Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Temporal Scope
2.2. Atmospheric Pollution Data
2.3. Meteorological Data
2.4. Fire Occurrence Data
2.5. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Logan, J.A.; Staehelin, J.; Megretskaia, I.A.; Cammas, J.-P.; Thouret, V.; Claude, H.; de Backer, H.; Steinbacher, M.; Scheel, H.-E.; Stübi, R.; et al. Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J. Geophys. Res. 2012, 117, D09301. [Google Scholar] [CrossRef]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Crutzen, P.J. The Role of NO and NO2 in the Chemistry of the Troposphere and Stratosphere. Ann. Rev. Earth Planet. Sci. 1979, 7, 443–472. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Liu, P.; Mu, J.; He, G.; Zang, C.; Tong, S.; Xue, C.; Zhao, X.; Ge, M.; et al. Atmospheric NOx oxidation as major sources for nitrous acid (HONO). npj Clim. Atmos. Sci. 2023, 6, 30. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- Liley, J.B.; Johnston, P.V.; McKenzie, R.L.; Thomas, A.J.; Boyd, I.S. Stratospheric NO2 variations from a long time series at Lauder, New Zealand. J. Geophys. Res. 2000, 105, 11633–11640. [Google Scholar] [CrossRef]
- Gruzdev, A.N.; Elokhov, A.S. Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station. Izv. Atmos. Ocean. Phys. 2009, 45, 444–455. [Google Scholar] [CrossRef]
- Hendricks, A.G.; Holzbaur, E.L.; Goldman, Y.E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl. Acad. Sci. USA 2012, 109, 18447–18452. [Google Scholar] [CrossRef]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Solomon, S.; Dube, K.; Stone, K.; Yu, P.; Kinnison, D.; Toon, O.B.; Strahan, S.E.; Rosenlof, K.H.; Portmann, R.; Davis, S.; et al. On the stratospheric chemistry of midlatitude wildfire smoke. Proc. Natl. Acad. Sci. USA 2022, 119, e2117325119. [Google Scholar] [CrossRef]
- Stolarski, R.S.; Waugh, D.W.; Wang, L.; Oman, L.D.; Douglass, A.R.; Newman, P.A. Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos. 2014, 119, 6196–6206. [Google Scholar] [CrossRef]
- Meier, A.C.; Schönhardt, A.; Bösch, T.; Richter, A.; Seyler, A.; Ruhtz, T.; Constantin, D.-E.; Shaiganfar, R.; Wagner, T.; Merlaud, A.; et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT. Atmos. Meas. Tech. 2017, 10, 1831–1857. [Google Scholar] [CrossRef]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Zyrichidou, I.; Koukouli, M.E.; Balis, D.S.; Kioutsioukis, I.; Poupkou, A.; Katragkou, E.; Melas, D.; Boersma, K.F.; van Roozendael, M. Evaluation of high resolution simulated and OMI retrieved tropospheric NO2 column densities over Southeastern Europe. Atmos. Res. 2013, 122, 55–66. [Google Scholar] [CrossRef]
- Eskes, H.J.; Boersma, K.F. Averaging kernels for DOAS total–column satellite retrievals. Atmos. Chem. Phys. 2003, 3, 1285–1291. [Google Scholar] [CrossRef]
- Wallace, J.; Kanaroglou, P. The sensitivity of OMI–derived nitrogen dioxide to boundary layer temperature inversions. Atmos. Environ. 2009, 43, 3596–3604. [Google Scholar] [CrossRef]
- Giovanni (Geospatial Interactive Online Visualization and Analysis Infrastructure), 2014. Giovanni 3 Online Users Manual. Available online: http://disc.sci.gsfc.nasa.gov/giovanni (accessed on 18 September 2025).
- Bucsela, E.J.; Celarier, E.A.; Wenig, M.O.; Gleason, J.F.; Veefkind, J.P.; Boersma, K.F.; Brinksma, E.J. Algorithm for NO2 vertical column retrieval from the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1245–1258. [Google Scholar] [CrossRef]
- Dragomir, C.M.; Constantin, D.-E.; Voiculescu, M.; Georgescu, L.P.; Merlaud, A.; Roozendael, M. Modeling results of atmospheric dispersion of NO2 in an urban area using METI–LIS and comparison with coincident mobile DOAS measurements. Atmos. Pollut. Res. 2015, 6, 503–510. [Google Scholar] [CrossRef]
- Celarier, E.A.; Brinksma, E.J.; Gleason, J.F.; Veefkind, J.P.; Cede, A.; Herman, J.R.; Ionov, D.; Goutail, F.; Pommereau, J.P.; Lambert, J.C.; et al. Validation of Ozone Monitoring Instrument nitrogen dioxide columns. J. Geophys. Res. Atmos. 2008, 113, D15S15. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; de Foy, B.; Lamsal, L.N.; Streets, D.G.; Lu, Z.F.; Pickering, K.E.; Krotkov, N.A. The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOX emission controls on power plants in the United States: 2005–2011. Atmos. Environ. 2013, 81, 102–111. [Google Scholar] [CrossRef]
- Hains, J.C.; Boersma, K.F.; Kroon, M.; Dirksen, R.J.; Cohen, R.C.; Perring, A.E.; Bucsela, E.; Volten, H.; Swart, D.P.J.; Richter, A.; et al. Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns. J. Geophys. Res. 2010, 115, D05301. [Google Scholar] [CrossRef]
- Han, K.M.; Lee, C.K.; Lee, J.; Kim, J.; Song, C.H. A comparison study between model-predicted and OMI-retrieved tropospheric NO2 columns over the Korean peninsula. Atmos. Environ. 2011, 45, 2962–2971. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef]
- Ul–Haq, Z.; Tariq, S.; Ali, M.; Mahmood, K.; Batool, S.A.; Rana, A.D. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Poll. Res. 2014, 5, 709–720. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Ullah, K.; Tan, W.; Xing, C.; Liu, H. Investigating the Effect of Different Meteorological Conditions on MAX-DOAS Observations of NO2 and CHOCHO in Hefei, China. Atmosphere 2019, 10, 353. [Google Scholar] [CrossRef]
- Babić, D.; Senčar, J. Periodic behaviour in ground-level environmental radioactivity: Fingerprints of solar activity? Proc. R. Soc. A 2018, 474, 20180109. [Google Scholar] [CrossRef]
- Zeng, J.; Tohjima, Y.; Fujinuma, Y.; Mukai, H.; Katsumoto, M. A study of trajectory quality using methane measurements from Hateruma Island. Atmos. Environ. 2003, 37, 1911–1919. [Google Scholar] [CrossRef]
- Mura, M.C.; De Felice, M.; Morlino, R.; Fuselli, S. Short-term monitoring of benzene air concentration in an urban area: A preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor. Ann. Dell’istituto Super. Sanità 2010, 46, 444–450. [Google Scholar] [CrossRef]
- Matasović, B.; Pehnec, G.; Bešlić, I.; Davila, S.; Babić, D. Assessment of ozone concentration data from the northern Zagreb area, Croatia, for the period from 2003 to 2016. Environ. Sci. Poll. Res. 2021, 28, 36640–36650. [Google Scholar] [CrossRef]
- Garrido-Perez, J.M.; Ordóñez, C.; García-Herrera, R.; Schnell, J.L. The differing impact of air stagnation on summer ozone across Europe. Atmos. Environ. 2019, 219, 117062. [Google Scholar] [CrossRef]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Alencar, A.A.C.; Arruda, V.L.S.; Silva, W.V.D.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Ohneiser, K.; Ansmann, A.; Kaifler, B.; Chundovsky, A.; Barja, B.; Knopf, D.A.; Kaifler, N.; Baars, H.; Seifert, P.; Villanueva, D.; et al. Australian wildfire smoke in the stratosphere: The decay phase in 2020/2021 and impact on ozone depletion. Atmos. Chem. Phys. 2022, 22, 7417–7442. [Google Scholar] [CrossRef]
- Mitnik, L.M.; Kuleshov, V.P.; Mitnik, M.L. Sudden stratospheric warming over Antarctica in September 2019 from the data of the MTVZA-GYa radiometer on the Meteor-M No. 2-2 satellite. Sovr. Probl. Distants. Zond. Zemli Kosmosa 2020, 17, 229–242. [Google Scholar] [CrossRef]
- Klekociuk, A.R.; Tully, M.B.; Krummel, P.B.; Henderson, S.I.; Smale, D.; Querel, R.; Nichol, S.; Alexander, S.P.; Fraser, P.J.; Nedoluha, G. The Antarctic ozone hole during 2020. J. South. Hemisph. Earth Syst. Sci. 2022, 72, 19–37. [Google Scholar] [CrossRef]
- Ma, C.; Su, H.; Lelieveld, J.; Randel, W.; Yu, P.; Andreae, M.O.; Cheng, Y. Smoke-charged vortex doubles hemispheric aerosol in the middle stratosphere and buffers ozone depletion. Sci. Adv. 2024, 10, eadn3657. [Google Scholar] [CrossRef]
- Zhang, S.; Solomon, S.; Boone, C.D.; Taha, G. Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations. Atmos. Chem. Phys. 2024, 24, 11727–11736. [Google Scholar] [CrossRef]
- Yook, S.; Thompson, D.W.J.; Solomon, S. Climate Impacts and Potential Drivers of the Unprecedented Antarctic Ozone Holes of 2020 and 2021. Geophys. Res. Lett. 2022, 49, e2022GL098064. [Google Scholar] [CrossRef]
- Clark, J.; Chiao, S. Connecting an Offshore Dry Air Stratospheric Intrusion with the Outbreak of Soberanes Fire 2016. J. Appl. Meteorol. Climatol. 2024, 63, 209–226. [Google Scholar] [CrossRef]
Hotspots | Rain | Evaporation | Humidity | Tmax | Tmin | Speed | O3 | NO2 | |
---|---|---|---|---|---|---|---|---|---|
Hotspots | 1 | ||||||||
Rain | –0.38149 | 1 | |||||||
Evaporation | 0.335563 | –0.08521 | 1 | ||||||
Humidity | –0.36532 | 0.619748 | 0.24113027 | 1 | |||||
Tmax | 0.034489 | 0.268233 | 0.706431793 | 0.761715705 | 1 | ||||
Tmin | –0.03969 | 0.422485 | 0.639304775 | 0.831633464 | 0.938148 | 1 | |||
Speed | 0.375435 | –0.33015 | 0.400937185 | –0.47241823 | –0.07233 | –0.11822 | 1 | ||
O3 | 0.340537 | –0.15581 | 0.615287145 | –0.09675064 | 0.291203 | 0.237402 | 0.48198 | 1 | |
NO2 | 0.442866 | –0.24078 | 0.558262827 | –0.24494166 | 0.193605 | 0.117199 | 0.588626 | 0.503515 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač-Andrić, E.; Gvozdić, V.; Matasović, B.; Sakač, N.; de Souza, A. Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020. Atmosphere 2025, 16, 1159. https://doi.org/10.3390/atmos16101159
Kovač-Andrić E, Gvozdić V, Matasović B, Sakač N, de Souza A. Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020. Atmosphere. 2025; 16(10):1159. https://doi.org/10.3390/atmos16101159
Chicago/Turabian StyleKovač-Andrić, Elvira, Vlatka Gvozdić, Brunislav Matasović, Nikola Sakač, and Amaury de Souza. 2025. "Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020" Atmosphere 16, no. 10: 1159. https://doi.org/10.3390/atmos16101159
APA StyleKovač-Andrić, E., Gvozdić, V., Matasović, B., Sakač, N., & de Souza, A. (2025). Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020. Atmosphere, 16(10), 1159. https://doi.org/10.3390/atmos16101159