; Izydorczyk, K.; Kaczkowski, Z.; Mankiewicz-Boczek, J.; Ye, S. Rapid in situ assessment of high-resolution spatial and temporal distribution of cyanobacterial blooms using fishery echosounder. Sci. Total Environ. 2023, 857, 159492. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, M.-N.; Yang, C.-H.; Zhang, R.-Z.; Zhang, Q.-P.; Wang, Q. Characteristics of spatial and temporal carbon emissions from different land uses in Shanxi section of the Yellow River, China. Environ. Dev. Sustain. 2023, 26, 20869–20884. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Figueres, C.; Le Quéré, C.; Mahindra, A.; Bäte, O.; Whiteman, G.; Peters, G.; Guan, D. Emissions are still rising: Ramp up the cuts. Nature 2018, 564, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial correlation evolution and prediction scenario of land use carbon emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Wang, H.; He, Z.; Liu, Z.; Ren, Y.; Zhao, P. The effects of urban land use on energy-related CO2 emissions in China. Sci. Total Environ. 2023, 870, 161873. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Wu, F. Impacts of urban forms and socioeconomic factors on CO2 emissions: A spatial econometric analysis. J. Clean. Prod. 2022, 372, 133722. [Google Scholar] [CrossRef]
- Cai, C.; Fan, M.; Yao, J.; Zhou, L.; Wang, Y.; Liang, X.; Liu, Z.; Chen, S. Spatial-temporal characteristics of carbon emissions corrected by socio-economic driving factors under land use changes in Sichuan Province, southwestern China. Ecol. Inform. 2023, 77, 102164. [Google Scholar] [CrossRef]
- Pu, X.; Cheng, Q.; Chen, H. Spatial–temporal dynamics of land use carbon emissions and drivers in 20 urban agglomerations in China from 1990 to 2019. Environ. Sci. Pollut. Res. 2023, 30, 107854–107877. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Q.; Zhang, W. Structural path and sensitivity analysis of the CO2 emissions in the construction industry. Environ. Impact Assess. Rev. 2022, 92, 106679. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Zhang, Z.; Niu, C. Influencing Factors of Energy-Related CO2 Emissions in China: A Decomposition Analysis. Sustainability 2015, 7, 14408–14426. [Google Scholar] [CrossRef]
- Zhang, R.; Matsushima, K.; Kobayashi, K. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy 2018, 74, 32–40. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Zhang, X.; Yang, Y.; Su, Y.; Ye, Y.; Zhang, H. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef] [PubMed]
- Mo, L. Evaluation model of carbon emission efficiency of land intensive use based on SBM model. Int. J. Environ. Technol. Manag. 2024, 27, 200–215. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Meng, Q.; Zheng, Y.; Liu, Q.; Li, B.; Wei, H. Analysis of Spatiotemporal Variation and Influencing Factors of Land-Use Carbon Emissions in Nine Provinces of the Yellow River Basin Based on the LMDI Model. Land 2023, 12, 437. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X. Path analysis and mediating effects of influencing factors of land use carbon emissions in Chang-Zhu-Tan urban agglomeration. Technol. Forecast. Soc. Chang. 2023, 188, 122268. [Google Scholar] [CrossRef]
- da Costa, L.M.; de Mendonça, G.C.; de Araújo Santos, G.A.; Pacheco, F.A.L.; de Souza Rolim, G.; Panosso, A.R.; La Scala, N., Jr. Drivers of atmospheric CO2 concentration in southeast Brazil: Insights from land use change, vegetation, and climate factors. Remote Sens. Appl. Soc. Environ. 2025, 38, 101614. [Google Scholar] [CrossRef]
- Qiao, R.; Wu, Z.; Jiang, Q.; Liu, X.; Gao, S.; Xia, L.; Yang, T. The nonlinear influence of land conveyance on urban carbon emissions: An interpretable ensemble learning-based approach. Land Use Policy 2024, 140, 107117. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; You, X.-Y. System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin. Renew. Sustain. Energy Rev. 2023, 184, 113579. [Google Scholar] [CrossRef]
- Pes, B. Evaluating feature selection robustness on high-dimensional data. In International Conference on Hybrid Artificial Intelligence Systems; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Acheampong, A.O.; Boateng, E.B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 2019, 225, 833–856. [Google Scholar] [CrossRef]
- Zhang, M.; Al Kafy, A.; Xiao, P.; Han, S.; Zou, S.; Saha, M.; Zhang, C.; Tan, S. Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China. Urban Clim. 2023, 47, 101347. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, W.; Maruyama, Y. Damaged Building Extraction Using Modified Mask R-CNN Model Using Post-Event Aerial Images of the 2016 Kumamoto Earthquake. Remote Sens. 2022, 14, 1002. [Google Scholar]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar]
- Hoxha, J.; Çodur, M.Y.; Mustafaraj, E.; Kanj, H.; El Masri, A. Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis. Appl. Energy 2023, 350, 121765. [Google Scholar] [CrossRef]
- Zhang, B.; Ling, L.; Zeng, L.; Hu, H.; Zhang, D. Multi-step prediction of carbon emissions based on a secondary decomposition framework coupled with stacking ensemble strategy. Environ. Sci. Pollut. Res. 2023, 30, 71063–71087. [Google Scholar] [CrossRef]
- Zhao, C.; Cao, X.; Chen, X.; Cui, X. A consistent and corrected nighttime light dataset (CCNL 1992–2013) from DMSP-OLS data. Sci. Data 2022, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Kang, G.; Tsuruta, H.; Mosier, A. Estimate of CH4 Emissions from Year-Round Flooded Rice Fields During Rice Growing Season in China. Pedosphere 2005, 15, 66–71. [Google Scholar]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Sun, H.; Liang, H.; Chang, X.; Cui, Q.; Tao, Y. Land Use Patterns on Carbon Emission and Spatial Association in China. Econ. Geogr. 2015, 35, 154–162. [Google Scholar]
- Shaofeng, Y.; Yiyu, T. Spatial Differentiation of Land Use Carbon Emission in the Yangtze RiverEconomic Belt Based on Low Carbon Perspective. Econ. Geogr. 2019, 39, 190–198. [Google Scholar]
- Shi, H.; Mu, X.; Zhang, Y.; Lu, M.Q. Effects of Different Land Use Patterns on Carbon Emission in Guangyuan City of Sichuan Province. Bull. Soil Water Conserv. 2012, 32, 101–106. [Google Scholar]
- Mengjie, W.; Yanjun, W.; Shaochun, L. Spatio-temporal difference analysis of carbon emissions in Chang-Zhu-Tanurban agglomeration based on multi-source remote sensing data. Bull. Surv. Mapp. 2023, 1, 65. [Google Scholar]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 2021, 38, 4145–4162. [Google Scholar] [CrossRef]
- Zhang, L.; Jánošík, D. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 2024, 241, 122686. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2020, 54, 1937–1967. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Wei, X.; Rao, C.; Xiao, X.; Chen, L.; Goh, M. Risk assessment of cardiovascular disease based on SOLSSA-CatBoost model. Expert Syst. Appl. 2023, 219, 119648. [Google Scholar] [CrossRef]
- Guolin Ke, Q.M. LightGBM: A Highly Effcient Gradient BoostingDecision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 52. [Google Scholar]
- Friedman, J.; Hastie, T. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Ghasemieh, A.; Lloyed, A.; Bahrami, P.; Vajar, P.; Kashef, R. A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients. Decis. Anal. J. 2023, 7, 100242. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, H. A novel stacking ensemble learner for predicting residual strength of corroded pipelines. Npj Mater. Degrad. 2024, 8, 87. [Google Scholar] [CrossRef]
- Cerqueira, V.; Torgo, L.; Mozetič, I. Evaluating time series forecasting models: An empirical study on performance estimation methods. Mach. Learn. 2020, 109, 1997–2028. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Zhao, A.B.; Cheng, T. Stock return prediction: Stacking a variety of models. J. Empir. Financ. 2022, 67, 288–317. [Google Scholar] [CrossRef]
- Hu, S.; Li, S.; Gong, L.; Liu, D.; Wang, Z.; Xu, G. Carbon emissions prediction based on ensemble models: An empirical analysis from China. Environ. Model. Softw. 2025, 188, 106437. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Zhou, A.; Yang, K. A novel ensemble approach for road traffic carbon emission prediction: A case in Canada. Environ. Dev. Sustain. 2024, 27, 15977–16013. [Google Scholar] [CrossRef]
- Tian, S.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Yang, Y.; Hu, Z.; Li, C.; Deng, Y. Global patterns and changes of carbon emissions from land use during 1992–2015. Environ. Sci. Ecotechnol. 2021, 7, 100108. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Pizarro, G.G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2016, 23, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chang, Y.; Li, X.; Shan, M. Factors influencing embodied carbon emissions of China’s building sector: An analysis based on extended STIRPAT modeling. Energy Build. 2022, 255, 111607. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Zhao, L.; Zhang, H.; Chen, M.-N.; Fang, R.-Y.; Yao, Y.; Zhang, Q.-P.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Fu, M.; Xue, J. The role of land use landscape patterns in the carbon emission reduction: Empirical evidence from China. Ecol. Indic. 2023, 156, 111176. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Tsai, C.; Yeh, C. Faith-Shap: The Faithful Shapley Interaction Index. J. Mach. Learn. Res. 2023, 24, 1–42. [Google Scholar]
- Wang, Z.; Hao, P.; Yao, P. Non-Linear Relationship between Economic Growth and CO2 Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models. Int. J. Environ. Res. Public Health 2017, 14, 1568. [Google Scholar] [CrossRef]
- Han, X.; Fu, M.; Huang, X. Spatiotemporal Heterogeneity of Land-Use Landscape Pattern Effects on CO2 Emissions at the City-Level Scale in China. Land 2025, 14, 1715. [Google Scholar] [CrossRef]
Data Name | Time | Data Source | Data Information |
---|---|---|---|
Land use data (Version 1.0.3) | 2002–2022 | The 30 m annual land cover datasets and their dynamics in China from 1985 to 2023 https://zenodo.org/records/12779975 (accessed on 1 October 2025) | 30 m × 30 m Cropland, forest, grassland, water, built-up land, unused land (six land use types) |
Carbon emissions data (based on fossil fuel data) | 2002–2022 | ODIAC Fossil fuel emission dataset from the center for Global Environmental Research | 1 km × 1 km |
Nighttime lighting data | 2002–2022 | https://eogdata.mines.edu/products/dmsp/ (accessed on 8 November 2024) https://eogdata.mines.edu/products/vnl/ (accessed on 8 November 2024) | DMSP/OLS (2002–2012) NPP/VIIRS (2013–2022) |
Socioeconomic data | 2002–2022 | China Urban Statistical Yearbook, Statistical Yearbooks of Provinces, Municipalities, and Prefectures | Population density, GDP, urbanization rate, and proportion of industry structure |
Indicator Layer | Formula | Instructions | ||
---|---|---|---|---|
Land use patterns | Land use mix index | is the area proportion of the land use type (%); n is the number of land use types. | ||
Land use degree comprehensive index | is the number of land use classification levels, , is the land use area at level i and the total land area in the region. | |||
Land use dynamics | Single land use dynamic | and are the areas of land use type at the outset and end of the study period. | ||
Comprehensive land use Dynamics | is the area of land use type converted to land use type during the study period; is the area of land use type at the beginning study. | |||
Landscape index | Number of patches | NP describes the heterogeneity of the whole landscape. | ||
Patch density | The larger the PD, the more dispersed the urban land use. | |||
Largest patch index () | LPI is the proportion of the largest patch to the total area of the landscape. | |||
Interspersion andjuxtaposition index () | IJI calculates the overall distribution and juxtaposition of individual patches. | |||
Landscape shape index () | LSI is used to measure the total length or density of the edge. | |||
Modified Simpson’s Evenness Index | MSIEI is the uniformity of distribution between patch types. | |||
Contagion index | CONTAG is the connectivity between different types of patches. Higher values indicate higher connectivity. | |||
Perimeter-Area Fractal Dimension | PAFRAC reflects the complexity of the shape on a range of spatial patches (patch sizes). | |||
Social and economic factors | Urbanization Rate () | Urban population/total population of the region | The proportion of the urban population in the total population of the region. | |
Population Density () | Total population/Administrative area | Population density of prefecture-level cities. | ||
GDP per capita () | GDP total value/average annual population total | Per capita economic scale and level of development in the region. | ||
Secondary industry share () | Secondary industrial output/total industrial output | The proportion of the output value of the secondary industry to the total output value in the region. | ||
Tertiary industry share () | Tertiary industry output/total output | The proportion of the output value of the tertiary industry to the total output value of the region. |
Land Type | Carbon Emission Factor | Reference Sources |
---|---|---|
Cropland | 0.4970 | Cai et al., 2005 [31] |
Forest | −0.6440 | Fang et al., 2007 [32] |
Grassland | −0.0205 | Sun et al., 2015 [33] |
Water | −0.0230 | Yuan et al., 2019 [34] |
Unused Land | −0.0050 | Shi et al., 2012 [35] |
Number | Min (Mt) | Max (Mt) | Standard Deviation (Mt) | |
---|---|---|---|---|
Training set | 399 | −2.73 | 71.94 | 6.72 |
Test set | 266 | −2.35 | 81.77 | 9.93 |
Land Use Type | Area in 2002 (hm2) | Area in 2012 (hm2) | Increase/ Decrease Rate (2002–2012) | Area in 2022 (hm2) | Increase/ Decrease Rate (2012–2022) | Increase/ Decrease Rate (2002–2022) |
---|---|---|---|---|---|---|
Cropland | 5.37 × 107 | 5.24 × 107 | −2.46% | 5.09 × 107 | −2.86% | −5.24% |
Forest | 8.28 × 107 | 8.37 × 107 | 1.07% | 8.50 × 107 | 1.55% | 2.63% |
Grassland | 3.41 × 107 | 3.31 × 107 | −2.95% | 3.23 × 107 | −2.36% | −5.24% |
Water | 3.83 × 106 | 3.86 × 106 | 0.88% | 3.46 × 106 | −10.39% | −9.60% |
Built-up land | 2.26 × 106 | 3.45 × 106 | 52.20% | 4.61 × 106 | 33.68% | 103.46% |
Unused land | 1.56 × 106 | 1.78 × 106 | 14.56% | 2.00 × 106 | 12.40% | 28.77% |
Provinces | Regression Results | Provinces | Regression Results | ||||
---|---|---|---|---|---|---|---|
Fitting Equations | R2 | F value | Fitting Equations | R2 | F Value | ||
Henan | y = 4636ln(x) − 4399.7 | 0.93 | 191.50 | Hubei | y = 1763.3ln(x) − 248.69 | 0.91 | 160.03 |
Zhejiang | y = 4531.1ln(x) − 7112.1 | 0.94 | 238.67 | Chongqing | y = 710.02ln(x) + 668.3 | 0.92 | 183.16 |
Qinghai | y = 336.32ln(x) + 248.42 | 0.95 | 337.49 | Jiangsu | y = 9486.3ln(x) − 22,398 | 0.93 | 230.47 |
Gansu | y = 2040.8ln(x) − 1357.4 | 0.92 | 186.76 | Shanghai | y = 5684.6ln(x) − 13,858 | 0.93 | 182.26 |
Xizang | y = 77.545ln(x) + 172.02 | 0.92 | 182.58 | Jiangxi | y = 1049.9ln(x) + 618.69 | 0.92 | 130.34 |
Guangxi | y = 1378ln(x) + 811.11 | 0.94 | 247.83 | Guizhou | y = 884.49ln(x) + 1627.9 | 0.93 | 177.91 |
Fujian | y = 2293.2ln(x) − 1667.3 | 0.95 | 311.33 | Hunan | y = 1400.1ln(x) + 651.89 | 0.94 | 237.96 |
Shaanxi | y = 3591.4ln(x) − 3872.8 | 0.97 | 548.33 | Yunnan | y = 2049ln(x) − 1059.2 | 0.92 | 192.82 |
Guangdong | y = 10,223ln(x) − 27,931 | 0.91 | 149.75 | Sichuan | y = 1529ln(x) + 31.222 | 0.92 | 171.56 |
Anhui | y = 2595.4ln(x) − 40.555 | 0.93 | 230.72 |
2002 | 2007 | 2012 | 2017 | 2022 | ||
---|---|---|---|---|---|---|
UYRB | Mean | 0.70 | 1.44 | 2.14 | 2.18 | 2.54 |
SD | 1.88 | 3.16 | 4.34 | 4.43 | 5.06 | |
MYRB | Mean | 1.11 | 1.97 | 2.80 | 2.87 | 3.32 |
SD | 1.23 | 2.03 | 2.88 | 2.94 | 3.37 | |
LYRB | Mean | 4.50 | 8.22 | 12.46 | 12.73 | 14.62 |
SD | 6.13 | 11.46 | 17.21 | 17.58 | 19.74 |
LUM | LUI | LA | K | GDPpc | POD | UR | ||||
Kcrop | Kwood | Kgrass | Kwater | Kcons | ||||||
0.264 | 0.470 | 0.170 | −0.042 | 0.016 | −0.200 | −0.101 | 0.008 | 0.526 | 0.836 | 0.270 |
SI | TI | NP | LPI | LSI | MSIDI | PD | IJI | CONTAG | PAFRAC | |
0.105 | 0.296 | 0.057 | −0.266 | 0.134 | 0.308 | 0.062 | 0.025 | −0.238 | −0.048 |
Training Set | Test Set | |||||
---|---|---|---|---|---|---|
Model | R2 | RMSE (Mt) | RPD | R2 | RMSE (Mt) | RPD |
XGBoost | 0.71 | 3.51 | 1.87 | 0.66 | 5.82 | 1.70 |
CatBoost | 0.72 | 3.52 | 1.91 | 0.67 | 5.73 | 1.73 |
LightGBM | 0.69 | 3.75 | 1.79 | 0.57 | 6.48 | 1.53 |
Stacking | 0.87 | 2.43 | 2.76 | 0.80 | 4.46 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, B.; Wang, Q.; Diao, Z.; Li, J.; Liu, W.; Gao, Q.; Shu, Y.; Du, J. Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data. Atmosphere 2025, 16, 1173. https://doi.org/10.3390/atmos16101173
Pan B, Wang Q, Diao Z, Li J, Liu W, Gao Q, Shu Y, Du J. Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data. Atmosphere. 2025; 16(10):1173. https://doi.org/10.3390/atmos16101173
Chicago/Turabian StylePan, Banglong, Qi Wang, Zhuo Diao, Jiayi Li, Wuyiming Liu, Qianfeng Gao, Ying Shu, and Juan Du. 2025. "Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data" Atmosphere 16, no. 10: 1173. https://doi.org/10.3390/atmos16101173
APA StylePan, B., Wang, Q., Diao, Z., Li, J., Liu, W., Gao, Q., Shu, Y., & Du, J. (2025). Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data. Atmosphere, 16(10), 1173. https://doi.org/10.3390/atmos16101173