Seamless Modeling of Direct and Indirect Aerosol Effects during April 2020 Wildfire Episode in Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Enviro-HIRLAM Model Description and Design of the Experiments
2.3. Meteorological Observations
2.4. Tools for Model Verification
2.5. Overview of the Synoptic Situation
3. Results
3.1. Verification of Modeled vs. Observed Meteorology
3.2. Modeled Weather Conditions without Aerosol Effects
3.2.1. Air Temperature
3.2.2. Specific Humidity
3.2.3. Wind, Total Cloud Cover, and Precipitation
3.3. Modeled Atmospheric Composition during the Wildfire Episode
3.4. Direct and Indirect Aerosol Effects on the Atmosphere
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
15 km | 5 km | 2 km | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | REF | DAE | IDAE | COMB | REF | DAE | IDAE | COMB | REF | DAE | IDAE | COMB |
2 m air temperature (oC) | ||||||||||||
ME | −0.11 | −1.02 | −0.15 | −1.06 | 0.07 | 0.09 | −0.83 | 0.07 | −0.04 | −0.11 | −0.09 | −0.13 |
MAE | 1.22 | 2.02 | 1.22 | 2.05 | 1.24 | 1.38 | 1.94 | 1.37 | 1.28 | 1.34 | 1.27 | 1.34 |
RMSE | 1.56 | 2.62 | 1.56 | 2.68 | 1.62 | 1.89 | 3.61 | 1.87 | 1.64 | 1.76 | 1.62 | 1.75 |
MAPE | 0.36 | 0.47 | 0.36 | 0.47 | 0.51 | 0.54 | 0.54 | 0.54 | 0.41 | 0.43 | 0.41 | 0.43 |
2 m relative humidity (%) | ||||||||||||
ME | 1.43 | 2.81 | 1.42 | 2.81 | 0.66 | −0.06 | 0.79 | −0.08 | −0.62 | −1.33 | −0.63 | −1.41 |
MAE | 7.39 | 8.94 | 7.38 | 9.02 | 7.39 | 7.68 | 7.36 | 7.66 | 7.38 | 7.72 | 7.35 | 7.80 |
RMSE | 9.57 | 11.39 | 9.52 | 11.46 | 9.65 | 10.37 | 9.64 | 10.29 | 9.87 | 10.43 | 9.81 | 10.56 |
MAPE | 0.19 | 0.24 | 0.19 | 0.24 | 0.19 | 0.19 | 0.19 | 0.19 | 0.17 | 0.18 | 0.17 | 0.18 |
10 m wind speed (m/s) | ||||||||||||
ME | 0.39 | 0.12 | 0.38 | 0.10 | 0.39 | 0.41 | 0.37 | 0.40 | 0.27 | 0.43 | 0.42 | 0.28 |
MAE | 1.32 | 1.49 | 1.33 | 1.51 | 1.36 | 1.40 | 1.35 | 1.40 | 1.46 | 1.42 | 1.33 | 1.30 |
RMSE | 1.74 | 1.94 | 1.74 | 1.97 | 1.79 | 1.84 | 1.76 | 1.84 | 1.90 | 1.83 | 1.74 | 1.67 |
MAPE | 0.47 | 0.49 | 0.47 | 0.49 | 0.47 | 0.48 | 0.47 | 0.48 | 0.53 | 0.52 | 0.50 | 0.46 |
total cloud cover (fraction) | ||||||||||||
ME | −0.20 | −0.24 | −0.20 | −0.23 | −0.25 | −0.27 | −0.23 | −0.27 | −0.31 | −0.32 | −0.31 | −0.32 |
MAE | 0.25 | 0.29 | 0.26 | 0.29 | 0.29 | 0.30 | 0.28 | 0.30 | 0.33 | 0.34 | 0.33 | 0.34 |
RMSE | 0.37 | 0.42 | 0.38 | 0.41 | 0.42 | 0.44 | 0.41 | 0.43 | 0.46 | 0.48 | 0.48 | 0.48 |
MAPE | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
6 h total precipitation (mm) | ||||||||||||
ME | 0.32 | 0.22 | 0.25 | 0.23 | 0.34 | 0.25 | 0.33 | 0.18 | 0.20 | 0.12 | 0.16 | −0.03 |
MAE | 0.62 | 0.69 | 0.65 | 0.77 | 0.59 | 0.71 | 0.63 | 0.69 | 0.63 | 0.70 | 0.58 | 0.68 |
RMSE | 1.32 | 1.54 | 1.34 | 1.82 | 1.30 | 1.74 | 1.44 | 1.75 | 1.52 | 1.69 | 1.48 | 1.71 |
MAPE | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
References
- Viana, M.; Pey, J.; Querol, X.; Alastuey, A.; de Leeuw, F.; Lükewille, L. Natural sources of atmospheric aerosols influencing air quality across Europe. Sci. Total Environ. 2014, 472, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, X.-Q.; Liu, X.; Qian, Y.; Zhang, K.; Wang, M.; Li, F.; Wang, Y.; Lu, Z. Impacts of Wildfire Aerosols on Global Energy Budget and Climate: The Role of Climate Feedbacks. J. Clim. 2020, 33, 3351–3366. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Soshenskyi, O.; Zibtsev, S.; Gumeniuk, V.; Goldammer, J.G.; Vasylyshyn, R.; Blyshchyk, V. The current landscape fire management in Ukraine and strategy for its improvement. Environ. Socio-Econ. Stud. 2021, 9, 39–51. [Google Scholar] [CrossRef]
- Savenets, M.; Osadchyi, V.; Komisar, K.; Zhemera, N.; Oreshchenko, A. Remotely visible impacts on air quality after a year-round full-scale Russian invasion of Ukraine. Atmos. Pollut. Res. 2023, 14, 101912. [Google Scholar] [CrossRef]
- Zibtsev, S.; Soshenskyi, O.; Melnykovych, M.; Blaser, J.; Waeber, P.O.; Garcia, C. Ukrainian forests in the focus of climate crisis, war and fire disasters. Schweiz. Z. Forstwes. 2023, 174, 115–117. [Google Scholar] [CrossRef]
- Savenets, M.; Osadchyi, V.; Oreshchenko, A.; Pysarenko, L. Air Quality Changes in Ukraine during the April 2020 Wildfire Event. Geogr. Pannonica. 2020, 24, 271–284. [Google Scholar] [CrossRef]
- Kovalets, I.V.; Talerko, M.; Synkevych, R.; Koval, S. Estimation of Cs-137 emissions during wildfires and dust storm in Chernobyl Exclusion Zone in April 2020 using ensemble iterative source inversion method. Atmos. Environ. 2022, 288, 119305. [Google Scholar] [CrossRef]
- Masson, O.; Romanenko, O.; Saunier, O.; Kirieiev, S.; Protsak, V.; Laptev, G.; Voitsekhovych, O.; Durand, V.; Coppin, F.; Steinhauser, G.; et al. Europe-Wide Atmospheric Radionuclide Dispersion by Unprecedented Wildfires in the Chernobyl Exclusion Zone, April 2020. Environ. Sci. Tech. 2021, 55, 13834–13848. [Google Scholar] [CrossRef] [PubMed]
- Senf, F.; Heinold, B.; Kubin, A.; Müller, J.; Schrödner, R.; Tegen, I. How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments. Atmos. Chem. Phys. 2023, 23, 8939–8958. [Google Scholar] [CrossRef]
- Tosca, M.G.; Randerson, J.T.; Zender, C.S. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmos. Chem. Phys. 2013, 13, 5227–5241. [Google Scholar] [CrossRef]
- Baró, R.; Palacios-Peña, L.; Baklanov, A.; Balzarini, A.; Brunner, D.; Forkel, R.; Hirtl, M.; Honzak, L.; Pérez, J.L.; Pirovano, G.; et al. Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models. Atmos. Chem. Phys. 2017, 17, 9677–9696. [Google Scholar] [CrossRef]
- Chen, J.; Chen, I.; Tsai, I. Dynamic Feedback of Aerosol Effects on the East Asian Summer Monsoon. J. Clim. 2016, 29, 6137–6149. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Myhre, G.; Forster, P.; Sillmann, J.; Samset, B.H. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 2016, 7, 11236. [Google Scholar] [CrossRef] [PubMed]
- Rap, A.; Scott, C.E.; Spracklen, D.V.; Bellouin, N.; Forster, P.M.; Carslaw, K.S.; Schmidt, A.; Mann, G. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 2013, 40, 3297–3301. [Google Scholar] [CrossRef]
- Makar, P.A.; Akingunola, A.; Chen, J.; Pabla, B.; Gong, W.; Stroud, C.; Sioris, C.; Anderson, K.; Cheung, P.; Zhang, J.; et al. Forest-fire aerosol–weather feedbacks over western North America using a high-resolution, online coupled air-quality model. Atmos. Chem. Phys. 2021, 21, 10557–10587. [Google Scholar] [CrossRef]
- Bernstein, D.N.; Hamilton, D.S.; Krasnoff, R.; Mahowald, N.M.; Connelly, D.S.; Tilmes, S.; Hess, P.G.M. Short-term impacts of 2017 western North American wildfires on meteorology, the atmosphere’s energy budget, and premature mortality. Environ. Res. Lett. 2021, 16, 064065. [Google Scholar] [CrossRef]
- Chang, D.Y.; Yoon, J.; Lelieveld, J.; Park, S.K.; Yum, S.S.; Kim, J.; Jeong, S. Direct radiative forcing of biomass burning aerosols from the extensive Australian wildfires in 2019–2020. Environ. Res. Lett. 2021, 16, 044041. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Q.; Riley, W.J.; Chen, Y.; Wang, H.; Ma, P.; Randerson, J.T. The Influence of Fire Aerosols on Surface Climate and Gross Primary Production in the Energy Exascale Earth System Model (E3SM). J. Clim. 2021, 34, 7219–7238. [Google Scholar] [CrossRef]
- Yu, H.; Liu, S.C.; Dickinson, R.E. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. Atmospheres 2002, 107, D12. [Google Scholar] [CrossRef]
- Ilotoviz, E.; Khain, A.P.; Benmoshe, N.; Phillips, V.T.J.; Ryzhkov, A.V. Effect of Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm. J. Atmos. Sci. 2016, 73, 109–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Shrivastava, M.; Homeyer, C.R.; Wang, Y.; Seinfeld, J.H. Notable impact of wildfires in the western United States on weather hazards in the central United States. PNAS 2022, 119, e2207329119. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of tropical cloudiness by soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, R.; Yu, H.; Qian, Y.; Dickinson, R.; Assunção, M.; Silva Dias, F.; da Silva Dias, P.L.; Fernandes, K. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett. 2009, 36, L10814. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Da Silva, N.; Mailler, S.; Drobinski, P. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region. Ann. Geophys. 2018, 36, 321–335. [Google Scholar] [CrossRef]
- White, B.; Gryspeerdt, E.; Stier, P.; Morrison, H.; Thompson, G.; Kipling, Z. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys. 2017, 17, 12145–12175. [Google Scholar] [CrossRef]
- Baklanov, A.; Smith Korsholm, U.; Nuterman, R.; Mahura, A.; Nielsen, K.P.; Sass, B.H.; Rasmussen, A.; Zakey, A.; Kaas, E.; Kurganskiy, A.; et al. Enviro-HIRLAM online integrated meteorology–chemistry modelling system: Strategy, methodology, developments and applications (v7.2). Geosci. Model Dev. 2017, 10, 2971–2999. [Google Scholar] [CrossRef]
- Savenets, M.; Pysarenko, L.; Krakovska, S.; Mahura, A.; Petäjä, T. Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires. Atmos. Chem. Phys. 2022, 22, 15777–15791. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Tuccella, P.; Menut, L.; Briant, R.; Deroubaix, A.; Khvorostyanov, D.; Mailler, S.; Siour, G.; Turquety, S. Implementation of Aerosol-Cloud Interaction within WRF-CHIMERE Online Coupled Model: Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on the Benelux Union. Atmosphere 2019, 10, 20. [Google Scholar] [CrossRef]
- Jung, J.; Souri, A.H.; Wong, D.C.; Lee, S.; Jeon, W.; Kim, J.; Choi, Y. The impact of the direct effect of aerosols on meteorology and air quality using aerosol optical depth assimilation during the KORUS-AQ campaign. J. Geophys. Res. Atmos. 2019, 124, 8303–8319. [Google Scholar] [CrossRef] [PubMed]
- Carter, T.S.; Heald, C.L.; Jimenez, J.L.; Campuzano-Jost, P.; Kondo, Y.; Moteki, N.; Schwarz, J.P.; Wiedinmyer, C.; Darmenov, A.S.; da Silva, A.M.; et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. 2020, 20, 2073–2097. [Google Scholar] [CrossRef]
Model Mode | ||||
---|---|---|---|---|
Horizontal Resolution | REF | DAE | IDAE | COMB |
2 m air temperature | ||||
15 km | 0.96 | 0.89 | 0.96 | 0.89 |
5 km | 0.96 | 0.94 | 0.96 | 0.94 |
2 km | 0.96 | 0.95 | 0.96 | 0.95 |
2 m relative humidity | ||||
15 km | 0.86 | 0.81 | 0.86 | 0.81 |
5 km | 0.85 | 0.83 | 0.86 | 0.84 |
2 km | 0.83 | 0.83 | 0.84 | 0.83 |
10 m wind speed | ||||
15 km | 0.77 | 0.68 | 0.77 | 0.67 |
5 km | 0.76 | 0.74 | 0.76 | 0.74 |
2 km | 0.77 | 0.80 | 0.82 | 0.80 |
Total cloud cover | ||||
15 km | 0.60 | 0.52 | 0.61 | 0.51 |
5 km | 0.54 | 0.49 | 0.55 | 0.51 |
2 km | 0.48 | 0.43 | 0.50 | 0.43 |
6 h total precipitation | ||||
15 km | 0.67 | 0.59 | 0.65 | 0.53 |
5 km | 0.65 | 0.44 | 0.62 | 0.42 |
2 km | 0.49 | 0.42 | 0.49 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savenets, M.; Rybchynska, V.; Mahura, A.; Nuterman, R.; Baklanov, A.; Kulmala, M.; Petäjä, T. Seamless Modeling of Direct and Indirect Aerosol Effects during April 2020 Wildfire Episode in Ukraine. Atmosphere 2024, 15, 550. https://doi.org/10.3390/atmos15050550
Savenets M, Rybchynska V, Mahura A, Nuterman R, Baklanov A, Kulmala M, Petäjä T. Seamless Modeling of Direct and Indirect Aerosol Effects during April 2020 Wildfire Episode in Ukraine. Atmosphere. 2024; 15(5):550. https://doi.org/10.3390/atmos15050550
Chicago/Turabian StyleSavenets, Mykhailo, Valeriia Rybchynska, Alexander Mahura, Roman Nuterman, Alexander Baklanov, Markku Kulmala, and Tuukka Petäjä. 2024. "Seamless Modeling of Direct and Indirect Aerosol Effects during April 2020 Wildfire Episode in Ukraine" Atmosphere 15, no. 5: 550. https://doi.org/10.3390/atmos15050550