Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter
Abstract
1. Introduction
2. Historical Land Use and Sulfur Emissions
3. Study Region and Methods
3.1. δ34S Values and Source Apportionment
3.2. Study Region
3.3. Air Quality Modeling
3.4. Air Quality Measurements
3.5. Sulfur in Moss
3.6. Conifer Needles
3.7. Tree Core Methodology
4. Results and Discussion
4.1. CALPuff Model Outputs
4.2. Atmospheric Sulfur Concentrations Using HVSs
- The inability of the model to accurately capture concentrations of sulfate at a resolution of 1 km × 1 km under complex terrain conditions for the region.
- Local industrial emissions from upstream sites that produced a higher proportion of sulfate to SO2 than are released from the tall incinerator stack at the gas processing facilities.
- The modeled conversion of SO2 to SO4 is inaccurate under the sampling conditions during the campaign.
- 62% (51–76) of the aerosol sulfate < 0.5 microns in diameter,
- 58% (47–71) of total aerosol sulfate,
- 62% (50–75) of the SO2.
- 77% (64–91) of the aerosol sulfate < 2.5 microns,
- 73% (61–85) of the total aerosol sulfate,
- >95% (87–100) of the SO2.
4.3. Passive Versus Active Sampling and CALPuff Outputs
4.4. Spatial Patterns in Plant Tissues
4.5. Mosses as Biomonitors
4.6. Tree Needles as Indicators of S Stress
4.7. Tree Cores as Biomonitors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, K.B.; Day, D.; Schwandner, F.M.; Kreidenweis, S.M.; Schichtel, B.; Malm, W.C.; Collett, J.L., Jr. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmos. Environ. 2013, 64, 66–76. [Google Scholar]
- Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience 2001, 51, 180. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Haubrich, F.; Klemm, W.; Matschullat, J. Regional and temporal (1992–2004) evolution of air-borne sulphur isotope composition in Saxony, southeastern Germany, central Europe. Isot. Environ. Health Stud. 2007, 43, 295–305. [Google Scholar]
- Batts, J.E.; Calder, L.J.; Batts, B.D. Utilizing stable isotope abundances of lichens to monitor environmental change. Chem. Geol. 2004, 204, 345–368. [Google Scholar] [CrossRef]
- Wadleigh, M.A. Lichens and atmospheric sulphur: What stable isotopes reveal. Environ. Pollut. 2003, 126, 345–351. [Google Scholar] [CrossRef]
- Case, J.; Krouse, H.R. Variations in sulphur content and stable sulfur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia 1980, 44, 247–257. [Google Scholar]
- Winner, W.E.; Bewley, I.D.; Krouse, H.R.; Brown, H.M. Stable sulphur isotope analysis of SO2 pollution impact on vegetation. Oecologia 1978, 36, 352–361. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Hohenwallner, D. A comparison of biomonitoring methods for the estimation of atmospheric pollutants in an industrial town in Austria. Environ. Monit. Assess. 2006, 117, 245–259. [Google Scholar] [CrossRef]
- Savard, M. Tree-ring stable isotopes and historical perspectives on pollution—An overview. Environ. Pollut. 2010, 158, 2007–2013. [Google Scholar] [PubMed]
- Dolegowska, S.; Galuszka, A.; Migaszewski, Z.M. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environ. Sci. Pollut. Res. 2021, 28, 10413–10435. [Google Scholar] [CrossRef] [PubMed]
- Stojanowska, A.; Gorka, M.; Lewandowska, A.U.; Wisniewska, K.; Modelska, M.; Widory, D. Can Abies alba needles be used as bio-passive samplers to assess air quality? Aerosol Air Qual. Res. 2021, 21, 210097. [Google Scholar] [CrossRef]
- Krouse, H.R.; Stewart, J.W.B.; Grinenko, V.A. Chapter 7. Pedosphere and Biosphere. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment; Krouse, H.R., Grinenko, V.A., Eds.; Wiley: Chichester, UK, 1992; pp. 267–306. [Google Scholar]
- Niepsch, D.; Clarke, L.J.; Newton, J.; Tzoulas, K.; Cavan, G. High spatial resolution of air quality in urban centres using lichen carbon, nitrogen and sulfur contents and stable-isotope-ratio signatures. Environ. Sci. Pollut. Res. 2023, 30, s8731–s8754. [Google Scholar] [CrossRef]
- Snyder, K.A.; Robinson, S.A.; Schmidt, S.; Hultine, K.R. Stable isotope approaches and opportunities for improving plant conservation. Conserv. Physiol. 2022, 10, 1–24. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Glooschenko, W.A. Isotopic composition of sulfur in mosses across Canada. Environ. Sci. Technol. 1992, 26, 85–89. [Google Scholar] [CrossRef]
- Prietzel, J.; Mayer, B.; Legge, A.H. Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada). Environ. Pollut. 2004, 132, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Rock, L.; Mayer, B. Tracing nitrate and sulfate in river basins using isotope techniques. Water Sci. Technol. 2006, 53, 209–217. [Google Scholar]
- Rock, L.; Mayer, B. Identifying the influence of geology, land use, and anthropogenic activities on riverine sulfate on a watershed scale by combining hydrometric, chemical and isotopic approaches. Chem. Geol. 2009, 262, 121–130. [Google Scholar] [CrossRef]
- Norman, A.L.; Xie, J.; Wieser, M. Chapter 6. Using isotopic abundances to follow anthropogenic emissions: An example of sulfur, oxygen, and boron isotopes in a Canadian watershed. In Biochemical Toxicology; Gailer, J., Turner, R., Eds.; DeGruyter Publishers: Berlin, Germany, 2023; 20p. [Google Scholar]
- Galloway, J.N.; Norton, S.A.; Church, M.R. Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environ. Sci. Technol. 1983, 17, 541–545. [Google Scholar] [CrossRef]
- Rochelle, B.P.; Church, M.R.; David, M.B. Sulphur retention at intensively studies sites in the US and Canada. Water Air Soil Pollut. 1987, 33, 73–83. [Google Scholar]
- Cheng, L.; Angle, R.P.; Peake, H.; Sandhu, S. Effective acidity modelling to establish acidic deposition objectives and manage emissions. Atmos. Environ. 1995, 29, 383–392. [Google Scholar] [CrossRef]
- Summers, P.W.; Whelpdale, D.M. Acid precipitation in Canada. Water Air Soil Pollut. 1976, 6, 447–455. [Google Scholar] [CrossRef]
- GOC. Government of Canada (GOC) Air Pollutant Emissions; Summary. 2019. Available online: www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html (accessed on 23 July 2025).
- GOC. Government of Canada (GOC) Air Pollutant Emissions from the Oil and Gas Industry. 2019. Available online: www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html (accessed on 23 July 2025).
- NPRI 2019. Environment Canada: National Pollutant Release Inventory (NPRI) Environment Canada Canada’s Pollutant Emissions Inventory Report: Chapter 2, Emissions and Trends. Available online: www.canada.ca/en/environment-climate-change/services/air-pollution/publications/emissions-inventory-report-2019/air-pollutant-emissions.html (accessed on 23 July 2025).
- Krouse, H.R. Sulfur Isotope Tracing of the Fate of Emission from Sour Gas Processing in Alberta, Canada. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment; Krouse, H.R., Grinenko, V.A., Eds.; Wiley: Chichester, UK, 1992; pp. 309–326. [Google Scholar]
- Xie, G.; Norman, A.L.; Wieser, M. (2010) S and B isotope variations to track air pollutant deposition in the Castle River of southern Alberta, Canada. In Environmental Forensics: Proceedings of the 2009 INEF Annual Conference; Morrison, R.D., O’Sullivan, G., Eds.; Royal Society of Chemistry: London, UK, 2010; pp. 176–184. [Google Scholar]
- Krouse, H.R.; Legge, A.; Brown, H.M. Sulfur gas emissions in the boreal forest: The West Whitecourt case study: V. Stable sulfur isotopes. Water Air Soil Pollut. 1984, 22, 321–347. [Google Scholar] [CrossRef]
- Eden, G.E. Sources of Sulphur in Post—Industrial Sediments of Waterton Reservoir, S.W. Alberta. Master’s Thesis, The University of Calgary, Calgary, AB, Canada, 1996; 147p. [Google Scholar]
- De Roo, F.; Mauder, M. The influence of idealized surface heterogeneity on virtual turbulent flux measurements. Atmos. Chem. Phys. 2018, 18, 5059–5074. [Google Scholar] [CrossRef]
- Environment Canada: Historical Climate Data. Available online: https://climate.weather.gc.ca/ (accessed on 15 July 2025).
- Scire, J.S.; Strimaitis, D.G.; Yamartino, R. A User’s Guide for the CALPuff Dispersion Model. 2000. Available online: www.calpuff.org (accessed on 21 July 2025).
- Norman, A.L.; Krouse, H.R.; MacLeod, J. Aerosol sulphate in Calgary, Alberta: An isotope study of atmospheric sulphur. In Air Pollution Modeling and Its Application XVI; Borrego, C., Incecik, S., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004; pp. 107–125. [Google Scholar]
- Krouse, H.R.; Mayer, B.; Schoenau, J.J. Applications of Stable Isotope Techniques to Soil Sulfur Cycling; Marcel Decker: New York, NY, USA, 1996; p. 247. [Google Scholar]
- Norman, A.L.; Belzer, W.; Barrie, L. Insights into the biogenic contribution to total sulphate in aerosol and precipitation in the Fraser Valley afforded by isotopes of sulphur and oxygen. J. Geophys. Res. 2004, 109, D05311. [Google Scholar] [CrossRef]
- Tretiach, M.; Adamo, P.; Bargagli, R.; Baruffo, L.; Carletti, L.; Crisafulli, P.; Giordano, S.; Modenesi, S.; Pittao, E. Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on sample vitality. Environ. Pollut. 2007, 146, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Legge, A.H.; Bogner, J.C. Foliar sulphur species in pine: A new indicator of a forest ecosystem under air pollution stress. Environ. Pollut. 1988, 55, 15–27. [Google Scholar] [CrossRef]
- Norman, A.L.; Anlauf, K.; Hayden, K.; Thompson, B.; Brook, J.R.; Li, S.M.; Bottenheim, J. Aerosol sulphate and its oxidation on the Pacific NW coast: S and O isotopes in PM2.5. Atmos. Environ. 2006, 40, 2676–2689. [Google Scholar] [CrossRef]
- Tekko, S. Bioindication of sulphur distribution in Estonia using mosses. Proc. Est. Acad. Sci. Ecol. 1991, 1, 179–182. [Google Scholar] [CrossRef]
- Watmough, S.A.; Aherne, J.; Alewell, C.; Arp, P.; Bailey, S.; Clair, T.; Dillon, P.; Duchesne, L.; Eimers, C.; Fernandez, I.; et al. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Environ. Monit. Assess. 2005, 109, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Rautio, P.; Huttunen, S.; Kukkola, E.; Peura, R.; Lamppu, J. Deposited particles, element concentrations and needle injuries on Scots pines along an industrial pollution transect in northern Europe. Environ. Pollut. 1998, 103, 81–89. [Google Scholar] [CrossRef]
- Amundson, R.G.; Walker, R.B.; Schellhase, H.U.; Legge, A.H. Sulphur gas emissions in the boreal forest: The West Whitecourt case study VIII: Pine tree mineral nutrition. Water Air Soil Pollut. 1990, 50, 219–232. [Google Scholar] [CrossRef]
- Norman, A.L.; Giesemann, A.; Krouse, H.R.; Jager, H.J. Sulfur isotope fractionation during sulfur mineralization: Results of an incubation-extraction experiment with Black Forest soils. Soil Biol. Biogeochem. 2002, 34, 1425–1438. [Google Scholar] [CrossRef]
- Howarth, R.W.; Stewart, J.W.B. The interactions of sulphur with other element cycles in ecosystems. In Scope 48: Sulphur Cycling on the Continents; Howarth, R.W., Stewart, J.W.B., Ivanov, M.V., Eds.; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Keller, T. The effect of a continuous springtime fumigation with sulphur dioxide and carbon dioxide uptake and structure of the annual ring in spruce. Can. J. For. Res. 1980, 10, 1–6. [Google Scholar] [CrossRef]
- Hirano, T.; Morimoto, K. Growth reduction of the Japanese black pine corresponding to an air pollution episode. Environ. Pollut. 1999, 106, 5–12. [Google Scholar] [CrossRef]
- Kawamura, H.; Matsuoka, N.; Koike, M.; Takashima, Y. Isotopic evidence in tree rings for historical changes in atmospheric sulfur sources. Environ. Sci. Technol. 2006, 40, 5750–5754. [Google Scholar] [CrossRef]
- Lo, Y.H.; Blanco, J.A.; Seely, B.; Welham, C.; Kimmins, J.H. Relationships between climate and radial tree growth in interior British Columbia, Canada. For. Ecol. Manag. 2010, 259, 932–942. [Google Scholar]
- McLane, S.C.; Daniels, L.D.; Aitken, S.N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. For. Ecol. Manag. 2011, 262, 115–123. [Google Scholar] [CrossRef]
- Huang, J.; Tardif, J.C.; Bergeron, Y.; Denneler, B.; Berninger, F.; Girardin, M.P. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob. Change Biol. 2010, 16, 711–731. [Google Scholar]
- Carter, M.R. (Ed.) Soil Sampling and Methods of Analysis, Canadian Society of Soil Science; Lewis Publishers: Ann Arbor, MI, USA, 1993; p. 141. [Google Scholar]
- Krouse, H.R. Sulphur isotope abundances elucidate uptake of atmospheric sulphur emissions by vegetation. Nature 1976, 265, 45–46. [Google Scholar] [CrossRef]
- Oulehle, F.; Hofmeister, J.; Cudlin, P.; Hruska, J. The effects of reduced atmospheric deposition on soil solution chemistry at a site subjected to long-term acidification, Načetín, Czech Republic. Sci. Total Environ. 2006, 370, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Krouse, H.R.; Stewart, J.W.B.; Grinenko, V.A. Pedosphere and Biosphere Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, Scope 43: Chapter 7; Krouse, H.R., Grinenko, V.A., Eds.; Wiley: Chichester, UK, 1992; pp. 267–306. [Google Scholar]
Land Use Class | zo Field | Albedo | Bowen Ratio | Soil Heat Flux | Anthropogenic Heat Flux | Leaf Area Index | |
---|---|---|---|---|---|---|---|
Summer | |||||||
20 | 0.25 | 0.10 | 0.25 | 0.15 | 0.0 | 3.00 | |
30 | 0.10 | 0.25 | 0.50 | 0.15 | 0.0 | 0.50 | |
40 | 1.30 | 0.12 | 1.00 | 0.15 | 0.0 | 4.00 | |
51 | 0.00 | 0.10 | 0.05 | 1.00 | 0.0 | 0.00 | |
80 | 0.20 | 0.30 | 0.05 | 0.15 | 0.0 | 0.00 | |
Winter | |||||||
20 | 0.01 | 0.60 | 1.50 | 0.15 | 0.0 | 0.05 | |
30 | 0.00 | 0.60 | 1.50 | 0.15 | 0.0 | 0.10 | |
40 | 1.30 | 0.35 | 1.50 | 0.15 | 0.0 | 3.50 | |
51 | 0.00 | 0.20 | 1.50 | 0.15 | 0.0 | 0.00 | |
80 | 0.01 | 0.80 | 1.50 | 0.15 | 0.0 | 0.00 |
Parameter | Northwest Gas Plant | Southeast Gas Plant |
---|---|---|
UTM (Zone 11U, m) | 675,350 mE 5,500,090 mN | 717,960 mE 5,466,090 mN |
Exit Velocity (m/s) | 6.10 | 9.86 |
Base Elevation (m) | 1253 | 1520 |
Stack Temperature (K) | 811 | 704 |
Stack Height agl (m) | 91.6 | 152 |
Stack Diameter (m) | 1.74 | 4.52 |
SO2 Emissions (g/s) | 79.5 | 346.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norman, A.-L.; LeGallou, S.; Caldwell, E.E.; Blancher, P.M.; Matic, J.; Cartar, R. Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter. Atmosphere 2025, 16, 1149. https://doi.org/10.3390/atmos16101149
Norman A-L, LeGallou S, Caldwell EE, Blancher PM, Matic J, Cartar R. Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter. Atmosphere. 2025; 16(10):1149. https://doi.org/10.3390/atmos16101149
Chicago/Turabian StyleNorman, Ann-Lise, Sunita LeGallou, Erin E. Caldwell, Patrick M. Blancher, Jelena Matic, and Ralph Cartar. 2025. "Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter" Atmosphere 16, no. 10: 1149. https://doi.org/10.3390/atmos16101149
APA StyleNorman, A.-L., LeGallou, S., Caldwell, E. E., Blancher, P. M., Matic, J., & Cartar, R. (2025). Detection of Sulfur from Industrial Emissions Across a Complex Mountainous Landscape: An Isotope Approach Using Plant-Based Biomonitors in Winter. Atmosphere, 16(10), 1149. https://doi.org/10.3390/atmos16101149